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1 Introduction

In 1968, Stancu [28] introduced a sequence of positive

linear operatorsP(α)
n : C[0,1] −→ C[0,1], depending on a

non negative parameterα as

P(α)
n ( f ;x) =

n

∑
k=0

f

(
k
n

)
p(α)

n,k (x), (1)

where p(α)
n,k (x) is the Polya distribution with density

function given by

p(α)
n,k (x) =

(
n
k

)∏k−1
v=0(x+ vα)∏n−k−1

µ=0 (1− x+ µα)

∏n−1
λ=0(1+λ α)

,

x ∈ [0,1]. In caseα = 0, the operators (1) reduce to the
classical Bernstein polynomials. For these operators ,
Lupas and Lupas [21] considered a special case forα = 1

n
which reduces to

P
( 1

n )
n ( f ;x) =

2(n!)
(2n)!

n

∑
k=0

(
n
k

)
f

(
k
n

)
(nx)k(n−nx)n−k, (2)

where the rising factorial (x)n is given by
(x)n = x(x + 1)(x + 2).....(x + n − 1) with (x)0 = 1.
Recently, Miclăuş [22] established some approximation
results for these operators and for the operators (2) also.

In 2009, Nowak [23] defined theq-analogue for the
operators (1) for any function f ∈ C[0,1],q > 0,α ≥ 0
and eachn∈ N as

Bq,α
n ( f ;x) =

n

∑
k=0

pq,α
n,k (x) f

(
[k]q
[n]q

)
,x∈ [0,1], (3)

where,

pq,α
n,k (x)=

[
n
k

]

q

∏k−1
ν=0(x+α[ν]q)∏n−k−1

µ=0 (1−qµx+α[µ ]q)

∏n−1
λ=0(1+α[λ ]q)

and investigated the Korovkin type approximation
properties for these operators. Forα = 0, operators
defined by (3) reduce toq-Bernstein polynomials and for
q → 1−, these operators reduce to Bernstein-Stancu
operators. Forα = 0 andq→ 1−, these operators reduce
to the classical Bernstein polynomials. Jiyang et al. [17]
studied the rate of convergence and Voronovskaya type
theorem for these operators defined by (3). After that
Agratini [4] introduced some estimates for the rate of
convergence for these operators by means of modulus of
continuity and Lipschitz type maximal function and also
gave a probabilistic approach.
For f ∈ C[0,1], 0 < q < 1, Erencin et al. [9] introduced
the Kantorovich type generalization of these operators by
means of the Riemann typeq-integral and investigated
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some approximation properties and also established a
local approximation theorem. Durrmeyer [8] introduced
the integral modification of classical Bernstein
polynomials which was studied in different forms by
several researches (cf. [5,13,15,27] etc.). Gupta [12]
introduced the q-analogue of Bernstein Durrmeyer
operators and studied some approximation properties for
these operators. Gupta and Wang [16] introduced
q-Durrmeyer type operators and studied estimation of the
rate of convergence in terms of modulus of continuity.
Subsequently, Finta and Gupta [10] studied some local
and global approximation theorems for theq-Durrmeyer
operators. Similar kind of results have been obtained in
some significant papers eg. [1], [2] and [3]. Motivated by
these studies, we now propose the Durrmeyer type
integral modification for the operators defined by (3) as

Dα
n ( f ;q;x) = [n+1]q

n

∑
k=0

pq,α
n,k (x)

∫ 1

0
pq

n,k(t) f (t)dqt, (4)

where

pq,α
n,k (x)=

[
n
k

]

q

∏k−1
ν=0(x+α[ν]q)∏n−k−1

µ=0 (1−qµx+α[µ ]q)

∏n−1
λ=0(1+α[λ ]q)

,

and

pq
n,k(t) =

[
n
k

]

q
tk(1−qt)n−k

q .

Clearly, whenα = 0 we havepq
n,k(t) = q−kpq,α

n,k (qt) In
this paper for the operators (4), we obtain moments, basic
convergence theorem, local approximation theorem,
A-statistical convergence theorem and the rate of
A-statistical convergence.
Now, we recall some basic definitions of q-calculus. For
more details we refer to [18]. For a non-negative integer
n, theq− integer[n]q andq− factorial[n]q! are defined as

[n]q =





1−qn

1−q
, q 6= 1,

n, q= 1.

and

[n]q! =

{
[1]q[2]q[3]q.......[n]q, n≥ 1,

1, n= 0.

Theq−binomial coefficient is defined as
[
n
k

]

q
=

[n]q!
[k]q![n− k]q!

.

Theq−beta function is defined as

Bq(k,n) =
∫ 1

0
tk−1(1−qt)n−1

q dqt

or

Bq(k,n) =
[k−1]q![n−1]q!
[n+ k−1]q!

.

Now suppose that 0< a < b, 0< q < 1 and f be a real
valued function. Then theq-Jackson integral off over the
interval [0,b] and over the generic interval[a,b] are
respectively defined as

∫ b

0
f (x)dqx= (1−q)b

∞

∑
j=0

f (bqj)q j (5)

and ∫ b

a
f (x)dqx=

∫ b

0
f (x)dqx−

∫ a

0
f (x)dqx,

provided the sum in (5) converges absolutely.

2 Auxiliary Results

In what follows,‖.‖ will denote the uniform norm on[0,1].

Lemma 1.[23] For Bq,α
n (tm,x), m= 0,1,2, one has

1.Bq,α
n (1;x) = 1

2.Bq,α
n (t;x) = x

3.Bq,α
n (t2;x) = 1

(1+α)

(
x(x+α)+ x(1−x)

[n]q

)
.

Lemma 2.For Dα
n (t

m;q;x), m= 0,1,2, we have

1.Dα
n (1;q;x) = 1

2.Dα
n (t;q;x) = 1

[n+2]q
(1+q[n]qx)

3.Dα
n (t

2;q;x) = 1
[n+2]q[n+3]q

{
(1+ q)+q(1+2q)[n]qx+

q3[n]2q
1+α

(
x(x+α)+ x(1−x)

[n]q

)}
.

Consequently,

1.Dα
n (t − x;q;x) = 1

[n+2]q
+ 1

[n+2]q
(q[n]q− [n+2]q)x

2.Dα
n ((t − x)2;q;x) = 1+q

[n+2]q[n+3]q
+{

1
[n+2]q[n+3]q

(
q(1+2q)[n]q +

q3[n]q([n]qα+1)
(1+α)

)
−

2
[n+2]q

}
x+

{
q3[n]q([n]q−1)

[n+2]q[n+3]q(1+α) −
2q[n]q
[n+2]q

+1

}
x2.

3 Main Results

First we will establish the basic convergence theorem.

Theorem 1.Let< qn > and< αn > be the sequences such
that0< qn < 1,αn ≥ 0 and 1

[n]qn
→ 0, as n→ ∞. Then for

any f ∈C[0,1], Dαn
n ( f ;qn;x) converges to f uniformly on

[0,1] iff limnqn = 1 andlimn αn = 0.
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Proof.First we assume thatqn → 1 andαn → 0, as n→∞.
From Lemma2, we observe that

Dαn
n (1;qn;x) = 1,

Dαn
n (t;qn;x) =

1
[n+2]qn

(1+qn[n]qnx)→ x,

and
Dαn

n (t2;qn;x) =

1
[n+2]qn[n+3]qn

{
(1+qn)+qn(1+2qn)[n]qnx

+
q3

n[n]
2
qn

1+αn

(
x(x+αn)+

x(1− x)
[n]qn

)}
→ x2

,

uniformly on [0,1], as n → ∞. Hence, by
Bohman-Korovkin theoremDαn

n ( f ;qn;x) converges tof
uniformly on[0,1], as n→ ∞

Conversely, suppose thatDαn
n ( f ;qn;x) converges to f

uniformly on[0,1], as n→ ∞ then

Dαn
n (t;qn;x) =

1
[n+2]qn

(1+qn[n]qnx)→ x

uniformly on[0,1], as n→ ∞, which implies thatqn → 1,
as n→ ∞. Next
Dαn

n (t2;qn;x) =

1
[n+2]qn[n+3]qn

{
(1+qn)+qn(1+2qn)[n]qnx

+
qn

3[n]2qn

1+αn

(
x(x+αn)+

x(1− x)
[n]qn

)}
→ x2

,

uniformly on[0,1], as n→ ∞.

Hence,
1+qn

[n+3]qn[n+2]qn

→ 0,

1
[n+2]qn[n+3]qn

{
qn(1+2qn)[n]qn

+
q3

n[n]
2
qn

1+αn

(
αn+

1
[n]qn

)}
→ 0 (6)

and

q3
n[n]

2
qn

(1+αn)[n+2]qn[n+3]qn

(
1− 1

[n]qn

)
→ 1, asn→ ∞.(7)

From (6) it follows that, αn → 0 as n→ ∞.

This completes the proof.

Now, we will prove a local approximation theorem for the
operatorsDα

n ( f ;q;x) .
Let

W2 =

{
g∈C[0,1] : g′′ ∈C[0,1]

}
.

For anyδ > 0, Peetre’sK-functional [26] is defined by

K2( f ;δ ) = inf
g∈W2

{
‖ f −g‖+ δ‖g′′‖

}
, (8)

where‖.‖ is the uniform norm onC[0,1]. From [6], there
exists an absolute constantC> 0, such that

K2( f ;δ ) ≤Cω2( f ;
√

δ ), (9)

where ω2( f ;
√

δ ) is the second order modulus of
smoothness forf ∈C[0,1], defined as

ω2( f ;
√

δ )= sup
0<|h|≤

√
δ

sup
x,x+h,x+2h∈[0,1]

| f (x+2h)−2 f (x+h)+ f (x)|.

The usual modulus of continuity off ∈ C[0,1] is defined
by

ω( f ;
√

δ ) = sup
0<|h|≤

√
δ

sup
x,x+h∈[0,1]

| f (x+h)− f (x)|.

Let us define an auxiliary operator as

D̃α
n ( f ;q;x) = Dα

n ( f ,q,x)+ f (x)− f

(
1

[n+2]q
(1+q[n]qx)

)
.

(10)

Lemma 3.‖Dα
n ( f ;q; .)‖ ≤ ‖ f‖.

Proof.From (4)

|Dα
n ( f ;q;x)| ≤ [n+1]q

n

∑
k=0

pq,α
n,k (x)

∫ 1

0
pq

n,k(t)| f (t)|dqt

≤ ‖ f‖ [n+1]q
n

∑
k=0

pq,α
n,k (x)

∫ 1

0
pq

n,k(t)dqt

= ‖ f‖,
which implies that

‖Dα
n ( f ;q; .)‖ ≤ ‖ f‖.

This completes the proof.

Hence from (10), it follows that

‖D̃α
n ( f ;q; .)‖ ≤ 3‖ f‖. (11)

In what follows, letqn be a sequence in(0,1) such that
qn → 1, as n→ ∞ and 1

[n]qn
→ 0. Further, letαn be a

sequence of non-negative real numbers such that
αn → 0, as n→ ∞.
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Theorem 2.Let f ∈C[0,1]. Then for each x∈ [0,1],
we have|Dαn

n ( f ;qn;x)− f (x)|

≤ 2Cω2

(
f ;

δ αn
n,qn

(x)
√

2

)

+ω
(

f ,

∣∣∣∣
1

[n+2]qn

+

(
qn[n]qn

[n+2]qn

−1

)
x

∣∣∣∣
)
,

where,

δ αn
n,qn

(x) =

{
Dαn

n ((t − x)2;qn;x)+

(
1+qn[n]qnx
[n+2]qn

− x

)2}

Proof.From (10) we haveD̃αn
n (1;qn;x) = 1

andD̃αn
n (t;qn;x) = x. HenceD̃αn

n (t − x;qn;x) = 0.

Forg∈W2 andx∈ [0,1], by Taylor’s theorem, we have

g(t)−g(x) = (t − x)g′(x)+
∫ t

x
(t −u)g′′(u)du.

Then,
D̃αn

n (g(t);qn;x)−g(x) =

D̃αn
n

(
(t − x)g′(x);qn;x

)

+D̃αn
n

(∫ t

x
(t −u)g′′(u)du;qn;x

)

= g′(x)D̃αn
n (t − x;qn;x)

+D̃αn
n

(∫ t

x
(t −u)g′′(u)du;qn;x

)

= D̃αn
n

(∫ t

x
(t −u)g′′(u)du;qn;x

)

= Dαn
n

(∫ t

x
(t −u)g′′(u)du;qn;x

)

−
∫ 1+qn[n]qnx

[n+2]qn

x

(
1+qn[n]qnx
[n+2]qn

−u

)
g′′(u)du,

which implies that
|D̃αn

n (g(t);qn;x)−g(x)|

≤ Dαn
n

(∣∣∣∣
∫ t

x
|t −u||g′′(u)|du

∣∣∣∣;qn;x

)

+

∣∣∣∣
∫ 1+qn[n]qnx

[n+2]qn

x

∣∣∣∣
1+qn[n]qnx

[n+2]qn

−u

∣∣∣∣g
′′(u)du

∣∣∣∣

≤ ‖g′′‖Dαn
n

(∣∣∣∣
∫ t

x
|t −u|du

∣∣∣∣;qn;x

)

+‖g′′‖
∫ 1+qn[n]qnx

[n+2]qn

x

∣∣∣∣
1+qn[n]qnx

[n+2]qn

−u

∣∣∣∣du

= I1+ I2, (say).

Now,

I1 = ‖g′′‖Dαn
n

(∣∣∣∣
∫ t

x
|t −u|du

∣∣∣∣;qn;x

)

= ‖g′′‖Dαn
n

(
(t − x)2

2
: x

)
,

and

I2 = ‖g′′‖
∫ 1+qn[n]qnx

[n+2]qn

x

∣∣∣∣
1+qn[n]qnx
[n+2]qn

−u

∣∣∣∣du

=

(
1+qn[n]qnx
[n+2]qn

− x

)2

2
‖g′′‖.

So, we have

|D̃αn
n (g(t);qn;x)−g(x)| ≤ ‖g′′‖

2

{
Dαn

n ((t − x)2;qn;x)

+

(
1+qn[n]qnx

[n+2]qn

− x

)2}

=
‖g′′‖

2
(δ αn

n,qn
(x))2

, (say). (12)

Now,∣∣∣∣Dαn
n ( f ;qn;x)− f (x)

∣∣∣∣

=

∣∣∣∣D̃
αn
n ( f ;qn;x)− f (x)+ f

(
1+qn[n]qnx

[n+2]qn

)
− f (x)

∣∣∣∣

≤
∣∣∣∣D̃

αn
n ( f −g;qn;x)

∣∣∣∣+
∣∣∣∣D̃

αn
n (g;qn;x)−g(x)

∣∣∣∣

+

∣∣∣∣ f (x)−g(x)

∣∣∣∣+
∣∣∣∣ f
(

1+qn[n]qnx

[n+2]qn

)
− f (x)

∣∣∣∣.

Using equations (11) and (12), we get∣∣∣∣Dαn
n ( f ;qn;x)− f (x)

∣∣∣∣

≤ 4‖ f −g‖+4
‖g′′‖

2
(δ αn

n,qn
(x))2

+ω
(

f ,

∣∣∣∣
1

[n+2]qn

+

(
qn[n]qn

[n+2]qn

−1

)
x

∣∣∣∣
)
.

Taking infimum on the right hand side of the above
inequality over allg ∈ W2, in view of the inequality
(8),we obtain∣∣∣∣Dαn

n ( f ;qn;x)− f (x)

∣∣∣∣

≤ 4K2

(
f ,
(δ αn

n,qn
(x))2

2

)

+ω
(

f ,

∣∣∣∣
1

[n+2]qn

+

(
qn[n]qn

[n+2]qn

−1

)
x

∣∣∣∣
)
.
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Using the relation between K-functional and second
modulus of smoothness from equation (9), we get∣∣∣∣Dαn

n ( f ;qn;x)− f (x)

∣∣∣∣

≤ Cω2

(
f ,

δ αn
n,qn

(x)
√

2

)

+ω
(

f ,

∣∣∣∣
1

[n+2]qn

+

(
qn[n]qn

[n+2]qn

−1

)
x

∣∣∣∣
)
.

This completes the proof.

For 0 < r ≤ 1, we consider the following
Lipschitz-type space [25]:

LipM(r) =

{
f ∈C[0,1] : | f (t)− f (x)| ≤ M

|t − x|r

(t + x)
r
2

;

M > 0, t ∈ [0,1] and x∈ (0,1]

}
.

In our next theorem, we estimate the error in the
approximation for a function inLipM(r).

Theorem 3.For f ∈ LipM(r), 0 < r ≤ 1, x ∈ (0,1] and
n∈ N, we have

∣∣∣∣D
αn
n ( f ;qn;x)− f (x)

∣∣∣∣≤ M

(µqn,αn
n,2 (x)

x

) r
2

,

whereµqn,αn
n,2 (x) = Dαn

n ((t − x)2;qn;x) .

Proof.We may write
|Dαn

n ( f ,qn,x)− f (x)|

≤ [n+1]qn

n

∑
k=0

pqn,αn
n,k (x)

∫ 1

0
pqn

n,k(t)| f (t)− f (x)|dqnt.

Applying Hölder’s inequality in the integral form forp= 2
r

andqn =
2

2−r
|Dαn

n ( f ,qn,x)− f (x)|

≤ [n+1]qn

n

∑
k=0

pqn,αn
n,k (x)

(∫ 1

0
pqn

n,k(t)| f (t)− f (x)| 2
r dqnt

) r
2

(∫ 1

0
pqn

n,kdqnt

) 2−r
2

= [n+1]qn

n

∑
k=0

pqn,αn
n,k (x)

(∫ 1

0
pqn

n,k(t)|( f (t)− f (x))| 2
r dqnt

) r
2

(
1

[n+1]qn

) 2−r
r

Again, applying Hölder’s inequality for the sum forp= 2
r

andqn =
2

2−r

|Dαn
n ( f ,qn,x)− f (x)|

≤
(
[n+1]qn

n

∑
k=0

pqn,αn
n,k (x)

∫ 1

0
pqn

n,k(t)| f (t)− f (x)| 2
r dqnt

) r
2

( n

∑
k=0

pqn,αn
n,k (x)

) 2−r
2

≤
{
[n+1]qn

n

∑
k=0

pqn
n,k,αn(x)

∫ 1

0
pqn

n,k(t)

(
M

|t − x|r
(t + x)

r
2

) 2
r

dqnt

} r
2

.1

≤ M

(x)
r
2

(
[n+1]qn

n

∑
k=0

pqn,αn
n,k (x)

∫ 1

0
pqn

n,k(t)|t − x|2dqnt

) r
2

≤ M

(x)
r
2

(
Dαn

n ((t − x)2
,qn,x)

) r
2

= M

(µqn,αn
n,2 (x)

x

) r
2

.

This completes the proof.

Lipschitz type maximal function of orderβ [20], is defined
as

ω̃β ( f ,x)= sup
t 6=x,t∈[0,1]

| f (t)− f (x)|
|t − x|β , x∈ [0,1] andβ ∈ (0,1].

Now, we will obtain a local direct estimate for the operator
Dαn

n ( f ,qn,x) in terms of theω̃β ( f ,x).

Theorem 4.Let f ∈ C[0,1],0 < β ≤ 1. Then∀ x ∈ [0,1],
we have

|Dαn
n ( f ,qn,x)− f (x)| ≤ ω̃β ( f ,x)

(
µqn,αn

n,2 (x)

) β
2

,

whereµqn,αn
n,2 (x) is as defined in equation (12).

Proof.Applying Hölder’s inequality twice first for the
integration and then for the summation withp = 2

β and

qn =
2

2−β , we have
|Dαn

n ( f ,qn,x)− f (x)|

≤
(
[n+1]qn

n

∑
k=0

pqn,αn
n,k (x)

∫ 1

0
pqn

n,k(t)| f (t)− f (x)|
2
β dqnt

) β
2

.

Using the definition of the Lipschitz-type maximal
function, we obtain
|Dαn

n ( f ,qn,x)− f (x)|

≤ ω̃β ( f ,x)

(
[n+1]qn

n

∑
k=0

pqn,αn
n,k (x)

∫ 1

0
pqn

n,k(t)|t − x|2dqnt

) β
2

= ω̃β ( f ,x)

(
Dαn

n ((t − x)2;qn;x)

) β
2

= ω̃β ( f ,x)

(
µqn,αn

n,2 (x)

) β
2

.
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This completes the proof.

4 A-Statistical Convergence

Let A = (a jn) be a non-negative infinite summability
matrix. For a given sequencex=< xn >, theA-transform
of x denoted byAx= (Ax) j is defined as

(Ax) j =
∞

∑
n=1

a jnxn

provided the series converges for eachj. A is said to be
regular if lim

j
(Ax) j = L whenever lim

n
xn = L. Now the

A-density of K,K ⊆ N(the set of the natural numbers),
denoted byδA(K), is defined as

δA(K) = lim j

∞

∑
n=1

a jnχK(n), provided the limit exists,

whereχK(n) is the characteristic function ofK.
Thenx=< xn > is said to beA-statistically convergent to
L i.e.stA− lim

n
xn = L if for everyε > 0,

lim
j

∑
n:|xn−L|≥ε

a jn = 0 or equivalently

δA{n∈ K : |xn−L| ≥ ε}= 0.
If we replaceA by C1 thenA is a Cesaro matrix of order
one and A-statistical convergence is reduced to the
statistical convergence. Similarly, ifA = I , the identity
matrix thenA-statistical convergence reduces to ordinary
convergence. Kolk [19] proved that statistical
convergence is stronger than ordinary convergence. In this
direction, the significant contributions have been made by
(cf. [7], [11], [14], [24] etc.).

Theorem 5.[11] If the sequence of positive linear
operators Ln : C[a,b]→C[a,b] satisfies the conditions
st− limn‖Ln(ei ;q; .)−ei‖ = 0 where ei(t) = t i , i = 0,1,2,
then for any f ∈ C[a,b], we have
st− limn‖Ln( f ;q; .)− f‖= 0.

The result given above also works forA-statistical
convergence. Now we will establish the following
A-statistical approximation theorem for the operator
Dα

n ( f ,q,x).

Theorem 6.Let A=(a jn)be a non-negative infinite regular
summability matrix and q=< qn >, 0< qn < 1 andα =<

αn > be the sequences satisfying the following conditions:

stA− lim
n

qn = 1, stA− lim
n

qn
n = a,a< 1

stA− lim
n

αn = 0 and stA− lim
n

1
[n]qn

= 0, (13)

then for f∈C[0,1], we have
stA− limn‖Dαn

n ( f ,qn, .)− f‖= 0.

Proof.From Theorem5, it is enough to prove thatstA −
limn‖Dαn

n (ei ,qn, .)−ei‖C[0,1] = 0 for i = 0,1,2.
In view of Lemma2, we haveDαn

n (e0,qn,x) = 1, hence

st− limn‖Dαn
n (e0,qn, .)−e0‖= 0.

Now,

‖Dαn
n (e1,qn, .)−e1‖ = sup

[0,1]

∣∣∣∣
1

[n+2]qn

(1+qn[n]qnx)− x

∣∣∣∣

≤
∣∣∣∣

qn[n]qn

[n+2]qn

−1

∣∣∣∣+
1

[n+2]qn

. (14)

For any givenε > 0, let us define the following sets

U =

{
n : ‖Dαn

n (e1,qn, .)−e1‖ ≥ ε
}
,

U1 =

{
n :

∣∣∣∣
qn[n]qn

[n+2]qn

−1

∣∣∣∣≥
ε
2

}
,

and

U2 =

{
n :

1
[n+2]qn

≥ ε
2

}
.

From (14) it is easy to see thatU ⊆U1
⋃

U2, so we have

∑
n∈U

a jn ≤ ∑
n∈U1

a jn + ∑
n∈U2

a jn. (15)

From equation (13), we obtain

stA− lim
n

(
qn[n]qn

[n+2]qn

−1

)
= 0

and

stA− lim
n

(
1

[n+2]qn

)
= 0.

Hence by taking limit on both sides of (15), as j → ∞, we
get

stA− lim
n
‖Dαn

n (e1,qn, .)−e1‖= 0. (16)

Similarly, using Lemma2 , we have
|Dαn

n (e2,qn, .)−e2‖

= sup
[0,1]

∣∣∣∣
1

[n+2]qn[n+3]qn

{
(1+qn)+qn(1+2qn)[n]qnx

+
q3

n[n]
2
qn

1+αn

(
x(x+αn)+

x(1− x)
[n]qn

)}
− x2

∣∣∣∣

≤ 1+qn

[n+2]qn[n+3]qn

+

∣∣∣∣
1

[n+2]qn[n+3]qn

(
qn(1+2qn)[n]qn

+
q3

n[n]
2
qn

1+αn

(
αn+

1
[n]qn

)∣∣∣∣

+

∣∣∣∣
1

[n+2]qn[n+3]qn

q3
n[n]

2
qn

1+αn

(
1− 1

[n]qn

)
−1

∣∣∣∣. (17)

For ε > 0, let us define the following sets:

U =

{
n : ‖Dαn

n (e2,qn, .)−e2‖ ≥ ε
}
,
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U1 =

{
n : 1+qn

[n+2]qn[n+3]qn
≥ ε

3

}
,

U2 =

{
n :

∣∣∣∣ 1
[n+2]qn [n+3]qn

(
qn(1+2qn)[n]qn

+
q3

n[n]
2
qn

1+αn

(
αn+

1
[n]qn

)∣∣∣∣≥ ε
3

}
,

and

U3=

{
n :

∣∣∣∣
1

[n+2]qn[n+3]qn

q3
n[n]

2
qn

1+αn

(
1− 1

[n]qn

)
−1

∣∣∣∣≥
ε
3

}
.

From (17) it follows thatU ⊆U1
⋃

U2
⋃

U3, hence

∑
n∈U

a jn ≤ ∑
n∈U1

a jn + ∑
n∈U2

a jn+ ∑
n∈U3

a jn. (18)

Now, using (13) we find

st− lim
n

1+qn

[n+2]qk[n+3]qk

= 0,

st− limn
1

[n+2]qn [n+3]qn

{
qn(1+2qn)[n]qn

+
q3

n[n]
2
qn

1+αn

(
αn+

1
[n]qn

)}
= 0,

andst− limn

{
1

[n+2]qn [n+3]qn

q3
n[n]

2
qn

1+αn

(
1− 1

[n]qn

)
−1

}
= 0.

Hence, by taking limits on both sides of (18), as j → ∞,
we get

stA− lim
n
‖Dαn

n (e2,qn, .)−e2‖= 0. (19)

This completes the proof.

5 Rate of A-statistical convergence

Let f ∈ C[0,1]. Then for any x, t ∈ [0,1], we have
| f (t)− f (x)| ≤ ω( f , |t − x|), which implies that

| f (t)− f (x)| ≤ (1+ δ−2(t − x)2)ω( f ,δ ), δ > 0. (20)

Let A = (a jn) be a non negative infinite regular
summability matrix and< b j > be a positive non
increasing sequence. If for every
ε > 0, lim j

1
b j ∑

n:|xn−L|≥ε
a jn = 0, then we say that the

sequencex =< xn >, convergesA-statistically to number
L with the rate of o(b j) and this is denoted by
xn − L = stA − o(bn) as n → ∞. If for every
ε > 0, supj

1
j ∑

n:|xn|≥ε
a jn < ∞, then x is called

A-statistically bounded with the rateO(bn), as n→ ∞.

If we consider the concept ofA-statistical convergence in
the measure from measure theory, then we have the

following definitions: The sequencex =< xn > is said to
beA-statistically convergent toL with the rate ofoη(bn),
denoted byxn − L = stA − oη(bn), asn → ∞ if for every
ε > 0, lim j ∑

n:|xn−L|≥εbn

a jn = 0.

The sequencex=< xn > is calledA-statistically bounded
with the rate ofOη(bn), if there exists a positive number
M such that limj ∑

n:|xn|≥Mbn

a jn = 0. We denote it by

writing xn = stA−Oη(bn), as n→ ∞.

In our next theorem we give the rate ofA-statistical
convergence for the operatorDα

n ( f ;q;x) in terms of
modulus of continuity.

Theorem 7.Let A = (a jn) be a non negative regular
summability matrix and for each x∈ [0,1], < bn(x) > be
a positive non-increasing sequence and let
q =< qn >,0 < qn < 1 and α =< αn > be sequences
satisfying equation (13) andω( f ;µqn,αn

n,2 ) = stA−o(bn(x))

with µqn,αn
n,2 (x) = Dαn

n ((t −x)2;qn;x), then for any function
f ∈ C[0,1] andx ∈ [0,1], we have
Dαn

n ( f ;qn;x)− f (x) = stA−o(bn(x)).

Proof.By monotonicity and linearity of the operator
Dαn

n ( f ;qn;x), we have|Dαn
n ( f ;qn;x)− f (x)|

≤ Dαn
n (| f (t)− f (x)|;qn;x)

≤
(

1+ δ−2Dαn
n ((t − x)2;qn;x)

)
ω( f ;δ ), for anyδ > 0.

Takingδ as
√

µqn,αn
n,2 (x), we get

|Dαn
n ( f ;qn;x)− f (x)| ≤ 2ω( f ;

√
µqn,αn

n,2 ). (21)

For ε > 0, let us define the following sets:

U =

{
n : |Dαn

n ( f ;qn;x) − f (x)| ≥ ε
}

and

U1 =

{
n : 2ω

(
f ,
√

µqn,αn
n,2 (x)

)
≥ ε

}
.

From (21), we have
1

bn(x)
∑
n∈U

a jn ≤ 1
bn(x)

∑
n∈U1

a jn.

Taking limits on above inequality asj → ∞ and using
ω( f ;µqn,αn

n,2 ) = stA − o(bn(x)), we obtain the required
result.
This completes the proof.

Theorem 8.Let
A= (a jn), < bn(x) >, q=< qn >, andα =< αn > be
all same as in Theorem7. Assume that the operators
Dαn

n ( f ;qn;x) satisfy the condition
ω( f ;µqn,αn

n,2 (x)) = stA − oη(bn(x)) with

µqn,αn
n,2 (x) = Dαn

n ((t − x)2;qn;x). Then for all f ∈ C[0,1],
we have Dαn ( f ;q;x)− f (x) = stA−oη(bn(x)).

Similar results hold when little“oη” is replaced by the
big “Oη ” .
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In the following theorem we establish the rate of
A-statistical convergence for the operatorDα

n ( f ;qn;x) in
terms of the second modulus of continuity in the space
W2.

Theorem 9.Let A = (a jn) be a non negative regular
summability matrix and let q=< qn >,0 < qn < 1 and
α =< αn > be sequences satisfying equation (13). For
each f∈C[0,1], we have

‖Dαn
n ( f ;qn; .)− f‖ ≤Cω2( f ;

√
δ qn,αn

n ),

where

δ qn,αn
n = ‖Dαn

n ((e1− .);qn; .)‖+
∥∥∥∥Dαn

n ((e1− .)2;qn; .)

∥∥∥∥.

Proof.Forg∈W2, applying Taylor’s expansion , we have

Dαn
n (g;qn;x)−g(x) = g′(x)Dαn

n (e1− x;qn;x)

+
1
2

g′′(ξ )Dαn
n ((e1− x)2;qn;x),

whereξ lies between t and x. We may write,

‖Dαn
n (g;qn; .)−g‖ ≤ ‖g′‖‖Dαn

n ((e1− .);qn; .)‖

+
1
2
‖g′′‖

∥∥∥∥Dαn
n ((e1− .)2;qn; .)

∥∥∥∥
≤ δ qn,αn

n,x ‖g‖W2, (say).

For f ∈C[0,1] andg∈W2, we have

‖Dαn
n ( f ;qn; .)− f‖ ≤ ‖Dαn

n ( f ;qn; .)−Dαn
n (g;qn; .)‖

+‖Dαn
n (g;qn; .)−g‖+ ‖g− f‖

≤ 2‖g− f‖+ ‖Dαn
n (g;qn; .)−g‖

≤ 2‖g− f‖+ δ qn,αn
n ‖g‖W2

≤ 2

(
‖g− f‖+ δ qn,αn

n ‖g‖W2

)
.

Taking infimum on the right hand side of the above
inequality over allg∈W2 and using equation (8), we get

‖Dαn
n ( f ;qn; .)− f‖ ≤ 2K( f ;δ qn,αn

n )

≤ Cω2( f ;
√

δ qn,αn
n ).

Using equations (16) and (19), we getstA− limn δ qn,αn
n =

0, hencestA − limn ω2( f ;
√

δ qn,αn
n ) = 0, which gives the

required result. This completes the proof.

Conclusion: The degree of approximation of the
Stancu-Durrmeyer-type modification ofq-Bernstein
operators is studied by means of the modulus of
continuity, Lipschitz type maximal function and Lipschitz

type space. Also, the Korovkin typeA-statistical
approximation theorem and rates ofA-statistical
convergence in terms of the modulus of continuity are
established.
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