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Abstract: Inthis paper, we construct the Stancu-Durrmeyer-type fizadion ofg-Bernstein operators by meansgpfackson integral.
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1 Introduction

In 1968, StancuZg] introduced a sequence of positive
linear operatorsPrga) : C[0,1] — C[0, 1], depending on a

non negative parameteras

n k
AL (1) = f(—) o),
n k; n n,k

where pffk)(x) is the Polya distribution with density
function given by

n
b k
x € [0,1]. In casea = 0, the operatorsl] reduce to the
classical Bernstein polynomials. For these operators

Lupas and Lupa<2[l] considered a special case mr= %
which reduces to

1)

=g (X+va) 126 (1 —x+ pa)
M_b(1+Aa)

)

where the rising factorial (x), is given by
(X)n = XX+ 1)(X+ 2).....(x + n—1) with (x)o = 1.
Recently, Miclaus 22] established some approximation
results for these operators and for the opera@ral§o.

In 2009, Nowak P3 defined theg-analogue for the
operators ) for any functionf € C[0,1],q > 0,a > 0
and eacm € N as

Bﬁ’a(f;x) — kipﬂf(x)f (%),XE [O, 1],

Njq

)
where,

599 ) H Mi_o0x+ alv]g)MpZs *(1 - ax+ alu]q)
R L My 5(1+alAlg)

and investigated the Korovkin type approximation
properties for these operators. For = 0, operators
defined by 8) reduce tog-Bernstein polynomials and for

g — 1—, these operators reduce to Bernstein-Stancu
operators. Foor = 0 andq — 1—, these operators reduce

to the classical Bernstein polynomials. Jiyang et &¥)] [
studied the rate of convergence and Voronovskaya type
theorem for these operators defined I8). (After that
Agratini [4] introduced some estimates for the rate of
convergence for these operators by means of modulus of
continuity and Lipschitz type maximal function and also
gave a probabilistic approach.

For f € C[0,1], 0 < q < 1, Erencin et al. 9] introduced

the Kantorovich type generalization of these operators by
means of the Riemann typgintegral and investigated
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some approximation properties and also established &low suppose that & a<b, 0< g< 1 andf be a real
local approximation theorem. Durrmeye] [introduced  valued function. Then thg-Jackson integral of over the
the integral modification of classical Bernstein interval [0,b] and over the generic intervgh,b] are
polynomials which was studied in different forms by respectively defined as

several researches (cf5,1315,27] etc.). Gupta 12

introduced the g-analogue of Bernstein Durrmeyer w o

operators and studied some approximation properties for, f(X)dgx = (1_q)bz f(bg')q’ (5)
these operators. Gupta and Wand#][ introduced 0 j=o

g-Durrmeyer type operators and studied estimation of the

rate of convergence in terms of modulus of continuity. 2" ) ) .

Subsequently, Finta and Gupta(] studied some local / f(x)qu:/ f(x)dqx_/ £ (X)dgX,

and global approximation theorems for thedurrmeyer a 0 0

operators. Similar kind of results have been obtained in
some significant papers ed][[2] and [3]. Motivated by
these studies, we now propose the Durrmeyer type
integral modification for the operators defined By s

provided the sum ing) converges absolutely.

2 Auxiliary Results

DE(f:q;x) = [n+ 1q %p / PO F Ot (4)
In what follows,||. || will denote the uniform norm of®, 1].

where
- —K— q.a _
iy (X) = [ ] Msbx+ alvg My 22— gix+afulg)  Lemma1[23 For Ba™(t",x), m=0,1,2, one has
R L My —5(1+afAlo) R (=1
and 3B = m <X<X+“>+X<ﬁnﬁ>)'

n _
Pkt = [k] t“(1-qt)g
d Lemma 2.For D (t™; ;x), m=0,1,2, we have

Clearly, whena = 0 we havepn W =0a° pnk(qt) 1.D%(Ligx) = 1
this paper for the operatorg)( we obtain moments, basic 2.D9(t; i X) = —L— (1+qnlgx)
convergence theorem, local approximation theorem, ™ 4% = piz, AiNlq

A-statistical convergence theorem and the rate of 3.09(t2; 1 1 142
A-statistical convergence. (t50:%) = e | (1 +9) + Al +20)[ngx+

Now, we recall some basic definitions of g-calculus. For  ¢[nj3 (1-%)
more details we refer tolB]. For a non-negative integer Tra (XX+a)+ Mg :
n, theg— integer[n]q andg— factorial[n]q! are defined as
Consequently,
1-q"

[n]q: 1_q7q7é15 a o 1 1

n gq=1 1DA(t=X0:X) = g + iz (AlNla — [N+ 2Jg)x

’ ' . 1
and 207 ((t—x)% %) - m +
1 @lnlg(nlga+1)
nlq! = { [1]q[2]q[3]1q ~~~~~~~ [Ng, n>1, {[n+2}q[n+3]q q(1+29)[njq + (I+a) )
’ n=0 2 }X+{ Plaline D) 2anla 1})(2

Theg—binomial coefficient is defined as n+2lq n+2gn3la(1+a) - [n+2q

H _ [n]q!
klg [Kg![n—Kg!

Theg—beta function is defined as

3 Main Results

First we will establish the basic convergence theorem.

1
Bq(k,n) = / th=1(1— qt)~2dgt
0 Theorem 1.Let< gy > and< an > be the sequences such

or that0<qn<1an>0and”q — 0, as n— . Then for
[k—1]g![n—1]g! any f e C[0,1], Di"(f;dn;X) converges to f uniformly on

Ba(k,n) = W [0,1] iff limhgn=1andlim,an =0.
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ProofFirst we assume that, — 1anda, — 0, as n— .
From Lemma2, we observe that

DA™ (1:0n:X) = 1,

DI (t; gn; X) = (1+qn[n]g,x) — X,

[n+ Z]Qn
and

Dgn (t%; qn; X) =
1
[n + Z]Qn[n + 3]Qn

aalnlg, X(1—x)
+ 1+0(:n (x(x+ an) + o )} — X,

uniformly on [0,1], as n — o. Hence, by
Bohman-Korovkin theorenD3"( f;qgn;x) converges tof
uniformly on[0,1], asn— o

{<1+qn> (Lt 200 g x

Conversely, suppose th&@3"(f;qn;x) converges tof
uniformly on[0,1], as n — o then

DA™ (t; Gn; X) =

n 2. (1+an[njg,X) — X

uniformly on[0, 1], as n— o, which implies that}, — 1,
as n— . Next
DA (t2;ani X) =
1
[n+2]Qn[n+3]Qn

an°[nl3, X(1—x) 2
+71+Un (x(x+ Qn) + o >} — X,

{<1+qn> (Lt 200 g x

uniformly on[0,1], asn — co.
Hence,
1+0an
— 1 __ 0,
[n+ 3]Qn[n+ Z]Qn

1
m {Qn(l-f- 20n)[N]g,8

(o)) o ®

SHUES
(1+ an)[n+ Z]Qn[n+ 3]Qn

and

<1— 1 > — 1, asn — .(7)
[n]Qn
From () it follows that, o, — 0as n— oo,

This completes the proof.

Now, we will prove a local approximation theorem for the
operatorPg (f;q;x) .
Let

W2 = {g €C[0,1]:¢" eC[o, 1]}.

For anyd > 0, Peetre’K-functional 6] is defined by

Ko(F:3) = inf {|f—g|+6|g”||}, ®)
gew?

where]|.|| is the uniform norm or€[0, 1]. From [6], there
exists an absolute constaiit- 0, such that

Ko(f;8) < Can(f;V3), 9)

where ay(f;\/3) is the second order modulus of
smoothness fof € C[0,1], defined as

wy(f;V3)= sup sup
0<|h|<v/& Xx+hx+2he[0.1]

|f (x+2h) — 2f (x-+h) + f (X)].

The usual modulus of continuity df € C[0,1] is defined
by

w(f;V3) =

sup sup
0<|h|<v/d xx+he[0,1]

£ (x+h) — F(x)].

Let us define an auxiliary operator as

BE (f10:%) = DI (F.q.) + f(x) f(#<1+q[n1qx>).

N+ 2]q
(10)
Lemma 3/|DE(f:q;.) < |If].
Proof From @)
n 1
DR < n- 3la Y A0 [ ph(OIT0)]dd
& 0
n a 1
<11l In+3a Y PRECO [ PR
K=0
= [Ifl,
which implies that
DR (fra )l < [IF]-
This completes the proof.
Hence from 10), it follows that
IDR (fiq:-)ll < 3 f]l. (11)

In what follows, letq, be a sequence i(D,1) such that
Oh — 1, asn— o and ﬁ — 0. Further, leta, be a

sequence of non-negative real numbers such that
ap — 0,as n— oo,
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Theorem 2.Let f € C[0,1]. Then for each x [0,1],
we have D (f; gn; x) — f(X)|

< 2015 5400)
+w(f,

where,
0 = {00 - (1250

On[Ng
nt 2, ([n+2]qn 1>X

2
)

Proo~f.From (L0) we haveﬁﬂi(l;qn;x) =1

andD@n(t; qn; X) = x. HenceD@" (t — x; gn; X) = 0.

Forg € W2 andx € [0, 1], by Taylor's theorem, we have

') + / (- u)g(u)du

g(t) —g(x) =

Then,
DA™ (g(t); 0n; X) —

5?(0—@duﬁ%m)

+Dgn </Xt (t—u)g’(u)duy; qn;x>

= g (X)DF"(t — X; Oy X)

+Dgn (/Xt (t—u)g’(u)duy; qn;x>

= Do (/Xt(t— u)g”(u)dy; qn;x)

= Dgn (/Xt(t— u)g”(u)dy; qn;x)
._Almgﬁx(lﬁg%%;_ )g’ (e

which implies that
DA™ (9(t); an X) — 9(X)|

<D$(

1+an[njgnx

g(x) =

t
| t=ullg’wau

;qmX)

t
= 10| [t~ vicu

t—x)2
~ o (45 ),

and

;Qn;X)

1+an[njgnX

2= gl [ "
CNMW_OZ
[n+2]Qn

— g

14 on[n]g,x

—u|du
N+ 2)q,

//H

So, we have

BEn (gt):amx) — g0)] < 1S

{D%« X0

1+ gn[n]g,X 2
I’H—an

(5"” ()% (say). (12)

Now,
D& (f;qn;x) — f(x)

1+ gn[Njg,X
[”+2]qqn ) —

< |DE"(f — g;on; X)| + D" (9: Gn; X) — ()
%(M) ).

[n + Z]Qn
Using equationsl(l) and (L2), we get
D (Ficnix) - 1(3)

= 5ﬁ"(f;qn;x)—f(x)+f(

+‘f(x)—g(x) +

/!
~ ol + 4190 315, 07

+w<ﬁ‘m%zh;*<ﬁﬂg;‘4>x

<4|f

)

Taking infimum on the right hand side of the above

[n+2an m_u g’ (u)du inequality over allg e W2, in view of the inequality
X [n+2]q, (8),we obtain
t

<1910 | - uid: i) Dff(Fin) — ()

1+Qn lgnX a 2

n n 1—|— fo) ‘”n X
_|_||g//H +2]q [nj?[z]]q —uldu < 4K2(f,( n,qz( )) )

st G vl g * (e~ ))
Now, G O
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Using the relation between K-functional and second|D3%"(f,qgn,X)—

modulus of smoothness from equati®), (ve get
DR (10~ 1)

o e ([mﬁn 1))

This completes the proof.

For 0 < r < 1, we consider
Lipschitz-type space2f):

the following

t—x|"
(t+x)2’

Lipm(r) = {f eCl0,1]: [f(t)— f(X)| <M

M > 0,t € [0,1] and xe (0,1]}.

In our next theorem, we estimate the error in the
approximation for a function itipm (r).

Theorem 3.For f € Lipm(r), 0<r <1, xe (0,1] and

n < N, we have
r
2
SM( ) ,

X)2; 0y X)

Hns " (%)

DA (f;0n; %) — <

ey

wherep 3" (x) = D§"((t —

Proof We may write
DA (f,0n, %) — F(X)]

1
< [n+ 1 z PH00 [ PRI

Applying Holder’s inequality in the integral form fgr= %
andon = 52
DA™ (f, an,X) —

— £(X)|dgyt.

f(x)]
1
< [n+1q, Z Pk " )(/O Pk f (1) —

s

r

2 2
f<x>|rdqnt)

L O)I(F() f(x))ﬁdqnt)z

(

Again, applying Holder’s inequality for the sum fpr: £
andq, = 5=

[n + 1]Qn

)
a 1
< (In+2i0 3 o300 [ p010)-

n 2_r
(2p57)

oo i

2 %
f<x>|?dqnt)

—Xx

)2

<

2 r
T 2
) dqnt} 1

< X%(m—l Z)pq"a” /p ft—x dQn>%
< ()':;'2 (Dgn((t_x)z,qn, ))
:M<uﬂ“:‘( ))5.

This completes the proof.
Lipschitz type maximal function of ord¢t[2Q], is defined
as

[f(t) — (¥

Su
By t—xP

t#xte(0,1]

wp(f,x)= , X€[0,1] andB € (0,1].

Now, we will obtain a local direct estimate for the operator
D" (f,0n,x) in terms of thewg (f,X).

Theorem4.Let f € C[0,1],0 < 3 < 1. ThenV x € [0,1],

we have
g
D8N (.00 x) — F(X)] < o“aé(tx)( ( >) ,

wherep5%" (x) is as defined in equatiorg).

0n,0an

“nz

Proof Applying Holder’s inequality twice first for the
integration and then for the summation with= % and

Oh = we have

A (5 )— 1)
; ;8
< (In+ 2, 3 o000 [ BOIT0) - 1001

Using the definition of the Lipschitz-type maximal
function, we obtain
DA™ (f, an,X) — F(X)|

B
»On;

B
2
< @p(f,x)( [n+1q qu”"” /p |t—x|2dqn>

(
)
ol

D n

u“”)

(@© 2017 NSP
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This completes the proof.

4 A-Statistical Conver gence

Let A = (ajp) be a non-negative infinite summability

matrix. For a given sequense=< X, >, the A-transform
of x denoted byAx= (Ax); is defined as

(AX)j = ajnXn
n=1

provided the series converges for egch is said to be
regular if lim(Ax); = L whenever ann = L. Now the
i

A-density of K,K C N(the set of the natural numbers),

denoted byda(K), is defined as

[ee]

oa(K) = lim; ZaanK(n), provided the limit exists,
n=1

wherexk (n) is the characteristic function d.
Thenx =< x, > is said to beA-statistically convergent to
Li.e.sta —limx, =L if for every e > 0,

n

lim ajn = 0 or

J n:[xn—L|>€

oa{neK:|x,—L|>¢e}=0.

equivalently

If we replaceA by C; thenA is a Cesaro matrix of order
one and A-statistical convergence is reduced to the

statistical convergence. Similarly, & = |, the identity

matrix thenA-statistical convergence reduces to ordinary

convergence. Kolk 19 proved that statistical

convergence is stronger than ordinary convergence. In thignd
direction, the significant contributions have been made by

(cf. [7], [11], [14], [24] etc.).

st—lim, ||D"(eo,Gn,.) — €0l = 0.

Now,
D" (e1,0n,.) — €| = sup|——— (14 Gn[Njg,X) — X
DR (@1 .) =l = SUP| e (1 Gl )
qn[n]Qn 1
-1 . (14
B [n+2]Qn +[n+2]Qn ( )

For any givere > 0, let us define the following sets

U= {n: 1D (1, g, ) —exl] > e},

Ulz{n:

1 £
U=<n: —— > — 5.
2 { [n+2]CIn2}

From (14) it is easy to see that C U; |JU>, so we have

ZJ ajn < ajn + ajn.
ne neUp neUs

From equation3), we obtain

( An[N]an

[n+ Z]Qn

o123}

(15)

Sty — lim
n

_1>:0

Stp — Iirr1n (ﬁ) =0.

Theorem 5[11] If the sequence of positive linear Hence by taking limit on both sides af%), asj — o, we

operators |, : C[a,b] — C[a, b] satisfies the conditions
st—Ilimp||Ln(&;0;.) — &l = Owhere gt) =t',i =0,1,2,
then  for  any f € Clab, we have
st—limq||Ln(f;q;.) — f[| =0.

The result given above also works fok-statistical

convergence. Now we will establish the following
A-statistical approximation theorem for the operator = Sup

DA (f,0,%).

Theorem 6.Let A= (ajn)be a non-negative infinite regular

summability matrixand ge< g >,0< gp < 1anda =<

on > be the sequences satisfying the following conditions:

stA—Iinmqnzl, stA—Iinmqﬂ:a,a< 1

Sty — Iinm an=0and sk — IiLn =0, (23)

1
[n]Qn
then for fe C[0, 1], we have
Sta — limy || D§(f,qn,.) — f|| = 0.

ProofFrom Theorenb, it is enough to prove thatts —
limn [[Df" (€0, ) — &llcjo.y =0 fori=0,1,2.
In view of Lemma2, we haveDJ"(ep,qn,X) = 1, hence

get
sta —lim | DE" (€1, . ) — e]| = 0. (16)

Similarly, using Lemma , we have
D" (€2,0hn,-) — 2|

1
0.1 m{(l+q”)+q"(l+2qn>[n]qnx
qﬁ[n]zn X(]_ — X)
1ra (X(H )t i ) } —%
1+0n

ST 2ent 3y Nt 2Jgint (q“(” 26n) oy

qaln, 1
+ 1+ay (Un + m)

3112

N 1 qn[]qn<_ 1)_1'
[n+2]Qn[n+3]CIn 1+an [n]Qn

Fore > 0, let us define the following sets:

17)

U= {n: 1D (e, ) — eol] > e},

(@© 2017 NSP
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. 1+qn
’ [n+2]Qn [n+3}f4n

>
m <Qn(1+ 20n)[N]g,8

1 an]

U—{n' f21n<1_ 1)_1>f}
U N+ 2+ 1+ an U [Mlg —3)
From (L7) it follows thatU C U;|JU,JUs, hence
; ajn < ajn + ajn + ajn. (18)
ne nely nel, nels
Now, using (3) we find

. 1+qh

st—lim ————— =0,

n [N+ 2g [N+ 3
St liMn g {qn(1+ 20n) Mg,
+ 9 (anr )} -0

. 1 qﬁ[n]zn

andst—limp, [N+ 2]gn "3 Tran (1™ m —1r=0

Hence, by taking limits on both sides dig), asj — oo,
we get

sta—lim | DR" (€2,0, ) — €| =0 (19)

This completes the proof.

5 Rate of A-statistical convergence

Let f € C[0,1]. Then for anyxt € [0,1], we have
[T (t) — f(X)] < w(f,|t —x|), which implies that
()= f(X)| < (1+02(t—x)?)w(f,5), 5>0. (20)

Let A = (ajp) be a non negative infinite regular

summability matrix and< bj > be a positive non

increasing sequence. If for every

€ > 0,limj & ajn = 0, then we say that the
n:xn—L|>€

sequenc& =< Xp >, converged\-statistically to number

L with the rate of o(b;) and this is denoted by

X — L = sta —o(by) as n — . If for every

€ >0 sugTl z ajp < o, then x is called

n:|Xn|>€
A-statistically bounded with the ra@(by), asn — .

If we consider the concept &-statistical convergence in

following definitions: The sequence=< x, > is said to
be A-statistically convergent th with the rate ofo, (bn),
denoted byx, — L = sta — 0 (bn), asn — o if for every

£>0,lim;j ajn=0.
N:[Xn—L|>€bn

The sequence =< x, > is calledA-statistically bounded

with the rate ofO, (bn), if there exists a positive number

M such that lim ; ajn = 0. We denote it by
Nn:|Xn|>Mbp

Writing X, = sta — O (bn), as n — .

In our next theorem we give the rate @é¢statistical
convergence for the operatdd(f;q;x) in terms of
modulus of continuity.

Theorem 7.Let A= (ajn) be a non negative regular
summability matrix and for each& [0, 1], < bp(x) > be

a positive non-increasing sequence and let
g=<0n>,0< gy <1anda =< a, > be sequences
satisfying equat|0n1(3) andw(f; ps“") = sta— o(bn(x))
with 5 (x) = D3 ((t — X)2; On; x), then for any function

f e C[0,]Jandx € [0,1], we have
DA™ (f50n;X) — F(X) = sta — 0(bn(X)).

Proof By monotonicity and linearity of the operator
Dan(f;an; X), we havel DM (f; gn; x) — F(X)|

< DR ([ f(t) = F(X)];0niX)
< <1+ 572D ((t —x)z;qn;x)> w(f;d),for anys > 0.

Takingd as, / k3 ™" (x), we get

DS (f50n;X) — F(x)] < Zw(f;\/@)

Fore > 0, let us define the following sets:

(21)
T {n L DO (famn) — f(X)] >

s} and
Uy = {n: 2w<f \/ Ha ™ (X )) > s}.
From 1), we havei

() 2, %(X)%laj”'

Taking limits on above inequality af — o« and using
w(f; uy3™") = sta — o(bn(x)), we obtain the required

result.

This completes the proof.

Theorem 8.Let
A= (ajn), <bn(x) >, g=<0n>, anda =< a, > be
aII same as in Theorerd. Assume that the operators

9 (f;qgn;X) satisfy the condition
(f HBI00) = s~ 0g(bn(X) with
U5 (X) = DA ((t — X)?; gn; ). Then for all fe C[0,1],

we have [J (f;q;x) — f(X) = sta — 0p (bn(X)).

Similar results hold when littleo,” is replaced by the

the measure from measure theory, then we have théig“O,”.

(@© 2017 NSP
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In the following theorem we establish the rate of type space. Also, the Korovkin typeA-statistical
A-statistical convergence for the opera2ff (f;qgn;X) in approximation theorem and rates of-statistical
terms of the second modulus of continuity in the spaceconvergence in terms of the modulus of continuity are
W2, established.

Theorem 9.Let A= (ajn) be a non negative regular
summability matrix and let < g, >,0 < gn < 1 and
a =< an > be sequences satisfying equatid®)( For ~ Acknowledgement
each fe C[0,1], we have
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