
Appl. Math. Inf. Sci.7, No. 1L, 169-175 (2013) 169

Applied Mathematics & Information Sciences
An International Journal

c© 2013 NSP
Natural Sciences Publishing Cor.

Measuring Similarity between Graphs Based on the
Levenshtein Distance
Bin Cao, Ying Li and Jianwei Yin

College of Computer Science and Technology, Zhejiang University, Hangzhou, China 310027

Received: 20 Oct. 2012, Revised: 29 Nov. 2012, Accepted: 11 Dec. 2012
Published online: 1 Feb. 2013

Abstract: Graph data has been commonly used and widely researched bothin academia and industry for many applications. And
measuring similarity between graphs (i.e., graph matching) is the essential step for graph searching, pattern recognition and machine
vision. At present, the most widely used approach to addressthe graph matching problem is graph edit distance (GED). However, the
computation complexity of GED is expensive and it takes unacceptable time when the graph becomes larger. Generally, graph could be
canonical labeled by some sort of strings and we use the depth-first search (DFS) code as our canonical labeling system. Based on DFS
codes, combining the Levenshtein distance (i.e., string edit distance, SED), we proposed a novel method for similaritymeasurement of
graphs. Processing and calculating the distance between two DFS codes, we turned the graph matching problem into stringmatching,
which gains great improvement on the matching performance.The experimental results prove its usefulness.

Keywords: Graph matching, similarity, depth-first search (DFS), Levenshtein distance

1. Introduction

As one of the most powerful structures, graphs can
contain richer information than other data structures and
they have been widely investigated and applied in a broad
range of areas. Especially, graphs which are labeled
and/or attributed can be used to abstract and model many
complicated relations among data. When using graphs for
representation, vertices usually represent regions (or
features) of the objects and edges between them represent
the relations between region. For example, World Wide
Web (WWW) can be viewed as a graph in which vertices
correspond to static pages and edges correspond to links
between pages [1]. In business process, the labeled graphs
are commonly used to model the real business operations
and the business activities are represented by the vertices
of the graphs.

Since many problems could be solved more easily
based on graphs, people have collected vast amounts of
graph data and established graph database for different
purposes. Meanwhile, the academic communities have
paid a lot of attentions on graph related researches.
Among which, measuring the similarity between graphs
is one of the hottest topics and it is the foundation for
many other researches or applications. For example, to
support scalable graph search over large graph databases

in bioinformatics [2], chemical informatics [3], and even
in business process management [4], it is essential to
match the graphs by measuring their similarities.

Up to now, the most widely accepted method for
graph similarity measurement is graph edit distance
(GED) [5]. The basic idea of GED is to sum the cost of
elementary ’error-correcting’ operations: node
substitution, node insertion/deletion, edge
insertion/deletion. And the minimal cost taken over all
operations is the edit distance between two graphs. Based
on GED, a number of approaches have been proposed
[6–9]. Unfortunately, the problem of GED is NP-hard in
general and its main drawback is the exponential
computational complexity in terms of the number of
graph edit vertices [8]. Thus, Z.Zeng et al.[8] introduce a
notion of so called star representation for graph structures
and propose three novel methods to obtain lower and
upper bounds of GED in polynomial time. However, their
lower bound of computational complexity is inO(n3)
which is still kind of expensive for computation involving
a large amount of graphs. X. Yan et al. [9] propose a
feature-based method for similarity search in graph
structures. They use indexed features in graph database to
filter graphs without performing pairwise similarity

∗ Corresponding author e-mail: cnliying@zju.edu.cn

c© 2013 NSP
Natural Sciences Publishing Cor.

170 B. Cao, Y. Li, J. Yin: Measuring similarity between graphs...

computation. But they still turn to GED for measuring
similarity when graph matching is needed.

In order to improve the efficiency of graph matching
problem, in this paper we propose a novel method for
measuring the similarity between two graphs. The start
point of our method is the depth-first search code (DFS
code)[10] and instead of GED measurements, we use
Levenshtein [11] distance (i.e., string edit distance, SED)
to measure the similarity between two graphs. The
computation for SED is inO(n2) time which makes our
method applicable in practice.

The rest of this paper is organized as follows. Section
2 will formally present some basic definitions for accurate
description of graphs, DFS code, SED, and etc. Then the
implementation details will be presented in Section 3. The
experimental evaluations are studied in Section 4. Section
5 concludes the paper and presents some future work.

2. Basic Definitions

In our paper, we consider graphs with labeled nodes and
edges. And we present some basic definitions as follows.

Definition 1(Labeled Graph). A labeled graph is a tuple
G= (V,E,LV ,LE, l), where V is a set of finite vertices and
E ⊆ V ×V is a set of edges.LV and LE denote the finite
sets of vertex and edge labels. l is the mapping function
for labels.

From Definition 1, since the edge is denoted by two
nodes, if there is an order between these two nodes then
this is a directed graph, otherwise, an undirected graph.
Besides, if V(G1) = V(G2) and E(G1) = E(G2), we
consider graphG1 and G2 are the same. AndG1 is
isomorphic toG2 (i.e., G1

∼= G2) if they share the same
structure.

Definition 2(Graph Isomorphism). Let G and G′ be two
graphs. A graph isomorphism between G and G′ is a
bijective mapping f: V(G)→V(G′) such that:

–∀u∈V,(l(u) = l ′(f (u)))
–∀u,v∈V,((u,v) ∈ E⇒ (f (u), f (v)) ∈ E′) and
–∀(u,v) ∈ E,(l(u,v) = l ′(f (u), f (v)))

As shown in Figure 1,G1, G2 andG3 have the same
number of nodes and edges. Besides, each edge inG1, G2
and G3 is same since their corresponding start and end
nodes are same. Through replacing the nodes inG1, G1
could be redrawn toG2. Clearly, the difference amongG1,
G2 andG3 is the way of labeling and drawing the graphs.
That is to say, they have the same structure and they are
merely different forms of a certain graph which is just a
”4-circles” graph. From Figure 1, we can see that: (1)x2
in G2 corresponds toy1 in G3, (2) y1 in G2 corresponds to
x2 in G3. Apparently, since the mapping between nodes in
G2 and G3 is not unique, there are other mappings
existed. And other drawings forG2 could be found.

x1

y1

x2

y2

x1

y2

x2

y1
G1 G2

x1

y2

y1

x2
G3

Figure 1 Three isomorphic graphs

In other words, if the topology of two graphs is same,
then these two graphs are isomorphic. The isomorphism
is very common in graph data. Under some
circumstances, such as frequent subgraph mining, the
isomorphic graphs should be pruned for the reason of
efficiency. As for our work, since isomorphic graphs
could be viewed as the same graphs, we needn’t match all
the graphs one by one. Instead, choosing one of the same
graphs to measure is reasonable. Thus, before measuring
the similarity, we have to examine the graph
isomorphism.

In order to solve the isomorphism problem, we need
to calculate the canonical labels of two graphs. The
canonical label for a graph (denoted ascl(G)) is a unique
code which is a sequence of bytes, characters or numbers.
It is irrelative with the order of vertices and edges of the
graphG and totally depends on the topology ofG. If the
canonical labels of two graphs are the same, then these
graphs are isomorphic to each other. There are a few
canonical labeling methods that have been applied, for
example, concatenating rows or columns of the adjacency
matrix of a graph. In our work, we introduce the
depth-first search code (DFS code), which first mentioned
in gSpan [10] algorithm, as the foundation of our
canonical labeling system. Next, we present the necessary
information of DFS code and more details refer to gSpan
[10].

Depth-first search is well-known and popularly
applied in graph algorithms and it consumes less memory
than breadth-first search (BFS). When performing a
depth-first search in a graph, a DFS tree would be
constructed. The DFS trees of one graph maybe various,
which is determined by the visiting order of the vertices
in the graph. Thus, we can’t examine the isomorphism of
two graphs by DFS sequences. Adopting the DFS
lexicographic order and the minimum DFS code as the
canonical labeling can solve this problem. First of all, we
present the definition of DFS subscripting as follows.

Definition 3(DFS Subscripting). When building a DFS
tree T, the depth-first discovery of the vertices forms a
linear order. The subscripts are used to record this order,
where i< j means vi is visited before vj when the DFS is
performed. GT represents a graph G subscripted with T. T
is called a DFS subscripting of G.

We callv0, the starting vertex inT, the root. The vertex
vn which visited last is called the rightmost vertex. The
straight path fromv0 to vn is called the rightmost path.

As shown in Figure 2, the vertex labels areX, Y andZ
while the edges labels area andb. The darkened edges in

c© 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.7, No. 1L, 169-175 (2013) / www.naturalspublishing.com/Journals.asp 171

X

X

Z Y

a

ba

b

Z

X

X Y

b

b
a

a

X

X

Y Z

a

b a

b

Y

X

Z X

b

b

a
a

v0

v1

v2 v3

v0

v1

v2 v3

(a) (b) (c) (d)

v0

v1

v2 v3

Figure 2 The sample of DFS subscripting

Figure 2(b) to Figure 2(d) represent three different DFS
trees for the graph of Figure 2(a) and they generate three
different subscriptings. The rightmost path for Figure 2(b)
is (v0,v1,v3) and (v0,v1,v2,v3) is for Figure 2(c) and
Figure 2(d).

Definition 4(Rightmost Extension).Given a graph G and
its DFS tree T, we have:

–Backward extension: a new edge can be added
between the rightmost vertex and another vertex on
the rightmost path.

–Forward extension: a new vertex can be introduced and
connected to a vertex on the rightmost path. Since both
kinds of above extensions take place on the rightmost
path, we call them rightmost extension.

Taking Figure 2(c) as an example, since the edges
already exist betweenv1, v2 and v3, the backward
extension candidates can be (v3,v0) and the forward
extension candidates can be edges extending fromv0, v1,
v2 or v3, with a new vertex introduced. The all potential
rightmost extensions of Figure 2(c) are shown in Figure 3.
The dashed lines represent the extensions. Among which,
Figure 3(a) and 3(b) both extend from the rightmost
vertex (i.e.,v3) while Figure 3(c) to 3(d) are extend from
other vertices on the rightmost path. Anyway, backward
extension can only occur on the rightmost vertex and
forward extension takes place on the vertex which
belongs to the rightmost path.

Y

X

Z

X

Y

X

Z

X

Y

X

Z

X

Y

X

Z

X

Y

X

Z

X

(a) (b) (c) (d) (e)

Figure 3 The rightmost extension for Figure 2(c)

As mentioned before, it is likely that one graph may
have more than one DFS trees/subscriptings. In order to

avoid the extension of the same graphs (i.e., isomorphic
graphs), we have to choose one base subscripting and
conduct rightmost extension on it.

Definition 5(DFS Code).Given a DFS tree T for a graph
G, based on rightmost extension, the subscripted graph
GT could be transformed to an edge sequence
ei(i = 0, ..., |E|− 1). ei is called a DFS code, denoted as
DFSCode(G,T).

Based on Definition 5, there is a bijective mapping
between a subscripted graph and a DFS code. Besides,
since there are various edge sequences for a given graph
G, we can build an order between these sequences and
select the subscripting which generates the minimum
sequence as the subscripting ofG. This order could also
be applied to DFS codes and we present it as follows.

Definition 6(DFS Lexicographic Order). Let an edge be
a 5-tuple:(i, j, l i , l(i, j), l j), where li and lj are the labels of
vi and vj , respectively, and l(i, j) is the label of the edge
connecting them. Given a vertex v, the edge order is that:

–All of its backward edges should appear just before its
forward edges.

–If v does not have any forward edge, we put its
backward edges after the forward edge, where v is the
second vertex.

Let the edge order take the first priority, the vertex label
l i take the second priority, the edge label l(i, j) take the
third and the vertex label lj take the fourth to determine
the order of two edges. The ordering based on above rules
is called DFS lexicographic order.

From Definition 6 it follows that, the complete
sequence for Figure 2(c) is(0,1),(1,2),(2,3),(3,1). The
DFS codes for Figure 2(b) to 2(d) are shown in Table 1.
We can see from Table 1 that the first edges of the DFS
codes are(0,1,X,a,X),(0,1,Y,b,X) and (0,1,Z,b,X).
Since they have the same subscript(0,1) and no edge
order exists between them, we can’t use it to tell the
difference among them. However, using the rest priorities
of label information we have
(0,1,X,a,X) < (0,1,Y,b,X) < (0,1,Z,b,X). Therefore,
cb < cc < cd is the order for the DFS codes listed in Table
1.

Table 1 DFS codes for Figure 2(b) to 2(d)

edge cb cc cd
e0 (0,1,X,a,X) (0,1,Y,b,X) (0,1,Z,b,X)
e1 (1,2,X,b,Y) (1,2,X,a,Z) (1,2,X,a,X)
e2 (1,3,X,a,Z) (2,3,Z,b,X) (2,0,X,a,Z)
e3 (3,0,Z,b,X) (3,1,X,a,X) (2,3,X,b,Y)

c© 2013 NSP
Natural Sciences Publishing Cor.

172 B. Cao, Y. Li, J. Yin: Measuring similarity between graphs...

Definition 7(Minimum DFS Code). Given a graph G,
C(G) = {(DFSCode(G, T))| ∀T, T is a DFS tree for G},
based on DFS lexicographic order, the minimum element
of C(G) is called minimum DFS code, denoted as
minDFSCode(G).

According to Definition 7, the minimum DFS code of
Figure 2(a) iscb shown in Table 1. What is more, we can
infer the following important relationship between the
minimum DFS codes and isomorphic graphs.

Property 1.Given two graphs G and G’, we have:

G1
∼= G2⇔minDFSCode(G) = minDFSCode(G′)

Proof:”⇒”: SinceG is isomorphic toG′, according to
Definition 1,G andG′ is one-to-one mapped under some
certain function:f : V(G) → V(G′). Thus, based on the
mapping betweenE(G) andE(G′) and Definition 5, we
can infer the mapping of
DFSCode(G,T)→ DFSCode(G′,T). Naturally, we have
minDFSCode(G) → minDFSCode(G′). The proof is
similar to ”⇐”.

On the basis of above discussions, we can use the
minimum DFS code as the canonical label of one graph.
At the end of this section, we present the definition of the
Levenshtein distance (i.e., string edit distance, SED).

Definition 8(String Edit Distance, SED). Given two
strings x and y. The string edit distance of x and y,
denoted as SED(x, y), is the minimum number of
insertions, deletions and substitutions to transform x into
y.

Since the canonical label of a graph is the minimum
DFS code which could be viewed as a string, we can
measure the similarity between two graphs by conducting
string edit distance (SED) calculation on their minimum
DFS codes. Thus, we turn the graph matching problem
into string matching problem which is much easier to
solve. What is more, the string edit distance guarantees
the efficiency of our work.

Based on the definitions introduced in this section, we
present the implementation details in the following
section.

3. Implementation

In this section, we discuss the implementation details of
measuring similarity between graphs based on the DFS
code mentioned in Section 2. Note that, we view the
graph which is used to match against the graph database
as the source graph.

According to the real requirements of different
application scenarios, we can divide our implementation
into two main phases which are preprocessing and
matching. Preprocessing phase is performed offline while
matching is online. Usually, people pay much attention to

matching phase since it has direct influences on user
experiences driven by efficient performance. Firstly, we
present the pseudo code of preprocessing phase in
Algorithm 1.

Algorithm 1 The algorithm for preprocessing phase
Input: Graph database (GD)
Output: The minimum DFS codes forGD: M1; the orders of

node labels and edge labels:N,E
1: Initialize two map structures:M1 andM2
2: N← get order of node labels inGD
3: E← get order of edge labels inGD
4: for each graphG in GD do
5: ID← get the ID ofG
6: code← getminDFSCode(G) by N andE
7: M1.put(ID,code)
8: end for
9: for each recordr in M1 do

10: add ID ofr to the graph ID set:ID Set
11: for each recordr ′ in M1−{(ID,code)} do
12: if thecodein r is same with that inr ′ then
13: add ID ofr ′ to theID Set
14: M2.put(code, ID Set)
15: end if
16: end for
17: end for
18: for each recordr = (code, ID Set) in M2 do
19: code← extract two node labels of one edge in their

appearing order from thecode
20: end for

As shown in Algorithm 1, the input for this phase is
the graph database which may contain large number of
graphs. And this phase generates three outputs: the
minimum DFS codes for all the graphs in the graph
database; the orders of node labels and edge labels. At
first, we parse each graph in the graph database and
produce two orders of all the node labels and edge labels
existing in the graph database (line 2 and 3). These orders
are used for constructing the DFS code of the graphs in
the following steps. By iterating the graphs in graph
database (line 4-8), we get the ID and the minimum DFS
code of each graph and put them in a map. Then, we
merge the same codes in the graph database and using an
inverted key-value pair (i.e., the minimum DFS code is
the key and the value is graph IDs) to represent the DFS
codes of the graph database (line 9-17). Thus, we put the
same or isomorphic graphs together and we only select
one of them for similarity measurement, which is efficient
for matching. In fact, before calculating the SED, we
firstly preprocess the minimum DFS code for simplicity
by extracting the labels of two vertices of an edge in their
appearing order (line 18-20). For example, the minimum
DFS code of Figure 2(a) is
(0,1,X,a,X)(1,2,X,b,Y)(1,3,X,a,Z)(3,0,Z,b,X)
which would be extracted to the string ”XXXYXZZX”.

c© 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.7, No. 1L, 169-175 (2013) / www.naturalspublishing.com/Journals.asp 173

Besides, in order to correctly extract the DFS code of
the source graph and conduct similarity measurement
between graphs in online matching, we must guarantee
the consistency of the orders of node labels and edge
labels in the whole matching procedure. Therefore, we
record these orders and output them for matching phase.

Then, we present the online matching phase in
Algorithm 2. Besides the results of the offline
preprocessing phase, we add the source graph as another
input. In this phase, we output the graph, of the graph
database, which is most similar to the source graph.

Algorithm 2 The algorithm for matching phase
Input: The minimum DFS codes forGD: M1; the orders of node

labels and edge labels:N,E; source graph (G)
Output: GraphG′(G′ ∈GD) which is most similar toG
1: Initialize one map structure:M2
2: code′← getminDFSCode(G) by N andE
3: for each record(code, ID Set) in M1 do
4: filter the minimum DFS codes ofcodeandcode′

5: distance← calculate theSED(code,code′)
6: M2.put(ID Set,distance)
7: end for
8: SortM2 by distance values and return the graphIDs of the

smallest record ofM2

From Algorithm 2 we can see that, there are three
steps in the matching phase. The first step is to get the
minimum DFS code for the source graph with the help of
the orders of node labels and edge labels generated in last
phase. Since this step is focus on only one graph, its
computation time is very short (line 2). Secondly, we not
only conduct the SED calculation of DFS codes between
the source graph and the graphs of the graph database but
also put the set of graph IDs and the calculated distance
into a map (line 3-7). This step costs most time of the
matching phase since we have to match each graph in the
graph database. The time complexity of this step is
O(m∗n2) where m represents the number of the graphs in
the graph database and n is the number of nodes the
largest graph has. Generally, since m is much larger than
n, the computation time of this step is durable and
accepted. At last, we sort the map by the value of distance
and return the graph IDs of the smallest distance (line 8).

Notice that, the SED of the minimum DFS codes
between two graphs can’t directly determine their
similarity or distance. Suppose that the business process
shown in Figure 4(a) is the source graph, Figure 4(b) and
(c) show two graphs in graph database. Comparing with
the source graph in (a), the graphs in (b) and (c) lack only
one edge respectively, i.e., 1− 2 and 1− 4, and the rest
nodes and edges are same. Thus, from the viewpoint of
structure, they should have the same similarity to (a). But,
according to the minimum DFS codes shown in the
figure, we haveSED(a,b)! = SED(a,c).

1

2

4

3

(a)

1

2

4

3

(c)

1

2

4

3

(b)
12233441

The Minimum

DFS Codes:

Graphs

122334144332

Figure 4 The illustration for filtering the minimum DFS codes

To solve this problem, we filter the minimum DFS
codes (line 4) simplified in preprocessing phase. Since
each edge, in a graph, represented by the DFS code has
been simplified to a 2-tuple: ”(l i , l j)”, the length of a
simplified minimum DFS code is the multiple of 2. Based
on these tuples, we compare the codes of the source graph
and the graph in database. Then, remove the same edges
(DFS codes) in both of them and the rest codes are
conducted SED calculation. Note that, after exchanging
two nodes of an edge, if this edge is same with another
edge in other graphs, these two 2-tuples could be viewed
same too. Then, they would be removed from the code.
As shown in Figure 4, to determine the similarity between
(a) and (c), we could merely calculate the SED of two
strings: ”12” and ””. Because, the edge ”23” could be
turned to ”32”. ”34” and ”41” correspond to ”43” and
”14” for the same rule. Based on the above discussion,
from Figure 4, we can get:SED(a,b) == SED(a,c).

To conclude this section, we preprocess the graph
database by extracting their minimum DFS codes. Then,
we measure the similarity between graphs based on these
DFS codes with through string edit distance technique.
Furthermore, we implement a prototype based on the
above details and evaluate its performance. The
experimental results are present in the following section.

4. Evaluation

As mentioned before, since the online matching is much
more concerned by the end users and the offline
preprocessing has little contribution to the efficiency of
matching, we only study the performance of the matching
phase implementation in this section.

In the following experiments, we compare our method
(i.e., SED based) with traditional GED-based and both of
them are developed in Java (Jdk1.6). GED-based method
is implemented in a fast greedy way and its time
complexity isO(n3). The sorting algorithm for returning
the smallest distance is bubble sort. And all the tests are
done on a 2.26GHz Intel(R) Core(TM)2 Duo P8400 PC
with 3GB main memory, running Windows 7. The graph
dataset we used here are generated synthetically. There
are totally different 26 vertex labels and each graph has a
vertex size of 5 to 10. The model graph is randomly
selected from this dataset. Then, we match the model
graph against all data graphs in the dataset.

First of all, we study the efficiency which is measured
by the time for matching. We fix the number of vertex in

c© 2013 NSP
Natural Sciences Publishing Cor.

174 B. Cao, Y. Li, J. Yin: Measuring similarity between graphs...

C1 C2 C3
0

0.4

0.8

1.2

1.6

2

Test cases (ID)

M
a
tc

h
in

g
 t

im
e
 (

s
)

GED−based

SED−based

(a) Size of 2000

C1 C2 C3
0

3

6

9

12

Test cases (ID)

M
a
tc

h
in

g
 t

im
e
 (

s
)

GED−based

SED−based

(b) Size of 10000

Figure 5 Tests on sizes of 2000 and 10000

the model graph to 5 and observe the matching time for
both methods under different size, ranging from 2000 to
10000, of graph database. For each graph database, we
use 3 different model graphs (with same vertex number 5)
as different test cases. As shown in Figure 5, under
different size of graph database (i.e., Figure 5(a) and
Figure 5(b)), GED-based method costs much more time
for matching than that of SED-based method in all test
cases. This is because that the computation time for
GED-based method isO(n3) while it is O(n2) for
SED-based. Apparently, GED-based method would
become less applicable once the size of the graph
database grows large.

Table 2 shows average matching time for different
graph database sizes. Clearly, as the database size
increases, both methods need more time for matching. In
addition, we can see from Figure 6 that the matching time
of GED-based method to that of SED-based ratio

Table 2 Matching time for different graph database sizes

Database Size GED-based (s) SED-based (s)
2000 1.846 0.135
4000 3.380 0.432
6000 6.719 0.925
8000 8.128 1.482
10000 10.701 2.361

2000 4000 6000 8000 10000

2

4

6

8

10

12

14

Graph database size

M
a
tc

h
in

g
 t

im
e
 r

a
ti
o

Figure 6 Matching time ratio for the model graph with 5 vertices

2 4 6 8 10
0

2

4

6

8

Vertex number in model graph

M
a
tc

h
in

g
 t

im
e
 (

s
)

GED−based

SED−based

Figure 7 Matching time under different model graph sizes

2 4 6 8 10

10

20

30

40

50

Graph database size

M
a
tc

h
in

g
 t

im
e
 r

a
ti
o

Figure 8 Matching time ratio for different model graph sizes

decreases with increasing size of graph database. Filtering
the minimum DFS codes before matching is the cause for
this trend.

In tests of Figure 2 and Figure 8, we fix the size of
graph database to 2622 and study the efficiency under
different model graphs with different vertex number
ranged from 2 to 10. As shown in Figure 2, using our
SED-based method, the matching time is almost
unchanged with very small values of 0.1 seconds around.
However, there is an apparent growth trend in the
GED-based method and the matching time grows fast as
the vertex number increased. That is to say, GED-based
method is more sensitive to the size of the model graph
than ours. The reason is that GED-based implementation
has to search the best result in each step and grow based
on the current best result. There are many recursive
searches and judges in this procedure which costs more
than computing two strings. Different from the matching
ratio trend that showed in Figure 6, Figure 8 presents an
opposite trend: the matching time of GED-based method
to that of SED-based ratio increases with the increasing
number of vertex. This is because in our SED-based
method, the number of graphs which need to be matched
can make more contributions to the matching time than
the number of vertex of a model graph.

c© 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.7, No. 1L, 169-175 (2013) / www.naturalspublishing.com/Journals.asp 175

As for effectiveness study, based on observations on
matching results of two methods, first several results for
both methods are almost same. However, since our
method and GED-based method adopt different principles
(e.g. the costs for node/edge deletion, insertion and other
operations) for similarity measurements, there exist a
greater differences between matching results in a larger
size for both methods. Generally, the difference ratio
could be 30% around. Nevertheless, since first several
results are more concerned by users, our method can
satisfy their accuracy demands in general.

5. Conclusion

In this paper, we propose a novel approach for measuring
similarity between graphs. Using depth-first search (DFS)
strategy, we traverse the graphs and label them
canonically with the minimum DFS code. Then, after
extracting these codes and filtering them, we conduct the
calculation of string edit distance (SED) between the
source graph and graphs in database. Comparing with
traditional GED based method, our approach is more
efficient and the experimental evaluation proves its utility
in real applications.

There is still some work needs be done in the future.
For example, the accuracy of measuring similarity
between graphs through calculating the SED of DFS
codes should be studied both theoretically and
experimentally. Besides, the relation between our
proposed method and GED needs to be determined. At
last, we are going to exploit our method in real graph
datasets and to improve its performance making it more
applicable and practicable.

Acknowledgement

This research was partially supported by following
foundations: National Science and Technology
Supporting Program of China(No.2012BAH06F02, No.
2011BAD21B02), National Natural Science Foundation
of China under Grant (No.61272129), Research Fund for
the Doctoral Program by Ministry of Education of
China(No. 20110101110066)

References

[1] A. Z. Broder, R. Kumar, F. Maghoul, P. Raghavan, S.
Rajagopalan, R. Stata, A. Tomkins, and J.L. Wiener, Graph
structure in the Web. In Proceedings of Computer Networks.
309-320, (2000).

[2] Y. Tian, R. C. McEachin, C. Santos, D. J. States, and J. M.
Patel. Saga: a subgraph matching tool for biological graphs.
Bioinformatics,23(2): 232-239, (2007).

[3] P. Willett, J. Barnard, and G. Downs. Chemical similarity
searching. J. Chem. Inf. Comput. Sci,38(6): 983-996,
(1998).

[4] R. Dijkman, M. Dumas, and L. Garcia-Banuelos. Graph
matching algorithms for business process model similarity
search. In BPM, (2009).

[5] H. Bunke. On a relation between graph edit distance and
maximum common subgraph. Pattern Recognition Letters,
18(8): 689-694, (1997).

[6] H. Bunke and K. Shearer. A graph distance metric based
on the maximal common subgraph. Pattern Recognition
Letters,19(3-4): 255-259, (1998).

[7] J. Raymond, E. Gardiner, and P. Willett. RASCAL:
Calculation of Graph Similarity using Maximum Common
Edge Subgraphs. The Computer Journal,45(6): 631-644,
(2002).

[8] Z. Zeng, A.K.H. Tung, J. Wang, J. Feng, and L. Zhou,
Comparing Stars: On Approximating Graph Edit Distance.
In Proceedings of PVLDB, 25-36, (2009).

[9] X. Yan, F. Zhu, P.S. Yu, and J. Han, Feature-based similarity
search in graph structures. In Proceedings of ACM Trans.
Database Syst, 1418-1453, (2006).

[10] X. Yan and J. Han, gSpan: Graph-Based Substructure
Pattern Mining. In Proceedings of ICDM. 721-724. (2002).

[11] I. Levenshtein, Binary code capable of correcting deletions,
insertions and reversals. Cybernetics and Control Theory,
10(8), 707-710, (1966).

Bin Cao is currently a Ph.D.
candidate in the College of Computer
Science, Zhejiang University (China).
He received his B.S. from Zhejiang
University of Technology, China in 2008
and he took a successive postgraduate
and doctoral program in Zhejiang
University since 2009. His research

interests include workflow management, event processing
and spatial database.

Ying Li is currently an associate
professor in the College of Computer
Science, Zhejiang University (China).
He received his M.S. from Zhejiang
University in 1997 and his Ph.D.
in Computer Science from Zhejiang
University in 2000. His research
interests include software architecture,

software automation, compiling technology and
middleware technology.

Jianwei Yin is currently a professor
in the College of Computer Science,
Zhejiang University (China). He
received his Ph.D. in Computer Science
from Zhejiang University in 2001.
He is the visiting scholar of Georgia
Institute of Technology, America
in 2008. His research interests include

distributed network middleware, software architecture
and information integration.

c© 2013 NSP
Natural Sciences Publishing Cor.

