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Abstract: Considering the classification of failures in electrical machines, the present paper aims to use supervised machine learning

techniques in order to classify faults in electrical machines, using attributes from audio signals. In order to analyze data and recognize

patterns, the considered supervised learning methods are: Bayesian Network, together with the BayesRule algorithm, Support Vector

Machine and k-Nearest Neighbor. The performances and the results provided from these algorithms are then compared. The main

contributions of this paper are the acquisition process of audio signals and the elaboration of Bayesian networks topologies and

classifiers structures using the acquired signals, since the algorithms provide the generalization of the classification model by revealing

the network structure. Also, the utilization of audio signals as input attributes to the classifiers is infrequent in the literature. The results

show that the Support Vector Machine and k-Nearest Neighbor present a high accuracy. On the other hand, the Bayesian approach is

advantageous due to the possibility of showing, through graph representations, the generalized structure to represent the trend of faults

in real cases on industry applications.
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1 Introduction

Electrical machines are frequently used in various
productive and industrial sectors, such as production
planning, quality control and equipments monitoring.
These machines need proper maintenance, since faults
can affect production processes and cause losses for the
industries where they are used. According to [1], fault
diagnosis of electric machines is one of the main tasks
that need to be performed to guarantee their right
operation in most industrial facilities. Thus, preventing
faults can avoid secondary effects, such as overheating,
vibration, current and voltage unbalance, reduced
efficiency and large financial losses [2,3]. The
development of recognition and classification methods to
predict motors faults has become an important area of
research and interest in the industrial sector, because the
occurrence of a fault can lead to severe damage to
productive process, as a complete stop of production
process and costly machinery repair [4].

Among the techniques available for fault detection,
one can highlight the machine learning based methods [5,
6,7,8]. The literature involves recent and important works
using machine learning techniques to predict faults in
electrical machines and motors. More specifically,
intelligent techniques such as Naive Bayes, k-Nearest
Neighbor (KNN), Support Vector Machine (SVM),
Artificial Neural Network (ANN) and Decision Trees
algorithms have been reported in many applications. A
review of Artificial Intelligence algorithms in rotating
machinery fault diagnosis can be found in [9], presenting
both the views of theory background and industrial
applications.

Considering the recent literature, the author in [10]
investigates defect diagnosis of induction motors, based
on feature extraction from the envelope of the motor
current. Three pattern classifiers – Naive Bayes, KNN,
and SVM – are applied for defect classification. In [8],
the authors propose an evaluation of pattern classification
methods for fault identification in induction motors. The
applied methods are: Naive Bayes, KNN, Support Vector
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Machine (Sequential Minimal Optimization), Multilayer
Perceptron ANN, Repeated Incremental Pruning to
Produce Error Reduction, and C4.5 Decision Tree. The
paper [1] provides an experimental comparative
evaluation of Naive Bayes, KNN and SVM techniques for
rotor fault identifications. The inputs are obtained from
current signals of an induction motor with two states of
rotor bar degradation under two preestablished load
levels.

The KNN method, in particular, has been applied in
several types of problems. In [11], KNN is used in the
decision phase, associated with an evolution tracking of
the system using the trajectories, consequently allowing
the diagnosis. A solution to detect broken bars under
mechanical load is proposed based on voltage and current
signal in the frequency domain. In [12], the KNN is
applied to diagnose eccentricity faults in synchronous
motors, analyzing the stator current signature in the
frequency domain. An early fault diagnosis technique
based on acoustic signals is described in [13], in which
Nearest Neighbor and Nearest Mean classifiers are used
for diagnosis of the single-phase induction motors.

A ANN-based method for the identification of
winding failures in induction motors is presented by [5].
The fields with unbalanced currents and short-circuit
conditions are identified by studying the harmonic orders
of the radiated magnetic fields. Also, using ANN in [6],
time and frequency domain parameters are extracted from
the vibration and current signals and used to train the
ANN and ANFIS models, which are then used to detect
and diagnose the severity of the bearing fault. The author
in [14] introduces a self-evolving maintenance scheduler
framework for maintenance management of wind
turbines. The authors proposes an ANN-based condition
monitoring approach using data from supervisory control
and data acquisition system. An alternative ANN-based
method is proposed in [15] for classifying and detecting
bearing faults in three-phase induction motors connected
directly to the power grid.

In [16], SVM is applied along with continuous
wavelet transforms [17] to analyze the frame vibrations
during start-up. Motor vibration signals are used as SVM
input, which performs the classification conditions. The
work [18] employs supervised machine learning
techniques (SVM, multilayer ANN and gaussian process
regression) to correlate acoustic emission features with
corresponding natural wear of slow speed bearings
throughout series of laboratory experiments. Analysis of
signal intensity estimator and root mean square is
undertaken to discriminate individual types of early
damage.

Using Bayesian Networks, [19] develops an acoustical
damage detection method of the yaw system based on
Bayesian network. The sound pressure level features are
extracted from the measuring acoustic signal and a
three-layer Bayesian Network diagnostic model combined
with the structure learning strategy based on Bayesian
information criterion which is designed for damage

detection. The paper [20] uses Bayesian robust new
hidden Markov modeling for bearing fault detection and
diagnosis based on its acoustic emission signal. Then, the
training set result obtained from is compared to the result
from artificial neural network fault detection for same
complex system of low speed and varying load conditions
which are difficult from a diagnostic perspective.

Considering the important task of classifying failures,
it is necessary to employ a signal that represents the
motor condition. The present paper aims to use
supervised machine learning techniques in order to
classify faults in electrical machines, using frequencies
and audio signals. The considered techniques in the
present paper are: Bayesian Network, together with the
BayesRule algorithm [21], SVM and KNN, since these
methods consist of supervised learning methods to
analyze data and recognize patterns. In addition, the
performances and the results provided from these
algorithms are compared. In supervised learning, there
must be a relationship between the input attributes and the
output classes, mapping the system behavior and
providing a result that describes the reality [22]. For the
motor faults evaluation, attributes can be extracted using
microphones or sensors.

It is important to highlight that paper [23] presents
supervised learning approaches to classify three-phase
induction motors faults, applying Decision Trees and
Random Forest algorithms. This is another approach to
this problem. One of the main contributions of the present
paper is the elaboration of Bayesian networks topologies
and classifiers structures using audio signals. Analyzing
the literature, the method most often used, based on the
Bayes’ theorem, is the Naive Bayes. The present paper
proposes the application of Bayesian Network structures,
considering the relationship between the input attributes.
The BayesRule algorithm [21] is then applied in each
network in order to extract linguistic rules, which provide
a more comprehensible classification method. In this
proposed methodology, the algorithms provide the
generalization of the classification model for the
decision-making process by revealing the network
structure, allowing the inspection of the now available
inner components. Another contribution is the acquisition
process of audio signals, since the use of audio signals
from motor noises as input attributes to the classifiers is
infrequent in the literature. Usually, the works in the
literature use current, voltage and vibration signals for
fault classification [24]. Finally, another contribution is
the performance evaluation of classifiers based on data
mining techniques in order to predict faults in electrical
machines.

This paper is organized as follows: Section 2 presents
the Machine Learning techniques for electrical machines
faults classification. The database composed by audio
signals is presented in Section 3. The results are presented
in Section 4. The analysis and the conclusion are
introduced in Section 5.
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2 Machine Learning Techniques for

Classification Task

The supervised machine learning techniques
considered in this paper are presented in this section. The
considered techniques, applied to classify faults in
electrical machines, are the Bayesian Networks with the
BayesRule algorithm, SVM and KNN. These methods are
characterized by their use of training data and validation
to create a classification model. After that, the model can
be used to classify a new instance of related data. A brief
description of the algorithms is presented in the following
subsections.

2.1 Bayesian Networks

The Bayesian inference model consists in analyzing
conditioned variables in a probabilistic way, by using
Bayes’ theorem, as described in [25]: Suppose that
y′ = (y1, ...yn) is a vector of n observations in which the
probability distribution p(y | θ ) depends on the k

parameters values θ ′ = (θ1, ...θk). Consider that θ has
probability distribution p(θ ). Then, given an observation
y, the conditional probability of θ is represented by
equation (1), known as Bayes’ theorem.

p(θ | y) =
p(y | θ )p(θ )

p(y)
. (1)

In (1), p(θ ), so called a priori distribution, provides
the knowledge about θ without the knowledge about data
and p(θ | y), called a posteriori distribution of θ given y,
provides the knowledge about θ given the knowledge
about data. Considering the information about y is known,
p(y | θ ) can be considered as a function of θ , known as
the likelihood of θ given y. The Bayes theorem then states
that the a posteriori distribution of θ given y is
proportional to the product of a priori distribution of θ

given the knowledge of the data by the likelihood of θ

given y. Therefore, posteriori ∝ likelihood × priori.
In most real systems, the variable of interest is

dependent or is subject to several others. Although it can
be extended to more than one variable, the Bayes’
theorem is not recommended in cases involving multiple
variables due to the complexity of the calculations [26].
Faced with this difficulty, Pearl developed in [27]
networks that evaluate the interconnections of variables
through their structures, known as Bayesian Networks.

Bayesian networks can be defined as a probabilistic
graphical model used to represent knowledge about the
data domain. These networks learn cause and
consequence relationships and can combine a priori

knowledge with patterns learned from the data. In
addition, the user can interfere in the nodes of the network
and insert a knowledge that propagates in the other nodes.
The networks are then composed of a structure consisting

of a directed acyclic graph and a set of probability tables.
The nodes of the network structure represent the variables
and the arcs between nodes represent dependency
relations between the corresponding variables. An arc
starting at a A node and ending at a B node establishes A

as the parent of B and B as the child of A. A Bayesian
network can be used as a classifier by calculating the
conditional probability of a node, called a class node,
given the values of the probabilities of the other nodes.

In [28], a Bayesian Network is represented by
BN = 〈N,A,Θ〉, in which 〈N,A〉 is a directed acyclic
graph where each node xi ∈ N represents a variable and
each arc a ∈ A between nodes represents a probabilistic
dependency between the associated nodes. A conditional
probability distribution θi is associated with each node
xi ∈ N, i = 1, . . . ,n, collectively represented by Θ = θi,
which quantifies how a node depends on its parents [28].
As described in [27], the conditional independence,
which is the Markov condition, allows the calculation of
the joint distribution of all variables, given by

P(x1,x2, . . . ,xn | BK) =
n

∏
i=1

P(xi | πxi,BK), (2)

where BK represents the antecedent knowledge, xi is the
ith variable or node, and πxi is the set of xi parents.
Therefore, a Bayesian network can be used as a
representation of the knowledge that allows inferences.
The nodes that are part of the Markov Blanket of the M

node are those that influence the conditional probability
distribution of M, which are the parent nodes of M, the
child nodes of M and the parents of the children of M

[27].
Bayesian networks consist of an efficient way of

working with complex information; however, the
knowledge represented is not as comprehensible as other
forms of representation that express knowledge similar to
human reasoning as rules of classification. Hence, the
method called BayesRule was developed by Hruschka Jr
et al. in [21]. It uses the concept of maximum a posteriori

probability to extract a set of “if-then” probabilistic rules,
which describe the classification.

The BayesRule method uses the algorithm K2, which
employs a heuristic search to induce a Bayesian network
using as input a database and an ordered list of variables.
The algorithm uses a greedy method to search for the best
network structure that represents the data [21]. In addition
to using maximum a posteriori probability, the BayesRule

method employs the Markov Blanket concept to reduce
the number and complexity of classification rules
generated by the extraction process. This allows the
reduction in the time required to construct models when
more than one variable is designated as a class. In a
Bayesian classifier, the propagation algorithm must be
used to propagate the values of the variables and infer the
value of the class variable. Rule confidence can be
defined using inferential results. Thus, the probability
given to the inferred class can be used as a confidence
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value and is embedded in the inference algorithm. The
BayesRule algorithm can be seen in [21].

2.2 Support Vector Machine (SVM)

SVMs can be used for numeric prediction as well as
classification. The SVM algorithm uses a nonlinear
mapping to project the original training data into a higher
dimension. Within this new dimension, a linear optimal
hyperplane capable of separating the data into two classes
is computed. According to [29], it is always possible to
obtain such hyperplane with an appropriate nonlinear
mapping to a sufficiently high dimension, and the
hyperplane is obtained using the so-called support vector
and margins (defined by the support vectors).

SVM relies on the backpropagation training algorithm
that uses optimization of a convex quadratic function for
maximum practical performance. Using the input values,
the algorithm then elaborates a nonlinear boundary
hyperplane that divides the feature space in two distinct
regions. As an optimization problem, the SVM equation
can be expressed as in (3), which is a Lagrange dual
optimization problem.

maxW (λ ) =
N

∑
i=1

λi −
1

2

N

∑
i, j=1

yiy jλiλ j(xix j) (3)

subject to: 0 ≤ λi ≤C

N

∑
i=1

λiyi = 0; i = 1,2, . . . ,N

The variable C in (3) is the threshold of error, N is the
number o samples, λi is Lagrange multipliers which must
follow the direction of ∂W/∂λ , y is the desired output
and x are the input samples. Maximizing W provides the
separation border between the classes. According to [29],
although the training time of even the fastest SVMs can
be extremely slow, they are highly accurate due to their
ability to model complex nonlinear decision boundaries.

2.3 K-Nearest Neighbors (KNN)

K-Nearest Neighbors is a supervised machine learning
algorithm that can be used to solve both classification and
regression problems. The KNN classification approach
consists in fixing the number k of samples and let the
width change, such that each region contains exactly k

samples [22]. The KNN process starts at the test point and
expands a region until it encloses k training samples,
labeling the test point x by a majority vote of these
samples. If the majority of samples closest to the
unknown sample are from a specified class, the sample
will be assigned to that class.

For two classes, the value of k should be odd to avoid
a tie, and larger values are more likely to resolve ties. In
fact, the larger the value of k, the smoother will be the
classification boundary, and smaller values for k results
on a more convoluted boundary [22]. It is important to
highlight that the region will be circular if the data are
normalized.

The similarity is defined by the Euclidean distance
between data, given by

d(X ,Y ) =

√

n

∑
i=1

(xi − yi)2, (4)

where X and Y are the set of n samples.

There is essentially no training involved in the KNN
method, so it is considered a lazy learning algorithm. In
general the KNN defers data processing until it receives a
request to classify an unlabeled (test) example, and then
discards any intermediate results. The main KNN
advantages are that it is intuitive, analytically tractable
and simple to be implemented [22].

3 Experimental Details

In order to classify electrical motor faults, it is necessary to
extract attributes that represent acoustic emission signals
and frequencies. Therefore, time domain and frequencies
characteristics, that are very reliable for fault detection, are
measured.

The data set used in this paper is obtained from a
three-phase induction motor assembled at the Intelligent
Systems Laboratory (LSI), together with Signal
Processing and Applications Laboratory (LPSA), located
in the Federal University of Technology of Paraná, in
Cornélio Procópio city, Paraná, Brazil. The data are
composed by acoustic emissions recorded using two
Behringer ECM8000 condenser type omni-directional
microphones, being the acoustic emission sensors running
to a Focusrite Scarlett 2i2 audio interface, which is
responsible for the data acquisition. The microphones
were positioned close to the electric motor, with 9.53 cm
between them, as shown in Figure 1, in order to avoid any
spatial ambiguity. The best distance was obtained
experimentally.

The input attributes for the supervised machine
learning techniques consist of the peak magnitudes of the
signal frequency spectrum at predetermined frequencies
and the total signal power. The frequency peaks were
extracted using the Fast Fourier Transformer algorithm
and Hanning windowing, considering the frequencies of
30, 60, 120 and 2500 Hz.

Electrical unbalance generates vibration in the power
supply frequency first harmonic [30]. Broken rotor bars
fault causes vibration around the harmonics of the rotor
speed related to supply frequency [31]. Bearing faults are
commonly detected by modulations in high frequency
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Fig. 1: Equipment used for obtaining the data set.

Font: authors

[32]. Finally, winding faults vibrations are related to the
power supply frequency harmonics and slip [33].
Therefore, five numerical input attributes are considered:
peak values at 30 Hz, 60 Hz, 120 Hz, 2500 Hz and the
signal power. The signal power is estimated using the
autocorrelation of the signals in point 0, obtained using
the cross-correlation function of the signal with itself,
given by

R̂x1x2
(m) =

N−m−1

∑
n=0

x1(n+m)x2(n), m = 0,1, . . . ,N − 1,

(5)
being x1(n) and x2(n) signals with length N. The signal
power features are calculated as R̂x1x1

(m) and R̂x2x2
(m).

Since supervised methods are considered, the output
data set is divided into three classes, called Mechanical
Conditions: healthy motor, motor with bearing outer race
fault and motor with two broken rotor bars. Each one of
these three Mechanical Conditions are subdivided into
two other subclasses, called Electrical Conditions, which
correspond to the balancing or unbalancing of the supply
voltage phases, as shown in Table 1. Each one of the six
rows of Table 1 corresponds to an output of the
classification system, as shown in the last column of the
table. The unbalance generates an excessive current flow
in one or more phases, so the motor has the voltage
unbalance, causing abnormal behavior in the rotor and
irregular vibration.

The healthy motor data were obtained from a
three-phase, 1HP and 4 pole electric motor with 220/380
V – 60 Hz power supply, considering nominal speed of
approximately 1700 RPM.

In order to obtain the bearing outer race faults data, a
corrosive slurry was placed in the outer race of the
bearing and, after the action of the pulp, the bearing was

Table 1: Output data set.

Mechanical Conditions Electrical Conditions Outputs

Healthy
balanced output 1

unbalanced output 2

Bearing outer

race fault

balanced output 3

unbalanced output 4

Broken

rotor bar

balanced output 5

unbalanced output 6

cleaned, properly lubricated with grease (in order to
simulate normal operation) and inserted into the motor.
Finally, the last class consists of signal samples provided
by motor with two broken rotor bars. The bars were
damaged using a drilling machine in two adjacent bars to
emulate the fault.

4 Results and Discussion

In this section, we present the results from the topologies
of Bayesian networks (together with the BayesRule
algorithm ) and from the structures of classifiers proposed
in this work, based on SVM and KNN. The hardware
used in computational experiments is composed by an
Intel Core I7 processor, RAM memory 16GB executing
operational system Microsoft Windows 10.

The classifiers consist of supervised machine learning
techniques to classify faults in electrical machines using
frequency components from acquired audio signals. In
order to build the structures of the proposed classifiers,
tests were performed considering the relationship of the 5
input attributes: freq30, freq60, freq120, freq2500 (the
peak magnitudes of the signal frequency spectrum at the
predetermined frequencies of 30, 60, 120 and 2500 Hz)
and the total signal power.

Data set is composed of 570 instances and 6 columns,
of which the first 5 columns are the input attributes and
the last one is the output of the classification models,
since the proposed classifiers are supervised, as described
in Table 1. Data set is randomly divided in training set,
composed of 80% of the data, and the test set, composed
of the remaining 20%. Then, the results provided from the
test set are analyzed. If the model correctly classified the
sample of the test set (comparing it with the known
output), then one success is counted; otherwise, one error
is considered. This method is known in the literature as
holdout [34]. With this procedure, the performance of
classifiers are evaluated based on data mining techniques
in order to predict faults in electrical machines. After the
tests performed, we propose 6 topologies of Bayesian
Networks, 6 structures of SVM and 6 structures of KNN
based classifiers, described in Table 2, which also
presents the best relationship of the input attributes.
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Table 2: Proposed structures for the classifiers.

Proposed Structure Input 1 Input 2 Input 3

Structure 1 freq30 freq2500 signal power

Structure 2 freq30 freq120 signal power

Structure 3 freq30 freq60 signal power

Structure 4 freq30 freq60 freq2500

Structure 5 freq30 freq60 freq120

Structure 6 freq30 freq120 freq2500

4.1 Inferring a priori knowledge

To validate the faults in electrical machines, we applied
support vector machine and k-Nearest Neighbor. Both of
techniques have a high accuracy to compare the results. In
advantage, Bayesian inference shows through graph
representation the generalized structure to represent the
trend of faults in real cases on industry applications.

4.1.1 Support Vector Machine

The data classification was also implemented in SVM
classifier. In order to compare the performances of
techniques, the same training and test sets were
employed. The numerical values of the signal features
were normalized in their own domain and employed as
inputs of the classifier. Since the features in the dataset
were chosen in each motor condition classification, as
described in Table 1, specialist SVMs were trained for
each one. The training and operation phase were
implemented in MATLAB.

Six specialist SVMs were implemented, with outputs
described, as follows: SVM 1 classifies if the signal
represents a healthy motor with balanced power supply.
SVM 2 corresponds to the classification for healthy
motors with unbalanced power supply. SVM 3 is
dedicated to bearing fault and balanced power supply.
SVM 4 presents the classification for bearing fault motor
and unbalanced power supply. The last two structures are
correspondent to motors containing broken rotor bars
with normal power supply, SVM 5, and unbalanced
power supply, SVM 6.

The SVMs were trained using radial basis as kernel
function. Also, the hyperparameters kernel scale and box
constraint were optimized to obtain the higher accuracy.
The results are shown in Table 3.

4.1.2 k-Nearest Neighbor

The KNN classifier was implemented following the same
rules as SVM. The structure was applied by designing a
specialist classifier for each motor condition. Altogether,
six KNN were employed in the classification. The number
of neighbors were tested from one to twenty and the best
results are shown. The best result was obtained using 7

Table 3: Accuracies of the SVMs.

Classifier Input 1 Input 2 Input 3 Accuracy

SVM 1 freq30 freq2500 signal power 100%

SVM 2 freq30 freq120 signal power 100%

SVM 3 freq30 freq60 signal power 100%

SVM 4 freq30 freq60 freq2500 85.83%

SVM 5 freq30 freq60 freq120 95%

SVM 6 freq30 freq120 freq2500 95.33%

neighbors, which provide the average accuracy of 91.94%
using the classifiers KNN1, ..., KNN6, as discriminated in
Table 4.

Table 4: Accuracies of the kNN

Classifier Input 1 Input 2 Input 3 Accuracy

kNN 1 freq30 freq2500 signal power 90%

kNN 2 freq30 freq120 signal power 99.17%

kNN 3 freq30 freq60 signal power 88.33%

kNN 4 freq30 freq60 freq2500 93.33%

kNN 5 freq30 freq60 freq120 93.33%

kNN 6 freq30 freq120 freq2500 87.5%

Although KNN and SVM both yield better overall
accuracies, there is no concrete information about the
knowledge of which features contribute the most to the
pattern recognition of the faults. These information have a
major contribution in early fault detection, which is scope
for future works regarding new strategies for efficient
diagnosis systems.

4.2 Bayesian Networks infers the generalized

structure

Since the classification of electrical machine faults
involves different input attributes, we propose a
probabilistic structure approach, based on Bayesian
Networks, considering the relationship between input
attributes. If new information is known, it can easily be
incorporated to the model, contributing to improve the
reliability of the results.

Due to the performed tests considering the
combination of the input attributes, the obtained networks
present significant relationships, express the best results
on the parameter of inference and allow the use of
BayesRule algorithm to extract linguistic rules.

Bayesian Networks and the BayesRule algorithm use
linguistic input attributes to extract linguistic rules. For this
reason, the numerical input attributes must be subject to
a process of discretization. In other words, they must be
transformed into linguistic variables, partitioned into three
classes defined in this work as: low, medium and high, as
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shown in Table 5. The ranges for each class are obtained
using the software GENIE1.

Also, using GENIE and the algorithms K2 and Greedy

Thick Thinning [35], the 6 structures of the Bayesian
Networks were generated, according to Figure 2, where
the k-th Network corresponds to the k-th Structure of
Table 2. After that, the BayesRule algorithm is executed
in order to extract the linguistic “if-then” rules. From the
combination of the input attributes and their classes, 27
linguistic rules are generated from each of the 6 Bayesian
Network structures. Since Bayesian Networks present a
probabilistic structure, all the generated linguistic rule
presents a probability of occurrence. Following, one rule
of each network is given as example:

Network 1: IF (freq30 is high) AND (freq2500 is low)

AND (signal power is medium) THEN output 2 (Healthy

and unbalanced) with 75.862% of probability.

Network 2: IF (freq30 is medium) AND (freq120 is

high) AND (signal power is medium) THEN output 2

(Healthy and unbalanced) with 91.53% of probability.

Network 3: IF (freq30 is low) AND (freq60 is low)

AND (signal power is high) THEN output 4 (Bearing and

unbalanced) with 83.333% of probability.

Network 4: IF (freq30 is high) AND (freq60 is high)

AND (freq2500 is low) THEN output 2 (Healthy and

unbalanced) with 75% of probability.

Network 5: IF (freq30 is medium) AND (freq60 is

low) AND (freq120 is low) THEN output 1 (Healthy and

balanced) with 74% of probability.

Network 6: IF (freq30 is medium) AND (freq2500 is

low) AND (freq120 is high) THEN output 2 (Healthy and

unbalanced) with 91.53% of probability.

In order to validate the classifier, the instances of the
test set were discretized using the same ranges of training
set, shown in Table 5. Each test instance is applied to the
corresponding network and the instances correctly
classified, according to the “if-then” rules generated by
BayesRule algorithm, are counted up. Table 6 presents the
accuracy of the classification process considering the
application of the test set to each network structure.

It is important to highlight that although the
accuracies presented in Table 6 are lower when compared
to the results obtained by the application of SVM and
KNN, the Bayesian Networks show the interconnection of
the attributes and their importance for each classification.
These interconnections, which are hidden when
considering the SVM and KNN methods, may bring
interesting qualitative analysis to the fault classification
problem. For instance, by analyzing the presented
linguistic rules, it can be seen that the freq30 component

1 Developed by Pittsburgh University

(https://dslpitt.org/genie/)

by itself is insignificant for classification, but if it has a
medium value and the component freq120 is high, there is
a great probability that the machine is healthy and
unbalanced, according to Networks 2 and 6. Thus, it is
important not only to inspect the inferences between the
attributes, but also to combine the obtained networks into
a single generalized structure.

Such a general structure is presented in Figure 3. The
main contribution from this model is to determine the
structured learning process using all graphs obtained from
the Bayesian Network approach. Since the general graph
is oriented, not only the relations between parameters, but
also the statistical dependencies are shown. In Figure 3,
the gray edges labeled as a, b and c show the inner
dependencies and relations, while the blue, green and red
edges represent how the related variables generate the
classification output with, respectively, low, medium and
high probability. The full comprehension if this
information is useful on real industry applications, since it
offers a simple and qualitative way, in terms of numerical
effort, to evaluate the occurrence of faults.

With the Bayesian Networks, it is also possible to
measure a trend for the beginning of the fault occurrence.
Figure 4 presents the potential of the Bayesian Networks
to measure the evolution to a fault. To generate the
curves, each sample test was applied to the networks in
Figure 2 and, for each resultant output, the probability of
the sample being correctly classified was stored. Such
probabilities are the values displayed in Figure 4. One can
see that the probability can gradually change with the
values of the attributes, showing the potential of the
technique to track subtle changes from the machine that
can lead to a fault. This feature is of utmost importance in
industrial settings, since predictive maintenance actions
can significantly lower the costs and improve the
production process.

Another possible improvement for industry is to
recommend, for initially healthy machines, to test the
linguistic rules for each machine. Such procedure allows
the storage of the typical audio signals obtained by each
specific machine, improving the accuracy of classification
patterns since the healthy pattern for each machine is
already known, eliminating inaccurate classifications due
to the presence of background sound.

5 Conclusion

The application of Bayesian Network structures for fault
classification of electrical machines using audio signals,
and a comparison with other machine learning
techniques, was proposed in this paper. The proposed
method consists of combining the input attributes to
generate a set of networks, and then applying the
BayesRule algorithm to extract linguistic rules which,
through a set of “if-else” conditions, perform the desired
fault classification.
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Table 5: Discretization of input attributes

Input Attributes
Ranges

Low Medium High

Freq 30 0 ; 0.196501 0.196501 ; 0.33865 0.33865 ; greater numerical value of data

Freq 60 0 ; 0.153198 0.153198 ; 0.25833 0.25833 ; greater numerical value of data

Freq 120 0 ; 0.073761 0.073761 ; 0.128693 0.128693 ; greater numerical value of data

Freq 2500 0 ; 0.0300057 0.0300057 ; 0.052686 0.052686 ; greater numerical value of data

Signal power 0 ; 17077.1 17077.1 ; 56241.8 56241.8 ; greater numerical value of data

Fig. 2: The six Bayesian Network structures generated.

Table 6: Accuracies of the proposed Bayesian Networks.

Proposed Structure Input 1 Input 2 Input 3 Accuracy

Network 1 freq30 freq2500 signal power 65%

Network 2 freq30 freq120 signal power 58%

Network 3 freq30 freq60 signal power 71%

Network 4 freq30 freq60 freq2500 65%

Network 5 freq30 freq60 freq120 63%

Network 6 freq30 freq120 freq2500 67%

The input attributes stem from audio signals acquired
from microphones positioned around the electrical motor
to be analyzed, which is less invasive than other kinds of
sensors usually considered for this task. The Bayesian
Network structures were obtained from a training
procedure, and the obtained results are then compared
with SVM and KNN techniques.

Analyzing the classification accuracy from each
method, the accuracies obtained in this paper are in
accordance with the performances presented in the
literature for similar problems, as can be seen in the
review [9]. In addition, classification methods presented
in the literature use only the Naive-Bayes structure [8,10]
and do not explore Bayesian networks topologies. The
algorithms proposed in this current paper provide the
generalization of the classification model for the
decision-making process, by revealing the network
structures. Therefore, the main advantage of these
Bayesian Network structures, which is one important
contribution of this paper, is to explicit the relationships
and dependencies between the input attributes, allowing a
qualitative analysis of each fault and how the attributes
can be interconnected to perform the classification. As a
result, the obtained structures can be used to perform a
numerically simple classification procedure, or be applied
along with other technique to improve the results.
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Fig. 3: Generalized structure to infer the relations of features from audio frequencies and signal power. In the generalized structure and

in the substructures of learning, the gray edges show the inner dependencies and relations, while the blue, green and red edges represent

how the related variables generate the classification output with, respectively, low, medium and high probability.
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Fig. 4: Trend graphs to describe the inference about accuracy of the substructures from each fault network generated.

Since numerical experiments were performed, it is
important to mention the runtime of the algorithms
process on solving the proposed problems. In order to run
each one of the 6 proposed structures (according to Table
2), the average runtime of the algorithms is: KNN - 3min,
Bayesian networks - 6min, SVM - 7min.

Finally, for future works, one can improve the
obtained results to develop a system to track the evolution
of a fault within a given machine, since this paper shows
the potential of the proposed technique for this task.
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