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Abstract: A concept of generalized bounded @ —variation for complex-valued functions is introduced. We prove that the space of
functions of this kind is a Banach algebra with respect to pointwise multiplication. Previously, its properties were shown and the
Minkowski functional was used to provide this class of functions with a norm that makes it a Banach space. In addition, some maximal
ideals are described.

Keywords: &-Variation, Banach algebra, Bounded variation, Ideal.

1 Introduction

Fourier’s work showed that a wide class of functions can
be represented by trigonometric series (see [1]). However,
the problem of finding precise conditions on the functions
which would possess a convergent Fourier series was and
is still the subject of the researches conducted by many
mathematicians.

Jordan gave a sufficient condition in terms of what a
bounded variation function is (see [2]). Since then, this
class of functions has gained great interest as a function
space, and also multiple applications have been found in
areas, such as Fourier series in several variables,
geometric measure theory, calculus of variations,
generalized solutions for nonlinear partial differential
equations and mathematical physics (see [3]).

More recently, [4] have established an improved
version of the definition of variation for functions
previously presented in [5], where the authors gave the
definition of the variation of complex values functions
defined in a compact subset of C.

2 Notation and basic definitions

This section addresses, the notation and definitions that are
specific of bounded variation. Given these, we state our
results.

Throughout this paper, K denotes a compact subset of
the complex plane C. In addition, if z,z' € C, then [z,Z]
denotes the line segment, joining z and z'.

If & = [zo,21,--,2,] is an ordered finite list of
elements of C (not necessarily different) where n > 1,
Doust and Al-shakarchi [4] define crossing segment as
follows:

Definition 1(See [4]). Let & = [z0,21,- - ,Z,] as before
and suppose that £ is a line on the plane. The line segment
[zi,2;11] is a crossing segment of & on £ if any one of the
following holds:

(i)z; and z; 1 lie on (strictly) opposite sides of {.
(ii)i=0andz; € (.
(iii)i > 0,2z, € Land z;_ ¢ /.
(ivii=n—1,2; ¢ Land z;y) € L.

Under these conditions we shall write [z;,2;11) € X (§,¢).
Definition 2(See [4]). Let f K — C and

& =[z0,21, - ,2,) is an ordered finite list of element of K,
the curve variation of f on the set & is defined to be
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f(zi1)l.

cvar(f, &) i

Let vf(§,¢) denote the number of crossing segments of
& on £. The variation factor of & is defined to be

vi(§) = max vi(E,0).

Note that 1 < vf(§) < n. In [4], the authors also
complete the definition for the case where & = [z9], as
well as set cvar(f,[zo]) = 0 and vf([zo],¢) = 1 whenever
7o € L.

Definition 3(See [4]). The two-dimensional variation of a
functions f : K — C is defined to be

—w cvar(f, &)
var( . K) = sup 5 =)

where the supremum is taken over all finite ordered lists of
elements of K.

(1)

In [5] the authors proved that the space
{f: K= C:|[fllo+var(f,K) < oo} ()

is a Banach algebra with the pointwise operations and
norm

BV(K) =

£ lsv k) = [lf ]l + var(f, K). ©)

It has always been of interest to study the
generalization of the variation of a function in the plane,
so the present paper aims to generalize the definition of
bounded variation, basically combining the definition
given in [4] and the definition given by Young in 1937 .

3 ®d—variation of functions on compact
subsets of C

We shall denote by .4 the set of all functions
@ : [0,4+%) — [0,+) such that & is unbounded,
continuous, convex and nondecreasing with @(0) = 0.
Such a function is said to satisfy condition A, if there
exist a constant 1 < D < +oo such that @(2r) < DP(r)
fort > 0.

The set .4 is closed under sums, products,
multiplication by positive constants, compositions and
taking inverse mappings (see [7,8] ).

Likewise, the notation .45, shall be used to denote the
set of all functions @ € .47, for which the Orlicz

D(t
condition holds: limL = oo,
t—oo

. Following [9],
functions in .4 shall be called @-functions.

Definition 4.Let f: K — C and & = (29,21, ,2,] is an
ordered finite list of element of K, the curve variation of f
on the set S is

[v]:

cvarg(f,&) =Y D(|f(zi) — f(zi-1)]),

1

i

and the variation of f is defined to be

sup VAT (f.%) 7
s vi(&)

where the supremum is taken over all finite ordered lists of

elements of K, and v{(S, () denotes the number of crossing

segments of S on (. The variation factor of S is defined to
be

vi(§) =

vare (faK) = (4)

m[axvf(S,E). %)

Example 1.If f is constant on K then varg (f,K) = 0.

Basic properties of the ®—variation

Some basic properties of this new class of functions are
presented below.

In all cases we refer to functions f : K — C and @ €
A . Consider the following set:

Yo (K) =
1.If z,7 € K, then

{f: K= C:vare(f,K) < oo}

O(|f(z) — f(Z)]) < @(D(f,K))
where D(f,K) := diamf(K) = sup{|f(2) — ()] :
72,7 €K}

The result is obtained immediately by virtue of &
being a monotone function.
2.If varg (f,K) < +oo then varg(f,
is the complex conjugate of f.
3.If @ satisfies the A, condition then ¥4 (K) is a real

K) < +oo, where f

vector space, with the wusual functions space
operations.
Indeed, for any f,g € ¥4 (K), since @ is increasing,
we have
(|(f+8)(2) — (f+8)()])
= O(|(f(z) - f(z)) + (g(z) — 8(2))])
< O(f(z) - f(2)] +]8(z) —g(z)])
< @(2max{|f(z) — f()].|3(z) — g(z)[})
<D¢(max{|f(1) f@)],ls(z) = 8()]})
D(®(|f(z) — f(2)]) + P(|g(z) — g(2)])].
As a result, from the latter inequality, it is easy to

obtain

cvarg(f +¢,5) < Dlevare(f,§) +cvare (g,5)], (6)
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forall & = (29,21, ,Z,]. So f + g € Vo(K).
Consequently, it is clear that

cvarg (f+g,£) cvarg(f,§) | cvare(g,§)
vi(E) SD( Vi) T VEE) >

so, taking the supreme over all finite ordered list of
elements of K and using properties of the supreme, we
get that

Var‘I’(f+g7K) < D(Vard)(va) +Var<1>(gaK))'

This means that the sum is closed in 7 (K).

Thus, for any f € ¥3(K), nf € ¥3(K) for all n € N.
If ¢ € R then there exists n € N such that n > ¢, @ is
increasing, it follows that ¢ f € ¥ (K) for any constant
c.

4.Let K, and K; be compact subsets in C such that K; C
K. Every finite ordered list of elements of K; is also
an ordered finite list S of elements of K5, then

cvar(f, &)
sck,  VE(E)
cvar(f, &)
= o )
= varg (f,Ka).

5.The functional vare (f,K) is convex, so 7¢(K) is a
convex set.

Indeed, letting o € [0,1] and f,g € ¥4 (K), then for
each & = [zg,z1,- - ,z,] finite ordered list of elements
of K, we have

cvarg (o f+(1—a )g, &)

= ¥ @l ()~ ) + (1 o) al) (1))

varg (f, K1 ) =

< i o @ (|(f(2i) = f(2:)) + (1 — o )P (|(g(2i) — 8(zi-1))])

i=
= acvarg(f,§) + (1 —a) cvare(g,8).
Thus, we have
varg (a0 f+ (1 — a)g,K) < a varg (f,K)
+(1 — a)varg (g, K).

From the last inequality we get that varg(+) is a convex
functional and that ¥4 (K) is a convex set.

6.If there exists A > 0 such that varg (% , K) < oo the

f is a bounded function.
If z, is a fixed arbitrary point in K, then

@ (| 0)) < %@(\%(z)—%%)

)

Therefore,

@) <@ (;¢ (

>
=
N—
_|_
DN —
)
~
==
=
S

7.Since f(z) = fi(z) +if2(z) where fi : K — R and f> :
K — R, then by virtue of the module properties of a
complex number, we have that

varg (f1,K) < varg(f,K)
and

varg (f2,K) < varg(f,K).

BIf D, W e A, f:K—C and § = 29,21, - ,2y) as
before, then

Varg +y (f7 K) < varg (f7 K) =+ vary (fa K); (7)
vargy (f,K) < vare (f,K)vary (f,K), ®)
and

vareo (va) = CVaI'q:.(f,K)- (9)
Indeed,

n

cvarg w(f,E) = Y(@ +¥)(|£(z) — f(21)])

i=1

M=

(| f(z) - f(zi1)])

1
i W(\fa) — fla 1))
= cvarg(f,&) +cvarg (f, ).
Therefore,
cvarg (.6) _ cvaral(fE) | evare(£.)
vi(§) vi(§) vi(§)

< Van‘)(f,K) +Var‘l’(faK)'

As a result, from the last inequality, we get (7).
(8) and (9) are obtained in a way similar to (7).

4 A Banach algebra

It is natural to wonder if this new class of functions is a
vector space when @ does not satisfy the condition A;. To
address this concern and considering an arbitrary @ € A4/,
is easy to verify that

Aq)(K):{f:K—HC:%E”//(p(K) for some l>0}

is a vector space and we now proceed to verify that Ag (K)
is a Banach algebra under pointwise operations.

Theorem 1.7The subset

Q={fe7p(K):vare(f,K) <1}

is a non-empty, convex, symmetrical and absorbent set of
Ag(K).
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Proof.Example 1 ensures that €2 is a non-empty set.

The convexity and symmetry is an immediate
consequence of the convexity of the functional

varg (f, K).

On the other hand, if f € Ag(K), then there exists A >

0 such that varg (%,K) < oo,

If varg (% , K> < 1, there is nothing to prove.

In the other case, where f € Ag(K) and

varg i K | > 1, then
),, )

S k1 (Z}K):L
f f A
Avarg (I’K) varg (XK)

which verifies that £ is an absorbent set.

varg

Given that Q is a convex, symmetrical and absorbent
set of A (K), the Minkowski functional

pa(f) ::inf{l >0: % G.Q}

is a semi-norm over A (K), see [10].

Theorem 2.Let f € Ag(K), then

1.pe(f) =0 if and only if f is a constant function in K.
2If f is not a constant function, then

varg (ﬂ%(f)’K) <.

ProofIf f is a constant function, is clear that pg (f) = 0.
Reciprocally, if pg(f) = 0 and f is not a constant
function in K, there are zp,z; € K such that

f(zo) # f(z1).

In addition, for each n € N there exists A,, > 0 such that
f 1
vare ),_’K <land0< A, < o
n

This implies that for every n € N we have

cp(f

L)~ L)
ViE)

for S = [zo,2,].

If in the previous inequality, as n — 4o, the numerator
of its left side tends to +oo while its denominator remains
constant, which is a contradiction since the expression is
bounded by 1.

From this contradiction, we get that f is a constant
function in K.

) < varg <%K) <lI,

n

To demonstrate (2), for every n € N there exists A4, €

{l > 0: varg (%,K) < 1} such that

palf) < < palf) + -

So, for each & = [29,21,...,2,],

cvarg (L,

and by virtue of the continuity of &, we get that

V(&) vi(g)

As this inequality is true for each finite ordered list of

elements in C, then varg (L,S> <1

pa(f)
Theorem 3.Let @ be a ¢—function. Let f : K — C and
g: C — K be functions with the properties that f € Ag(K)
and g satisfies a Lipschitz condition. Then the composition
gof € Aq(K).

Proof.Since g satisfies a Lipschitz condition, there is a
constant M > 0 such that

= lim
n—yoo

lg(z) —g(w)| < M|z —w]| forall z,w € C.

Also, if f € Ag(K), then there exist a constant A > 0 such

that varg (%,K) < Hoo,
If & = (29,21, ,2,], an ordered finite list of elements
of C, then
o (3£ - ()
i=1
é 1
- 3o (g et - st
<y (21500 — a0
- S
<L (frw - ze])

From here, we get

cvarp (%,S) < cvarg (i»S) ;

SO

varg (%,K) <varg (%,K) .

Thus, go f € Agp.

N
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Theorem 4.A¢(K) is a Banach space with norm
1Fllag = 11+ P (f)-

Proof-Since || - || defines a norm on the functions space
and pg(-) is a seminorm in A (K), is easy to verify that
|| - |lag is @ norm on Ag (K).

Let {f,};7_, be a Cauchy successionin Ag(K) and € >
0. Then, there exists N € N such that

| fo— finllagy < € forallm>n>N.
However, this implies that

||frz _fm

Therefore, there exists a function f : K — C such that f,
converges uniformly to f.
Now, we verify that || f, — f|la, — 0asn — oo,
Indeed, for € > 0, as above there exists Nj, N, € N such
that

Pa(fn

w < &forallm>n>N.

7fm) < ||fn7fm||A¢ < & for all m>n2Nl
[l = flle < € forall n > N,

This implies that there exists a Ay such that for all m > n >
N

varg (fnzofm ) <land A <e.

So, forall m > n > N

varg (fn fm ) = varg <ME,K>

Ao €
< ﬁvarqs (f”_fm,K) < &
€ Ao €
However, if & = [29,21,...,2,] is an ordered finite list of

elements of K, then

Eo([f - )
vi(&)

letting m — oo in the last inequality, we obtain
(Zit1) —

for n > max{N,N,}.
Since, the latter inequality is valid for any finite
ordered list of elements of C, we obtain

fn ;fm (Zi)

<1 for m>n>Nj.

Jo—f

Jo—f
e e

'™

SO

po(fn— f) < € for n > max{N;,N,}.
Therefore, if n > max{N;, N, }, then

1fn = fllag = Ifn = flleo+ pa(fa — ) < 26,

and the proof is completed.

Theorem 5.The space Ag is a commutative Banach
algebra under pointwise operations.

Prooflet f,g € Ag. Note that
|fg(2) — fg(2)]
= |f(2)s(z) - f(2)g ( ’)+f( )8(z') — f(2)g(2)]
= |/(@)(s(2) — (z)) +5(z)(f(2) - f(2))]
< N fll|8(z) — (2 \+||g||w|f —f@)].

If & = [z9,21,...,2,] is an ordered finite list of elements of
K, then

i ( Po
/g )

po(ATel- + Pa@ I &

/8
(N)llglles+ o (g

T G

"

f o
< "’( P DNl + pa @A || 1) &)
8 (o Y £
PPl +po @A || ) ~F “’”)
_ Pa () ISl g B _
J’(qu(f)ngnﬁpag) 2@ ol

Po(f) I8l
P (f)8ll+ P (8)

f
P ) palh)

IN

P () [|f]l ¢ . g
Pa(f)gll +pa ()] £l @ ( 72 (zis1)

f

(

(

Po () I8l o
- q)( Po f)<Z‘+I) pa(f)
(&) I1£1l-s ) g
(:Valt(pq5 ,S)

IN

oDl +po (@)
po()lgll-+po ()T 9
po(f) gl (S
po (gl +pa(@IT- (P(p(f) "S) ’

where we get the following

cvar( J8 )
P (Hllgll-+ P (&)l f ]l

vi(E)
Ol ‘
_ bl >uguw+p¢< =" <p¢<g>’s>
= Vi(E)
po () gl ( f S)
, 2olsl +po @I \2u) ) _
Vi(E) =t
and
ar. fg
v “b<p¢<f>ng|\w+p¢<g>|\fnw"K) =

This means that

Pa(f2) < pa(f)lglle+pa (@) fl-
I8l +po(f8) < [f8llee + P (Fllgllo + P ()| flle
Ifellag < A llagllglag-

5 Some examples

Let KC R C C be a compact set, @ € .4, let [ be the
smallest closed interval containing K and A the length of
I. Then, for f : K — C defined by f(z) = z and all ordered
finite list of elements & = [z9, 2y, ...,z,| of K, we have
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cvaw(%,i) 1
vE(S) vE(S)
1

I
™=
S

I
-

I
<
=
T2’
1=
S
7~ N N\

= A
< g Lt o
- vf(lx,‘)?ii'z"z"'
< g A L |
< ®(1).

where [z9 = z;,,2;,,--- ,2;,| corresponds to the polygonal
with different points in &.

This means that the function f(z) = z is in Ag(K)
when defined in a compact set of R.

As a second example, let K C C be a compact set,
@ € 4 and )y : K — C the characteristic function
defined by yw(z) = 0 otherlfcase. =W Then, for all
ordered finite list of elements & = [zo,zy,...,2,] of K, if
we let m be the number of segments [z;_j,z;] whose
extreme points are unequal and one of them is w, then

ovarg(w, &) 1 ¢ ;
vig) Vf(z;)l;‘pﬂlw( — 2w (2i-1)])
‘l m
“we g *
_ m®(1)
T Ovi(E) (10)

However, for any straight line ¢ containing w we have
that the extreme points of these m segments will have
extreme points, different to w, are either on one of the
half-planes determined by ¢ or on it.

Suppose that, the largest number of these extreme
points (different to w), say r, are on the half-planes which
we will denote by IT. Under this condition, there is a
straight line parallel to ¢ at a distance
d=min{d({,z):z€ & and zell}.

Therefore, we have that r < m < vf(&).

With a similar reasoning, it can be obtained that if s is
the largest number of these extreme points that are in a
same semi-line, that start at w, we have that s < vf(&).

Therefore, we get that m < 2r + 2s < 4Vf(&).
Consequently, from (10), we get
cvarg (Xw, €) 1 &
D (| xw(2zi) — xw(Zi—1
T 7y L @ ()~ ot 1))
< 4P(1).

Hence xw € Ag (K).

6 Important consequences

Recall that a subset I of a commutative Banach algebra A
is said to be an ideal of A if I is a vector subspace of A and
xa€lforallx€landa € A. Anideal I # A is said to be a
proper ideal. A proper ideal which is not contained in any
larger proper ideal is said to be a maximal ideal.

In [11], the maximal ideal space BV ? is determined. In
the following lines, we briefly present the properties that
continue to be fulfilled in our new class of functions.

Theorem 6.Let f € Ag(K). Then,
1
LIf inf | f(z)] > 0, then — € Ap(K).
zeK f
1
2.If inf =0, - ¢ Ap(K
f inf |f(2)| =0, then = ¢ Ao (K)

Proof To demonstrate the first part, suppose that
f € Ag(K), then there exists A > 0 such that

i]lf Z () ]et

m(mlf(|f(z)|)2 ]7 then if 5 = [Z(),Z],"'
VAS
ordered finite list of element of K

cvarg (%,S)
1
30 ([ i 1))

()

1 (zi1) = f(z)
? (m( inf 17(2))2

A
q’(’%(zi71)7§(zi)

Since m € N such that

,Zy] 18 an

5]

IN
[ngE

|

)-om (1)

IN
™=

i=1

So, we get that

varg <mL“,K) < varg <£,K> < oo,
) % € Ag(K).

Now, to prove the second part, if f(z) = 0 for some
z€ K, then % is not defined in K, so } ¢ Ap(K).

If f(z) # 0 for each z € K and in1£ |f(z)| = 0, then for
VA4S
each n € N, there exist z,, € K such that

1
0< |f(zrz)| < -

n
Therefore,

— is not a bounded function, since by virtue of

1
Basic properties (6), 7 ¢ Ao (K).
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This means that each ideal of Ag(K) must be a subset
of

L= {f € Ao(K): inf |f(z)] =0},

Note also that for each zg € K, it is easy to verify that
hyy © Ap(K) — C is defined by hg(f) = f(zo) is a
complex homomorphism whose kernel is I,.

Thus, for each z(y € K, the set

Iy ={f € Aa(K) : f(z0) = 0}

is a maximal ideal of Ag(K) (see [12,6]), i.e. every
element f in a nontrivial ideal / must have 0 in the closure
of its range; just as in the case of actual real variable
functions ([11])

Theorem 7.Let I be a nontrivial ideal of Ag(K), then
there exists a 7o € K such that for all f € I,
inUf |f(w)| = 0 for all neighbourhoods Uy, of 7.

wely,

Proof.Assume that for each z € K, there exists f, € I with
|[fa(W)| =8, >0

for all w in some neighbourhood U, of z.

Being {U },ck an open cover of the compact set K, by
the compactness of K, it can be covered by finitely many
such neighborhoods. Hence, we can find {zy,z;,- -+ ,2,} C

n
K such that K C |J U(z).
i=0

Note that if f € Ag(K), also the complex conjugate
f € Ag(K). Being I an ideal, this means that if f € I, also
the function f f = |f|* € I. Hence, the function f : K — C
defined by

f(z) = Zfli(z)fli(z) = Z |fli(z)|2 Z OT'in 622, > 0.
i=0 i=0 Sin

This is a contradiction because, f € I is invertible. Hence,

for any nontrivial ideal, there exists a point zy € K such

that for all f in to ideal, we’ll have to inf |f(z)| = 0 for
zeU(z9)

all neighbourhoods U (zy) of z.

7 Applications

The spaces of real or complex functions of limited
variation defined on a compact space have a prominent
role in Functional Analysis. An example of this is that
many mathematicians have dedicated a big deal of time to
the study of these function spaces (For example, [5,8]).
And, specifically, within Banach’s study of spaces, the
notion of linear operators stands out, and in particular
multiplication and superposition operators that allow
solving some differential equations having solutions in
these spaces. This makes us sure about the potential of the
new theory to face the problems of determining the
solution of differential equations in this new space of
limited variation, applicable in many branches of science,
applied mathematics and engineering.

8 Conclusion

A new class of bounded variation functions have been
defined (from K to C, where K is a compact subset of C),
generalizing the concept of variation presented in [5,4].
We have shown that this class of bounded variation
functions is a Banach algebra. Previously, its properties
were shown and the Minkowski functional was used to
provide this class of functions with a norm that makes it a
Banach space. Finally, some maximal ideals were
described.

Acknowledgements

The authors express their gratitude to the referees for their
careful reading and constructive comments that improved
the paper.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

[1] M. Kline. Mathematical thought from ancient to modern
times, Oxford University Press, New York, (1972).

[2] C. Jordan, sur la série de Fourier, Comptes rendus
hebdomadaires des séances de 1’Académie des sciences,
Paris, 2, 228-230 (1881).

[31 0. Oleinik. Discontinuous solutions of non-linear
differential equations, Uspekhi Matematicheskikh Nauk, 12
(3(75)), 3-73 (1957).

[4] 1. Doust and S. Al-shakarchi. Isomorphisms of AC(I)
spaces for countable sets, In: Bttcher A., Potts D.,
Stollmann P., Wenzel D. (eds), The Diversity and Beauty of
Applied Operator Theory. Operator Theory: Advances and
Applications, 268, Birkhuser, Cham. 193 - 206 (2018).

[5] B. Ashton and I. Doust. Functions of bounded variation on
compact subsets of the plane, Studia Math., 169, 163-188
(2005).

[6]J. Mujica. Chapter VII, Commutative Banach algebras,
North-Holland Mathematics  Studies, Volume 120,
(1986).https://doi.org/10.1016/S0304-0208(08)70895-8.

[7] M. Bracamonte, J. Giménez and N.Merentes. Vector valued
functions of bounded bidimensional ®-Variation. Ann.
Funct. Anal. 4, No. 1, 89-108(2013).

[8] V.V. Chistyakov. Selections of bounded variation. J. Appl.
Anal. 10(1), 1-82 (2004).

[9] L. Maligranda. Orlicz Spaces and Interpolation, Seminars
in Math. 5, University of Campinas, IMECC-UNICAMP,
Brasil, (1989).

[10] A. Wawrzyficzyk. Introduccion al andlisis funcional,
Universidad Auténoma Metropolitana, Unidd Iztapalapa.
(1993).

[11] M. Bliimlinger. Topological Algebras of Functions of
Bounded Variation I, Manuscripta Math. 65, 377-384
(1989).

@© 2021 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp
https://doi.org/10.1016/S0304-0208(08)70895-8

122 NS P M. R. Bracamonte et al. : The Banach algebra of bounded &-variation functions

[12] I. Gelfand, D. Raikov and G. Shilov. Commutative normed
rings, Chelsea Publishing Company Bronx, New York,
(1964).

Jurancy J. Ereu
received her Ph.D. degree
from Universidad Central
de Venezuela acyv),
Venezuela (2012). She
currently is a Professor in the
Department of Mathematics

Mireya R. Bracamonte
P. got her PhD degree in

. . ; of the Universidad
Mathematics at Universidad . .
Centroccidental Lisandro
de los Andes - Venezuela. L
Alvarado, Barquisimeto,

She currently is a Professor
in the Department of
Mathematics  of  Escuela
Superior  Politécnica  del
Litoral (ESPOL) - Ecuador.
Her research interests are
Real and Complex Analysis,
Functional Analysis and Operator Theory.

' Lara, Venezuela. Her fields of
interest are: Real and Complex Analysis, Functional
Analysis and Operator Theory.

Luz E. Marchan
Received her Ph.D. degree
from Universidad Central
de Venezuela acyv),
Venezuela (2011) . She
worked as Professor in
the Department Mathematics
of the Universidad Centro
Occidental Lisandro
Alvarado, Barquisimeto,
Lara, Venezuela, from 2002
to 2017. Currently she works
at the Escuela Superior Politecnica del litoral (ESPOL),
Guayaquil, Ecuador from 2017. Her fields of interest
include algebra and combinatorial

@© 2021 NSP
Natural Sciences Publishing Cor.



	Introduction
	Notation and basic definitions
	-variation of functions on compact subsets of  C
	A Banach algebra
	Some examples
	Important consequences
	Applications
	Conclusion

