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Abstract: Present work describes the Sisko fluid flow characteristics over stretching cylinder and heat transfer with viscous dissipation.
Governing equations are modelled and then simplified by using boundary layer approach. The scaling group of transformations
is employed to transform flow govern partial differential equations into corresponding set of ordinary differential equations. Since
attaining set of ordinary differential equations is nonlinear, thus numerical technique Runge–Kutta–Fehlberg method is applied to
compute dimensionless velocity and temperature expressions. The influence of all parameters on momentum and heat equations is
figured out with the aid of graphs. The effects of parameters on skin-friction coefficient and local Nusselt number are elaborated
through graphs and tables.
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1 Introduction

Viscous dissipation plays an important role in the
problems involving heat transfer, because it behaves like
an energy source that affected the rate of heat transfer. As
yet less amount of concentration has been paid by
researchers towards the viscous dissipation effect.
Specifically, in laminar flow problems the effect of
viscous dissipation has not yet been considered in detail.
[1] is pioneer, who gave the idea of viscous dissipation.
He analyzed the viscous heating effects on Newtonian
fluid flows in a straight circular tube and investigated
some temperature distributions at zero wall temperature.
He proved that the effects are produced in the close wall
region. After that many researchers extended his work
and took the viscous dissipation effect in heat transfer
problems. [2] studied the viscous dissipation effects in the
entrance region of pipes with uniform heat flux. [3]
prolonged the previous work and identified the viscous
dissipation effects on the thermal entrance heat transfer in
laminar pipe flows with convective boundary conditions.
[4] modelled the problem on laminar forced convective
flow of Newtonian fluid though a channel by taking

viscous dissipation effects into account. [5] discussed the
viscous dissipation effects on MHD viscous fluid flow in
a porous medium. [6] extended their own work and
investigated the combined effects of viscous dissipation
and Joule heating on MHD viscous fluid flow past a
porous stretching surface along with heat and mass
transfer. [7] investigated the effects of viscous dissipation
on forced convective flow of Newtonian fluid through
pipes and discussed two cases i.e. hydrodynamically fully
developed flow and thermally fully developed flow. [8]
continued his work by discussing the forced convective
thermally fully developed flow of viscous fluid through
pipe along with viscous dissipation effects. [9] considered
the viscous dissipation effects on non-Newtonian power
law fluid flow inside the elliptical duct and obtained
numerical solution of flow govern differential equations.
[10] also studied the influence of viscous dissipation on
boundary layer hydrodynamic flow past a porous moving
vertical plate with suction and temperature dependent
viscosity.

The boundary layer flow problems of Newtonian and
non-Newtonian fluids have various applications in
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industry, engineering and aerodynamics. For example,
glass-fiber production, polymer sheets production, paper
production and plastic films etc. Thus, in last few decades
the researchers took much interest in boundary layer flow
problems. [11] is the first who analyzed the boundary
layer flow. He discussed the boundary layer flow of two
dimensional axisymmetric viscous fluid flow over a
continuous solid surfaces. [12] continued the work and
investigated the boundary layer two dimensional viscous
fluid flow over stretching sheet. The boundary layer flow
of Newtonian fluid over stretching sheet was studied by
[13] by taking convective boundary condition and
nanoparticles concentration effects into account. [14]
studied the boundary layer flow of nanofluid over an
exponentially stretching surface. [15] investigated the
boundary layer flow of Casson nanofluid over a vertical
exponentially stretching cylinder. [16] considered the
boundary layer flow of second order fluid over a
stretching sheet with uniform free stream velocity and
found the non-similar solutions. [17] discussed the
boundary layer flow and heat transfer of nanofluid over a
nonlinearly permeable stretching/shrinking sheet. The
boundary layer flow along with heat transfer was firstly
inspected by [18]. They considered the heat and mass
transfer on a stretching sheet with suction or blowing.
[19] prolonged the previous work and investigated the
heat transfer problem on a continuous stretching sheet.
[20] found numerical solution of the problem addressing
the viscous fluid flow over stretching cylinder along with
temperature dependent thermal conductivity. [21]
examined the heat transfer analysis of MHD
non-Newtonian power law fluid flow passing over a
stretching sheet. They found analytic solution via HAM
and variations in heat transfer are deliberated against
altering values of governing parameters. [22] extended
their previous work and examined the heat transfer of
hydrodynamic power law fluid flow over a vertical
stretching surface by assuming convective boundary
conditions. [23] investigated the convective heat transfer
of MHD non-Newtonian Jeffrey fluid flow over a linearly
stretching surface and found solution by using
hypergeometric functions. The mixed convection flow of
MHD non-Newtonian Eyring-Powell nanofluid was
numerically deliberated by [24]. Recently, [25] discussed
the heat transfer of Christove-Catteneo heat flux model
for Williamson fluid flow over a stretching sheet with
variable thickness. They solved modelled set of
differential equations with the aid of Keller-Box method.

Many fluids which are used in industry,
pharmaceutical and daily life products are non-Newtonian
in nature e.g. emulsions, pints, blood flow, lubricants,
starch suspensions etc. Also, as lot of varieties of
non-Newtonian fluids are subsist in nature, thus different
constitutive equations are suggested to examine the
non-Newtonian fluid rheology. Among them, there is a
Sisko fluid model which was proposed by Sisko in 1958.
It is observed that the computed results of Sisko fluids

corresponds to observed data of many non-Newtonian
fluids such as lubricant greases, blood flow, mud and
paints etc. The pioneer of this model i.e. [26] analyzed the
three different lubricating greases and proved that Sisko
fluid model results matched with observed data of all
three greases. After that many researchers inspected the
non-Newtonian flow rheology by using constitutive
equations of Sisko fluid model. [27] analyzed the
peristaltic flow of non-Newtonian fluid in a uniform
inclined tube via Sisko fluid model. [28] extended their
work and discussed the peristaltic flow of a Sisko fluid in
an endoscope and obtained the both analytical and
numerical solutions. [29] also investigated the problem of
peristaltic Sisko nanofluid in an asymmetric channel. [30]
formulated the problem of Sisko fluid in which implicit
differential equations are arising. Axisymmetric flow of
non-Newtonian Sisko fluid over radially stretching sheet
was investigated by [31]. They found solution via
analytical technique HAM and explored the effects of
flow govern parameters on interesting physical quantities.
[32] also discussed the analytical solution of boundary
layer Sisko fluid flow over a stretching sheet. Recently,
[33] calculated the numerical solution of the problem
MHD Sisko fluid flow over a stretching cylinder. They
recognized that fluid parameter accelerates the fluid
movement. Also, [34,35] analyzed Sisko fluid model by
assuming various physical assumptions.

After reviewing the aforementioned literature authors
found that the effects of viscous dissipation on Sisko fluid
model not discussed so far. So, present investigation
focuses on the study of viscous dissipation effects on
boundary layer flow of Sisko fluid over stretching
cylinder. Since the governing ordinary differential
equations are non-linear with complexities, thus shooting
method with Runge-Kutta-Fehlberg integration scheme is
used to obtain numerical solution. The impact of all
physical parameters is figured out on dimensionless
velocity and temperature profiles with the help of graphs.
In addition, the effects of involving physical parameters
on skin-friction coefficient and local Nusselt number are
presented through tables and graphs.

2 Mathematical formulation

Consider two dimensional, steady state, boundary layer
flow of axisymmetric incompressible Sisko fluid over the
continuously stretching cylinder. The cylinder is stretched
with velocity U(x) = cx in axial direction. The heat
equation is considered with viscous dissipation effects.
By applying usual boundary layer approximations the
governing equations reduce to

∂ (ru)
∂x

+
∂ (rv)

∂ r
= 0, (1)
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u ∂u
∂x + v ∂u

∂ r =
a

rρ
∂
∂ r (r

∂u
∂ r )−

b
rρ (−

∂u
∂ r )

n + nb
ρ (− ∂u

∂ r )
n−1 ∂ 2u

∂ r2 ,

(2)

u ∂T
∂x + v ∂T

∂ r = α
r

∂
∂ r

(

r ∂T
∂ r

)

+ a
ρCp

(

−
∂u
∂ r

)2
+ b

ρCp

(

−
∂u
∂ r

)n+1
,

(3)
subject to the boundary conditions

u = U(x), v = 0, T = Tw at r = r0, (4)

u → 0, T → T∞ at r → ∞.

Herex andr are axial and radial axes,u andv are velocity
components of fluid alongx andr directions respectively,
n, a andb are the material constants, ρ is the density,T is
the temperature of the fluid,Tw is the temperature of fluid
at wall, T∞ is the extreme temperature,Cp is the specific
heat andα is the thermal diffusivity.

The stream functionΨ is defined such that

u =
1
r

∂Ψ
∂ r

, v =−
1
r

∂Ψ
∂x

. (5)

To reduce the modelled partial differential equations into
ordinary differential equations the following similarity
transformations are employed

η =
r2
− r2

0

2xr0
Re

1
n+1
b , Ψ = xr0URe

−1
n+1
b f (η), θ (η)=

T −T∞

Tw −T∞
,

(6)

whereReb is defined asReb =
ρxnU2−n

b .

Using above defined similarity transformations in
equations (1) − (3), the equation (1) is identically
satisfied, whereas equation(2) and equation(3) are
modified to

A(1+2γη) f ′′′+ n(1+2γη)
n+1

2 (− f ′′)n−1 f ′′′+2Aγ f ′′−

(n+1)γ(1+2γη)
n−1

2 (− f ′′)n
− f ′

2
+

2n
n+1

f f ′′ = 0, (7)

(1+2γη)θ ′′+2γθ ′+ 2n
n+1 Pr f θ ′+A(1+2γη)EcPr(− f ′′)2+

EcPr(1+2γη)
n+1

2
(

− f ′′
)n+1

= 0, (8)

subject to boundary conditions

f (0) = 0, f ′(0) = 1, θ (0) = 1, f ′(∞) = 0, θ (∞) = 0.
(9)

The above defined dimensionless parameters i.e. curvature
parameterγ, Eckert numberEc, material parameterA and
Prandtl number Pr are mathematically defined as

γ =
x
r0

Re
−1
n+1
b , Rea =

ρUx
a

, A =
Re

2
n+1
b

Rea
,

Ec =
U2

Cp(Tw −T∞)
, Pr=

xU
α

Re
−2
1+n
b . (10)

The interested physical quantities of problem i.e. skin
friction coefficient and local Nusselt number are defined
as

C f =
τw

1
2ρU2

, Nux =
xqw

k(Tw −T∞)
, (11)

where

τw = a(
∂u
∂ r

)r=r0 −b(−
∂u
∂ r

)n
r=r0

, qw =−k(
∂T
∂ r

)r=r0. (12)

After using similarity transformations in equations(11)−
(12), the skin friction coefficient and local Nusselt number
are converted to following form

1
2

C f Re
1

n+1
b = A f ′′(0)− [− f ′′(0)]n, NuxRe

−1
n+1
b =−θ ′(0).

(13)

3 Numerical solution

The governing momentum and heat equations i.e.
equations(7) − (8) are nonlinear ordinary differential
equations of order three inf and order two in θ
respectively. The numerical solution of these equations is
computed by using shooting method with the aid of fifth
order Runge-Kutta integration scheme. In this technique,
firstly given equations are reduced to a system of five first
order ordinary differential equations. This system of five
first order ordinary differential equations is solved by
using fifth order Runge-Kutta method. To solve this
system, there are five initial conditions are required but
here only two initial conditions inf and one initial
condition in θ at η = 0 are given. The remaining two
conditions in f ′ and θ are defined atη∞. Now, missing
two conditions atη = 0 are selected. Furthermore, the
appropriate finite value ofη∞ is should be chosen. To
estimate the value ofη∞, some initial guess are
considered and the boundary value problem of equations
(7) − (8) is solve to evaluatef

′′

(0) and θ ′(0). The
process of finding solution is repeated with another guess
of η∞ until two successive values off

′′

(0) and θ ′(0)
differ only after the desired significant digits. The final
value ofη∞ is taken as the finite value of the limitη∞ for
the set of physical parameters for finding velocityf ′(η)
and temperatureθ (η) in the boundary layer. After
obtaining all the five initial conditions this system of
simultaneous ordinary differential equations is solved by
using Runge-Kutta fifth order method.

4 Graphs and Tables
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Table 1: Comparison table of skin friction coefficient for
different values of curvature parameterγ andA = 0, n = 1.

Fig. 1. Influence of Sisko parameterA on velocity profilef ′(η)
for n = 1, 2.

Fig. 2. Impact of curvature parameterγ on fluid velocity f ′(η)
for n = 1, 2.

Fig. 3. Temperature profileθ (η) against variations in Eckert
numberEc by assumingn = 1, 2.

Fig. 4. Influence of curvature parameterγ on fluid temperature
θ (η) for n = 1, 2.

5 Results and Discussion

In present investigation, the non-Newtonian Sisko fluid
flow over stretching cylinder is analyzed under the
influence of viscous dissipation. The set of differential
equations is tackled with numerical technique shooting
method.Table 1 shows the comparison of skin friction
coefficient for different values of curvature parameterγ
with [20] results. This table presents that the calculated
results have good agreement with previous literature.
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Fig. 5. Variations in fluid temperatureθ (η) for different values
of Prandtl number Pr and power law indexn.

Fig. 6. Effects of curvature parameterγ , material parameterA
and power law indexn on wall shear stress.

The effect of material parameterA on velocity profile
is shown inFig. 1. As, Sisko parameterA decays the fluid
viscosity, so less resistance is offered to fluid motion,
hence velocity increases. This fact can be validated by
analyzing the current figure. In addition, it can be seen
that power law indexn decelerates the fluid motion.

The behavior of curvature parameterγ on velocity
profile forn = 1, 2 is presented viaFig. 2.As lager values
of curvature parameter reduces the radius of cylinder and
hence surface area. So cylinder surface posses less

Fig. 7. Variations in local Nusselt number for different values of
curvature parameterγ , Eckert numberEc and power law index

n.

Table 2: Variations in skin friction coefficient for different
values of parametersγ , A andn.

resistance, the consequences of this phenomenon enhance
the fluid velocity which can be analyzed from the graph.

Fig. 3 depicts fluid temperature curves against
variations in Eckert numberEc for n = 1, 2. As Eckert
number enhances the bouncy forces which accelerates the
vibrations of particles. And particles collides with each
other, due to collision they loses their energy i.e. some
part of their mechanical energy is transformed into
thermal energy which consequently enhance the
temperature of fluid. Finally, one can seen from the
current graph that progressing values of power law index
n decline the temperature.

Fig. 4 is plotted to exhibit the effects of curvature
parameterγ on temperature profile forn = 1 and 2. As
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Table 3: Nusselt number table for different values of parameters
γ , A, Ec, Pr andn.

curvature parameter enhances velocity as well as kinetic
energy and so fluid temperature. Because, it is
well-known fact that temperature of any fluid is defined as
average kinetic energy of the fluid.

Fig. 5 displays the impact of Prandtl number Pr on
temperature profile forn = 1 and 2. For larger values of
Prandtl number Pr diminishes the thermal diffusivity i.e.
the capability of the fluid to possesses heat, the sequel of
this phenomenon declines temperature.

The variations in wall shear stress against pertinent
parametersA, γ andn are deliberated inFig. 6. It is found
that the both Sisko parameter and curvature parameter
enlarges numerical values of skin friction coefficient
while effects of power law index are reverse on it.

The local Nusselt number for different values of
curvature parameterγ, Eckert numberEc and power law
indexn is depicted inFig. 7. This graph explains that the
Eckert number reduces numerical values of−θ ′(0) while
it enlarges against higher values of both curvature
parameterγ and power law indexn.

Table 2 presents the effects of physical parametersA,
γ andn on skin-friction coefficient. It can be seen that both
parametersA andγ the escalates the values of skin-friction
coefficient increase while it decreases for larger values of
power law indexn in absolute sense.

Table 3 depicts the numerical values of Nusselt
number against variations in physical parametersγ, Ec, n
and Pr. Current table shows that the effects of Pr, n andγ
are same i.e. they all increase the local Nusselt number
while Ec decreases the numerical values of local Nusselt
number absolutely.

6 Concluding Remarks

The present investigation deals with the numerical
treatment of Sisko fluid flow over stretching cylinder and
heat transfer with viscous dissipation. The influence of
pertinent parameters on fluid velocity and temperature is
shown via graphs. Additionally, skin friction coefficient
and local Nusselt number are discussed by varying fluid
parameters. The major outcomes of present study are
listed below:

–Material parameterA substantially grows the both fluid
velocity and coefficient of skin friction.

–The curvature parameterγ has same effects on fluid
velocity, temperature, wall shear stress and local
Nusselt number i.e. all the interested quantities are
enhance against larger values of curvature parameter.

–The impact of Eckert numberEc on fluid temperature
and local Nusselt number is opposite.

–Prandtl number Pr falls down the fluid temperature, on
the other hand it accelerates the rate of heat transfer
from the surface.
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