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Abstract: In this paper, we propose a new generalization of the Gumbel distribution named the Cubic Transmuted Gumbel distribution
(CTGD) based on a cubic ranking transmutation map. Statistical properties of CTGD such as reliability function, hazard function,
moments, moment generating function, quantile function, and simulation of the random sample are studied. The parameters of CTGD
are estimated using the Maximum Likelihood method. Finally, an application of CTGD using two real data sets on climate change is
conducted to illustrate and compare with the base Gumbel distribution (GD) and transmuted Gumbel distribution (TGD). CTGD was

found to be a better fit than GD and TGD.
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1 Introduction

The Gumbel distribution (GD), named after Gumbel [1] is
also referred to as the Smallest Extreme Value (SEV)
distribution or Type I Extreme Value distribution. The GD
is a very popular distribution due to its extensive
applicability in several areas, and its wide applications
have been reported by Kotz and Nadarajah [2].
Koutsoyiannis [3] studied GD to observe the
appropriateness of this distribution in modeling extreme
rainfall. Aryal and Tsokos [4] have given the necessary
formulation of the GD to study the airline spill data. The
applicability of GD in the field of flood frequency
analysis, network, space, software reliability, structural,
and wind engineering are reported by Cardeiro et al. [5].
Generally, GD is used to analyze and model the behavior
of random phenomena that occur in engineering, biology,
environment among others. The cumulative distribution
function (cdf) and the probability density function (pdf)
of Gumbel random variable X are defined, respectively, as

; x€ER (1)

and

glx) = Ezefz (2)

where z = e~ (“"H/B_while B € [0,00) and u € R are a
scale and location parameters, respectively.

Shaw and Buckley [6] used the rank transmutation map to
propose a new method for generating a family of
distribution. According to [6], the cumulative distribution
function of the ranking quadratic transformation map
(QRTM) is:

F(x)=(1+1)Gx) —AG*(x); |[AI<1  (3)

where G(x) is the cumulative distribution function (cdf)
of the base distribution. Observe that, when A = 0 , the
new distribution becomes the original one. Using ORTM
of Eq.(3), Aryal and Tsokos [7] developed transmuted
Gumbel distribution (TGD).
Abed Al-Kadim [8] proposed a generalized formula for
transmuted distribution presented by [6], the cumulative
distribution function of the Cubic Ranking transformation
map (CRTM) is:

F(x) = (1 4+ 1)G(x) — AG*(x) + 1G> (x);

This method used by Abed Al-Kadim and Mohammed [9]
to develop a cubic transmuted Weibull distribution.
Another two classes of Cubic Transmuted distributions
with two transmuted parameters have been developed,
one by Granzatto et al. [10], the other by Rahman et al.

(A1 (4)
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[11]. Rahman formula used to propose some new
distributions, for examples, Pareto distribution [12],
Weibull distribution[13] and Frechet distribution [14].
Based on the CRTM proposed by [11], the cdf and pdf
respectively given as

22G(x) (5)

F(x) = (14+M)G(x) + (A2 = 1) G (x) -

and

f(x) =g@)[(1+41) +2(A — 41)G(x) —

where A1,A; € [—1,1],-2 < A4 + 24, < 1 and G(x),g(x)
are the cdf and pdf of the base distribution respectively.

In this article, we use CRTM suggested by [11] to
propose a new distribution which generalizes the Gumbel
distribution. This new version of the Gumbel distribution
is called Cubic Transmuted Gumbel (CTGD). Some
statistical properties are studied, and the model
parameters are estimated using the maximum likelihood
method. Moreover, an application to two real data sets on
climate change is illustrated and compared with the base
GD and TGD.

The rest of this paper is structured as follows: The new
proposed distribution Cubic Transmuted Gumbel (CTGD)
is presented in Section 2 . We have investigated some
statistical properties such as reliability function, hazard
function, moments and moment generating function for
CTGD in Section 3. Section 4 provides the parameter
estimation of CTGD. An application of the CTGD to two
real data sets for the purpose of illustration is conducted
in section 5. Finally, Section 6 gives some concluding
remarks.

The new Gumbel model is motivated because it exhibits a
maximum or minimum of a number of samples with data
close to normal distribution or approximately positively
skewed, as illustrated in Fig. 1. The justification for the
new generalized extreme value (GEV) model’s
practicality is based on its ability to model the wind
velocity and the snow accumulation data sets, as
illustrated in Section 5.

3L,G%(x)] (6)

2 Cubic Transmuted Gumbel Distribution
(CTGD)

In this section, the new proposed distribution CTGD is
demonstrated. Including the cumulative distribution
function (cdf), probability density function (pdf), survival
and hazard function.

2.1 Cumulative and density functions for CTGD

Theorem 1. Let X be a random variable with the CTGD.
The cdf and pdf are defined, respectively, as

F(x)=e *[(1+A)+ (A —Ay)e " —lze’zz] 7
and
f(x) :%Zeﬂ[(l+7L])+2(,12,,11)efz ©
— 3&26722]; xXER

where z = e~ (" H)/B B >0and u € R are a scale and
location parameters respectively, A;, A, € [—1,1] and
2< M+ <.

Proof. The proof is straightforward. Eq.(7) is obtained
by substituting Eq.(1) into Eq.(5) and Eq.(8) is gotten
from substituting Eq.(2) into Eq.(6).

Proposition 1. The limit of CTGD density as
x—+o and x— —o is 0
Proof.

lim f(x)

X—>o0

1
=—limze “[(1+A
p limze [(1+4)
+2(M—M)e *—3he 3] =0
whilst from L’Hopital’s rule we get

lim ()

x—r—00

1+ A1) +2(h — Ar)e

=— 11m ze~

B e
—3he ¥ =0

Proposition 2. f(x) of Eq. (8) is a pdf.

Proof. To show this proposition, we must prove that

f(x)>0and [ f(x)dx=1
From Proposition 1 Em f(x) =0 and lgn flx)=0.1t
X——00 X—ro0

follows that f(x) >0
Proof of [% f(x)dx =1

/j;f(x)dx :./:;ee*(x—u)/ﬁ [(] A 42— A1)

L )Lze,zﬁx—u)/ﬁ] dx

letz=e W W/PB o nz=—(x—p)/Bandx=pu—Blnz
alsoif x & —o0 =z — o0 and if x — o = z — 0 then

[ reax= /‘Of( L

7/ (14 A1) +2(A — Ay)e ™
—33,26721]612

=(1+A4)+(h-A)-L

—1

Therefore, the proposition is proved.

Fig. 1 and 2 illustrate respectively, some of possible
shapes of the pdf and cdf of CTGD for selected values of
parameters A and A, where gt =2 and 8 = 2.

From plot of pdf of Fig. 1, we can observe that for the
positive values of both transmuted parameters A; and A,,
the distribution is approximately mesokurtic symmetrical
shape, while for the negative values of A; and A, the
distribution is shifting right with platykurtic shape.
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Fig. 1: The pdf of CTGD for different value of A; and A, where
u=2andf3 =2.

2.2 Survival and Hazard function

The survival function is defined as S(x) = 1 — F(x) and for
the CTGD is given as

sx)=1—e*[(14+4)+ (A —A)e *— lzefzz]

The hazard function is defined as h(x) = % and for the
CTGD is given as

h(x) = Z(1+ 1) +2(A — Ay)e % —3Ae 5]
BI(1+ 1)+ (A — Ar)e s — e %]

Fig. 3 and 4 show respectively some possible shapes of the
survival and hazard functions for the CTGD using different
combination of model parameters A; and A, where g =2
and B =2

3 Statistical Properties

In this section, some statistical properties for the proposed
distribution, CTGD is discussed. These properties involve
moments, moment generating function, quantile function
and simulation of the random sample.
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Fig. 2: The cdf of CTGD for different value of A; and A, where
u=2andf3 =2.
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Fig. 3: The s(x) of CTGD for different value of A; and A, where
u=2andf3 =2.
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Expansion as follows
. h= [ u-pmEred
o Parameters roo I r ;
— (1-1) = / )y ( ,') u I —Bln(z))'e *dz
— (-05,-0.5) Jo =%
o — 09 o, ' e _ (1)
— (0.25,0.75) = Z ( ; ) u=(-py / [In(z)]'e*dz
0,1) i=0 :
E 24 "y . .
=¥ () ur gy
i=0
o | Similarly, we can obtain the results
1 S (r (r—i) i : l
I5) _E Z i u (_ﬁ) Z k
o | i=0 k=0 (12)
T T T T T -
5 0 5 10 5 x [~1n(2)]"9r® (1)
x value and
Fig. 4: The h(x) of CTGD for different value of A; and A, where 1(4 /(r . !
[L=2and B =2. 13§{Z<i>u" g ﬁ)’{ (
i=0 k=0 (13)

3.1 The Moments

Theorem 2. Let X be a random variable having the
CTGD , then the ©'"" moment of X about the origin is

px) = (7 )u0-py |+ apro)

()

where I'(1) = J5’[In(z))’e
gamma function and

T — [mzz )(in(L)) -+

Proof. we know that

C)
lk:|; r:O,l,Z,...

~%dz is the " derivative of

) an()-4).

E(X") :/m X f(x)dx

/ —BlIn(z ( Zﬁ ) dz (see Prop. 2)

- /0 [w—BlIn(z)] e {(1 +A)+2(h — A )eF —3he = |dz

therefore,

EX")=(1+A)L +2(A— AL —301 (10)
where I} = [;°[u — BIn(z)]"e *dz,

= Jo [ — BIn(z)]"e"*dz and
= el Bin(a)) ez

Now, we calculate the value of I; using binomial

x [=In(3)]Hr®(1)
Substitute equations (11), (12), and (13) in Eq. (10) we get

£ =Y (7)ut gy |+ ari)

(o)

Therefore, the theorem is proved.
The mean and variance can be easily obtained by using

r=1,2in Eq(9) such that '? (1) = 1,V (1) = —y and
r@() = ¥ + & where y ~ 0.5772 is the Euler
Mascheroni constant. We get

EX)=0(14+A)+ (A& —2)[0+BIn(2)] — 12 [0 + BIn(3)]

£ =120 [02+ B2 1 - 21) {62+ 0B na)
+32[g+(1n(2))2]}712{02+9ﬁ1n(9)
2 w2 2
+B2[" +(In(3)7]}
where 0 = u+ By
Var[X] = E(X*) — [E(X)]?

The mean and variance of CTGD for various
combinations of model parameters are given in Table 1
and Table 2 respectively. From Tables 1 and 2, it is
observed that, holding the location and scale parameters
u and B constants, as the transmuted parameters A; and
Ay increase the mean and variance of CTGD decrease.
Whilst, holding A; and A, constants, as the scale
parameter f3 increases the mean and variance also
increase.
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Table 1: Mean of the CTGD for various combinations of the parameters
| H | ﬁ | lz/ll 11:—1 11:—0.5 ;Ll:] 11:0.5 11:0 |
| | | =—-1 -0.3242 -0.6707  -1.7105 -1.3639 -1.0173 |
| | | A, =-05 -05269 -0.8735 -1.9132 -1.5666 -1.2201 |
| | B=1 | A&=0 07296 -1.0762 21159 -1.7694 -1.4228 |
| | | =05 -0.9324 -1.2789 - -1.9721  -1.6255 |
| | | Ax=1  -1.1351 -1.4817 - — -1.8282 |
H=2 | A,=-1 3.0275 19878 -1.1314 -0.0917 0.948 |
| | | 2o=-0.5 24193 13796 -1.7396 -0.6999 0.3398 |
| | p=3| A& =0 18111 07714 23478 -1.3081 -0.2684 |
| | | =05 12029  0.1632 ~ 19163 -0.8766 |
| | | A=1 05947  -0445 - — 14847 |
| | | L=—1 16758 13293 02895 0.6361 0.9827 |
| | | A, =-05 14731  1.1265  0.0868 04334 0.7799 |
| [ p=1| A& =0 12704 09238 -0.1159 02306 0.5772 |
| | | =05 1.0676  0.7211 - 0.0279  0.3745 |
| | | A=1 08649 05183 - — 01718 |
| B0 -l 50275 39878  0.8686 1.9083 2.948 |
| | | 4 =-0.5 4.4193 3.3796 0.2604  1.3001  2.3398 |
| | p=3| A& =0 38111 27714 03478 0.6919 17316 |
| | | =05 32029  2.1632 - 0.0837 1.1234 |
| | | A=1 25947 15550 - — 05153 |
| | | L=—1 36758 33293 22895 2.6361 2.9827 |
| | | A, =-05 34731  3.1265 2.0868 24334 2.7799 |
| | p=1| A& =0 32704 29238  1.8841 22306 2.5772 |
| | | 2,=05 3.0676 27211 - 2.0279  2.3745 |
| | | A,=1 28649  2.5183 - — 21718 |
| H=2 | L=—1 7.0275 59878  2.8686 3.9083  4.948 |
| | |, =-05 64193 53796 22604 33001 4.3398 |
| | p=3| A& =0 58111 47714 16522 2.6919 3.7316 |
| | | 2,=0.5 5.2029 4.1632 - 2.0837 3.1234 |
| | | A=1 45947 3555 - ~ 25153 |
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A =05 13.6947 13.511 - 6.6575  11.1653 |
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Table 2: Variance of the CTGD for various combinations of the parameters

| U | | Ag/ll 11:—1 11:—0.5 11:1 1120.5| 11:0 |
| | | -1 1.6449 2.0461 1.8082 | 2.1277 | 2.207 |
| | | A, =-05 1686  1.9467 12872 17473 1.9671 |
| | B=1] XH=0  1.6449 1765 0.684  1.2846  1.6451 |
| | | =05 15216 15012 ~ 07397 1.2406 |
[ s | A= 13161  1.1552 - — 0754 |
| | | A—1  14.8044 184148 162739 19.1496 19.8633 |
| | | A, =-05 151743 1752 11.585 15.7254 17.7037 |
| | B=3| A,=0 148044 158854 6.1563 11.5613 14.8044 |
| | | =05 13.6947 13511 — 66575 11.1653 |
| | | A= 11.8452  10.3968 - ~  6.7863 |
| | | -1 1.6449 2.0461 1.8082  2.1277 2.207 |
| | | 4, =-05 1.686  1.9467 12872 1.7473 1.9671 |
| |B=1] A =0 16449 1765 0.684 12846  1.6449 |
| | | =05 15216  1.5012 — 07397 1.2406 |
| p=o | | A=1 13161  1.1552 - — 0754 |
| | | A,=—1 14.8044 184148 162739 19.1496 19.8633 |
| | | A, =—-0.5 15.1743 17.52 11.585 15.7254 17.7037 |
| | B=3| A2 =0 14.8044  15.8854 6.1563 11.5613 14.8044 |
| | | 2,=0.5 13.6947  13.511 —  6.6575 11.1653 |
| | | A =1 11.8452 10.3968 - — 6.7863 |
| | | A=—1 1.6449 2.0461 1.8082  2.1277 2.207 |
| | | A,=-05 1686  1.9467 12872 17473 1.9671 |
| | B=1| A, =0 1.64488 1.765 0.684 1.2846  1.64488 |
| | | 2,=0.5 1.5216 1.5012 - 0.7397  1.2406 |
=2 | | A,=1 13161  1.1552 - — 0754 |
| | | A,=—1 148044 18.4148 162739 19.1496 19.8633 |
| | | 1, =-0.5 15.1743 17.52 11.585 15.7254 17.7037 |
| | B=3| A, =0 14.8044  15.8854 6.1563 11.5613 14.8044 |
| | |

| | |

=1 11.8452  10.3968 - - 6.7863 |
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3.2 The Moment Generating Function of CTGD

The moment generating function of CTGD is present in
this theorem

Theorem 3. Let X be a random variable having the
CTGD, then the moment generating function (mgf) of X is

= Bn)[(1+41)
+2P1 (2 — A1) =3P 2]

M (t) =e*'T(1
(1) =e*'I( 4

where I' (1 — Bt) is the Gamma function.

Proof. We know that

Mx(0) = /'w ¢ F(x)dx
/ tHu—Bn(z) )(_—ﬁ)dz

/ =Bz [(1 4 4y)
(12 -4 )6‘7Z — 3)(,26‘721] dz

M (t) =* [(1+ M) +2(A — M)b — 34015 (15)

where I} = [z Ple™2dz |, I = [z Ple *dz and

L= [z Pe3dy

Now, we calculate the value of I;,I; and I3 using the
I'(1+b)

relation [g""e~“dt =~ , we obtain
I = [z Pleidz = (1 - Br),
L = [y zPe>d; = 2701 — Br) and

L= [y Pe3dz =3P~ (1-Br).
By Substituting in Eq. (15), we get
M (t) =T (1—Br) [(1 + ) 2P — 1) — 35%2}

So the theorem is proved.

3.3 Quantile function of CTGD

The quantile function for CTGD is derived by finding the
value of Q for which F(x) =p:

Q(Pvliaﬁ):ll—ﬁln[_(ln)’)] (]6)
where
3 (Ber\/E) 9]\3/§ < b > (17
y= _ _
av/54 v/ (6> + V) 3a
such that
01 = 3ac —b* .00 = —2b° +9abc — 27da* and h = 46; +

07, wherea =2, b= (A1 —A),c=—(1+A) andd = p

3.4 Simulating the Random Sample of CTGD

Random numbers from the CTGD can be obtained by
equating cdf of the distribution in Eq.(7) with a uniform
random number and inverting the expression, that is the
random number from CTGD is obtained by solving
F(x) = u for x. The random sample from CTGD can be
further expressed as

x=p—BIn[—(Iny)] (18)

where y is given in Eq.(17) with d = « and u is an arbitrary
continuous uniform point over (0, 1).

4 Parameters Estimation

This section pertains to discuss the maximum likelihood
estimation (MLE) for parameters of CTGD.

Let X1,X5,...,X, be a random sample of size n from
CTGD, then the likelihood function is given by

L:Hf(xi7”7ﬁ>2'172'2)
i=1

(g

e [(1 FA)42(A0 — Ay e

- 32,26721‘] }

—(AiE) .
wherezi=e¢ " B 7' i=1,2,....n

so, the log-likelihood function is

I=InL=—-nlnf+Y {1nz,~—z,~+1n [(1 + 1)
i=1 (19)
1 2(A — Ay)eE — 3/12(2@] }

Therefore, the maximum likelihood estimates of u, 3,4,
and A, which maximize Eq. (19), must satisfy the four
equations (20), (21), (22) and (23).

ﬁ _ 1 B < 9pzie i — (T+ A1)z }
8,11_[3{” z;(( 1+41)4+2(A — Ay )e G —3)pe 2 Z’)

! 9)[,2Z,€ U — (1 + )L])Z,’ _

;{ T+ 4) + 20l —Ay)e a fmzefz@} =n Q0

é 9azie % — (14 M)z
XZ |:<( —|—M)+2(l2—),1)e i —3e 2z,)

e

are the coefficients of the cubic equation of y i Iazie i — (14 A1)z )—B|Inzi=np

The three quartiles  Qi, Q> and Q3 can be obtained by f 1 + A1) +2(Ay — Ay )e~% —3Ae % !

using p = 0.25,0.50 and 0.75 in Eq.(16), respectively. (21)
© 2022 NSP
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i B i 1—2e7 %
oA N = (1 +A)+ 2(12 —A)e % — e 2%

- 1—2e7%

1:21 { 1+2A1)+2(A—Ay)e % — 3Mezz,] =0 (22
i — i Qe % — 3e721i

0dr  HL(1+M)+2(A— et —3hpe %

’ De—% _ 3=

Z|: T+4)+2(A—A)e Z"3/12e21i] =0 (23

The maximum likelihood estimates = ({1, ﬁ,?fl ,AAQ) of
0 = (u,B,A1 , Ay) is obtained by solving the non-linear
system of equations (20), (21), (22) and (23).

5 Application of CTGD

In this section, the CTGD is applied to two real data sets.
The first data in Table 3 corresponds to a wind velocity
(WVD) involving 246 observations of the maximum of
monthly wind speed (mph) in Palm Beach, Florida (USA)
for the months January 1984 to December, 2005. Data is
available for download from NOAA website

The second data in Table 4 is related to the snow
accumulation (SAD) in inches in the Raleigh-Durham
airport, North Carolina, from 1948 to 2000. The data set
contains 63 observations. Summary statistics of the two
data sets is demonstrated in Table 5. The maximum
likelihood estimates, the log-likelihood value (-Log(L)),
the Kolmogorov-Smirnov (k-s) test statistic and the
p-value for the k-s statistic for the fitted distributions are
demonstrated in Tables 6 and 7 respectively. Latterly,
Yolanda et al. [15] used the data in Tables 3 and 4 to
investigate model fitting for Gumbel (GD) , Slash (SD)
and Slashed Gumbel (SGD) distributions.

Table 3: : the wind velocity (WVD) data set

33 40 46 41 31 37 41 56 45 31
40 35 33 43 36 36 48 45 51 44
38 36 40 32 51 37 43 33 35 44
41 41 33 45 38 43 62 45 51 39
35 58 48 35 43 49 43 39 39 40
39 45 48 43 45 36 40 36 47 35
40 39 44 37 36 38 37 41 38 36
36 48 37 40 38 37 37 38 49 66
39 45 37 35 39 52 66 51 39 64
59 36 36 36 41 41 39 45 40 37
33 66 38 59 38 41 45 35 43 39
74 63 37 45 52 43 44 52 36 43
46 40 43 29 39 53 32 41 52 31
46 48 49 41 32 37 29 43 40 47
45 38 28 30 40 36 37 38 37 33
30 34 38 45 40 31 39 31 31 38
32 34 45 39 31 29 39 36 34 55
38 37 36 34 44 32 54 30 39 30
41 33 36 39 33 33 30 40 44 o6l
34 26 38 26 34 36 28 36 43 35
43 37 40 35 36 28 41 30 31 48
43 43 49 36 38 30 33 35 36 45
29 43 33 39 38 29 38 41 31 35
40 33 51 33 40 45 32 29 35 37
35 30 32 39 32 39 38 39 83 30
33 39 33 36 39 44 31 43 44 43
41 101 37 33

Table 4: The snow accumulation (SAD) data set

10 25 12 12 41 90 30 10 14
20 30 1.7 12 12 11 15 5 1.6
20 01 04 08 37 13 38 01 0.1
02 20 7.6 01 18 05 05 05 1.1
14 10 10 07 57 04 03 18 04
1.0 12 26 10 50 17 24 0.1 05
7.1 02 07 01 27 29 04 20 203

Table 5: Summary Statistics for WVD and SAD data sets

Data n Mean Median Skewness kurtosis
WVD 264 40.11 39.00 2.3438 13.030
SAD 63 2.125 1.200 4.01015 23.250

Table 6: Parameters estimates, -log (L), k-s test value and p-
value for Gumbel, Transmuted Gumbel, and Cubic Transmuted
Gumbel for WVD data

Model Parameters estimates -log(L) k-s P-value
GD B =1.3293 u=1.7361 126.036  0.1486  0.1236

B =1.5036 n=15711

TGD 124.08 0.1335 02115
A =0.5592 o
B =1.5419 u=1.6799

CTGD 123.217  0.1275  0.2288
A1 =0.7089 A, =—0.2859

@© 2022 NSP
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Fig. 5: The pdf of GD, TGD and CTGD for WVD data set

Table 7: Parameters estimates, -log (L), k-s test value and p-
value for Gumbel, Transmuted Gumbel, and Cubic Transmuted
Gumbel for SAD data

Model Parameters estimates -log(L) k-s P-value

GD B = 6.0802 u =36.466 898.880  0.0671 0.1848
B =7.260 u =38.837

TGD A= 06233 896.752  0.0612  0.2759
B =75512 u=239.7094

CTGD A = 0.99 A = —0.360 895.894  0.0629 0.2456

By comparing the goodness of fit statistics in Table 6
among the three distributions, it is clear that all
distributions are competitors and fit the wind velocity data
well but the proposed distribution CTGD leads to a better
fit than the other two distributions (see Fig. 5). Moreover,
basing on -2log (L) criteria (the smaller the better),
CTGD performs better than GD and TGD. Regarding the
snow accumulation data, from Table 7 it is clear that the
three distributions fit the data well but the TGD is the best
(see Fig. 6), whilst, basing on -2log (L) criteria, the
CTGD performs better than GD and TGD.

6 Conclusions

In this paper, a new generalized version of the Gumbel
distribution which called cubic transmuted Gumbel
distribution (CTGD) 1is introduced by using the
generalization formula for transmuted distribution
proposed by [11]. Some statistical properties of CTGD
are derived. The model parameters are estimated by the
maximum likelihood method. Finally, an application of
CTGD to two real data sets and compared with some
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o
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o — 4
e o
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o
0
o
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o
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Fig. 6: The pdf of GD, TGD and CTGD for SAD data set

distributions based on Gumbel distribution is explained.
We conclude that the applications suggest that the
proposed distribution CTGD fits the two data sets very
well. Generally, CTGD performs better than the other
distributions. We recommend the CTGD for modelling
extreme data sets in the field of flood frequency analysis,
network, space, software reliability, structural and wind
engineering and hope that it would receive significant
applications in the future.

Acknowledgement

The authors are grateful to the editor and the anonymous
reviewers for their valuable comments and suggestions,
which have substantially improved this paper.

Conflicts of Interests
The authors declare that they have no conflicts of
interests.

References

[1]1 EJ. Gumbel, Statistics of Extremes. Columbia University
Press, New York, (1958).

[2] S. Kotz and S. Nadarajah, Extreme value distributions: theory
and applications, World Scientific, (2000).

[3] D. Koutsoyiannis, On the appropriateness of the Gumbel
distribution for modelling extreme rainfall, In Proceedings of
the ESF LESC Exploratory Workshop held at Bologna, 24-
25, (2003), doi:10.13140/RG.2.1.3811.6080.

@© 2022 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp
http://dx.doi.org/10.13140/RG.2.1.3811.6080

286 ~N S B H. Eledum, M. Mosilhy: A New generalization of the Gumbel distribution...

[4] G. Aryal and C.P. Tsokos, Airline spill analysis using Gumbel
and Moyal distributions, Neural, Parallel and Scientific
Computations, 16, 35-43 (2008).

[5] G.M. Cardeiro, S. Nadarajah and E.M.M. Ortega, The
Kumaraswamy Gumbel distribution, Statistical Methods and
Applications, 21(2), 139-168 (2012).

[6] W. Shaw and I. Buckley, The alchemy of probability
distributions: beyond Gram-Charlier expansions, and a
skew kurtotic-normal distribution from a rank transmutation
map,Conference on Computational Finance, IMA, 0901-
0434, Research Report, (2009).

[71 G.R. Aryal and C. P. Tsokos, On the transmuted extreme
value distribution with application, Nonlinear Analysis,
71(12), e1401-e1407 (2009), doi:10.1016/j.na.2009.01.168.

[8] K. Abed Al-Kadim, Proposed Generalized Formula for
Transmuted Distribution, Journal of University of Babylon,
Pure and Applied Sciences, 26(4) (2018).

[91 K. Abed AL Kadim and M. Mohammed, The Cubic
Transmuted Weibull Distribution, Journal of Babylon
University, Pure and Applied Sciences, 25(3), 862-876
(2017).

[10] D. Granzatto, f. Louzada and BN. alakrishnan, Cubic rank
transmuted distributions: inferential issues and applications,
Journal of Statistical Computation and Simulation, 87(14),
2760-2778 (2017), doi:10.1080/00949655.2017.1344239.

[11] M. Rahman, B. Al-Zahrani and M. Shahbaz, A general
transmuted family of distributions, Pakistan Journal of
Statistics and Operation Research, 14(4), 451-469 (2018),
doi:10.18187/pjsor.v14i4.2527.

[12] M. Rahman, B. Al-Zahrani and M. Shahbaz, Cubic
transmuted Pareto distribution, Annals of Data Science, 7(1),
91-108 (2020), doi:10.1007/s40745-018-0178-8.

[13] M. Rahman, B. Al-Zahrani and M. Shahbaz, Cubic
Transmuted  Weibull  Distribution: ~ Properties  and
Applications, Annals of Data Science, 6(1), 83-102 (2019),
doi:10.1007/s40745-018-00188.

[14]M. A. Mosilhy and H. Eledum, Cubic Transmuted
Frechet Distribution, Journal of Statistics
Applications and Probability, 11(1), 135-145 (2022),
doi:10.18576/jsap/110110.

[15] M. Yolanda, B. Heleno and W. Hector, Gumbel distribution
with heavy tails and applications to environmental Data,
Mathematics and Computers in Simulation, 157, 115-129
(2019), doi:10.1016/j.matcom.2018.10.003.

@© 2022 NSP
Natural Sciences Publishing Cor.


https://doi.org/10.1016/j.na.2009.01.168
https://doi.org/10.1080/00949655.2017.1344239
https://pjsor.com/pjsor/article/view/2527
https://doi.org/10.1007/s40745-018-0178-8
https://doi.org/10.1007/s40745-018-00188-y
http://dx.doi.org/10.18576/jsap/110110
https://doi.org/10.1016/j.matcom.2018.10.003

	Introduction
	Cubic Transmuted Gumbel Distribution (CTGD)
	Statistical Properties
	Parameters Estimation
	Application of CTGD 
	Conclusions

