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Abstract: In this paper, we propose a new generalization of the Gumbel distribution named the Cubic Transmuted Gumbel distribution

(CTGD) based on a cubic ranking transmutation map. Statistical properties of CTGD such as reliability function, hazard function,

moments, moment generating function, quantile function, and simulation of the random sample are studied. The parameters of CTGD

are estimated using the Maximum Likelihood method. Finally, an application of CTGD using two real data sets on climate change is

conducted to illustrate and compare with the base Gumbel distribution (GD) and transmuted Gumbel distribution (TGD). CTGD was

found to be a better fit than GD and TGD.
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1 Introduction

The Gumbel distribution (GD), named after Gumbel [1] is
also referred to as the Smallest Extreme Value (SEV)
distribution or Type I Extreme Value distribution. The GD
is a very popular distribution due to its extensive
applicability in several areas, and its wide applications
have been reported by Kotz and Nadarajah [2].
Koutsoyiannis [3] studied GD to observe the
appropriateness of this distribution in modeling extreme
rainfall. Aryal and Tsokos [4] have given the necessary
formulation of the GD to study the airline spill data. The
applicability of GD in the field of flood frequency
analysis, network, space, software reliability, structural,
and wind engineering are reported by Cardeiro et al. [5].
Generally, GD is used to analyze and model the behavior
of random phenomena that occur in engineering, biology,
environment among others. The cumulative distribution
function (cdf) and the probability density function (pdf)
of Gumbel random variable X are defined, respectively, as

G(x) = e−z ; x ∈ R (1)

and

g(x) =
1

β
ze−z (2)

where z = e−(x−µ)/β , while β ∈ [0,∞) and µ ∈ R are a
scale and location parameters, respectively.
Shaw and Buckley [6] used the rank transmutation map to
propose a new method for generating a family of
distribution. According to [6], the cumulative distribution
function of the ranking quadratic transformation map
(QRTM) is:

F(x) = (1+λ )G(x)−λ G2(x); | λ |≤ 1 (3)

where G(x) is the cumulative distribution function (cdf)
of the base distribution. Observe that, when λ = 0 , the
new distribution becomes the original one. Using ORTM
of Eq.(3), Aryal and Tsokos [7] developed transmuted
Gumbel distribution (TGD).
Abed Al-Kadim [8] proposed a generalized formula for
transmuted distribution presented by [6], the cumulative
distribution function of the Cubic Ranking transformation
map (CRTM) is:

F(x) = (1+λ )G(x)−λ G2(x)+λ G3(x); | λ |≤ 1 (4)

This method used by Abed Al-Kadim and Mohammed [9]
to develop a cubic transmuted Weibull distribution.
Another two classes of Cubic Transmuted distributions
with two transmuted parameters have been developed,
one by Granzatto et al. [10], the other by Rahman et al.
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[11]. Rahman formula used to propose some new
distributions, for examples, Pareto distribution [12],
Weibull distribution[13] and Frechet distribution [14].
Based on the CRTM proposed by [11], the cdf and pdf
respectively given as

F(x) = (1+λ1)G(x)+ (λ2 −λ1)G
2(x)−λ2G3(x) (5)

and

f (x) = g(x)[(1+λ1)+ 2(λ2 −λ1)G(x)− 3λ2G2(x)] (6)

where λ1,λ2 ∈ [−1,1],−2 ≤ λ1 + λ2 ≤ 1 and G(x),g(x)
are the cdf and pdf of the base distribution respectively.
In this article, we use CRTM suggested by [11] to
propose a new distribution which generalizes the Gumbel
distribution. This new version of the Gumbel distribution
is called Cubic Transmuted Gumbel (CTGD). Some
statistical properties are studied, and the model
parameters are estimated using the maximum likelihood
method. Moreover, an application to two real data sets on
climate change is illustrated and compared with the base
GD and TGD.
The rest of this paper is structured as follows: The new
proposed distribution Cubic Transmuted Gumbel (CTGD)
is presented in Section 2 . We have investigated some
statistical properties such as reliability function, hazard
function, moments and moment generating function for
CTGD in Section 3. Section 4 provides the parameter
estimation of CTGD. An application of the CTGD to two
real data sets for the purpose of illustration is conducted
in section 5. Finally, Section 6 gives some concluding
remarks.
The new Gumbel model is motivated because it exhibits a
maximum or minimum of a number of samples with data
close to normal distribution or approximately positively
skewed, as illustrated in Fig. 1. The justification for the
new generalized extreme value (GEV) model’s
practicality is based on its ability to model the wind
velocity and the snow accumulation data sets, as
illustrated in Section 5.

2 Cubic Transmuted Gumbel Distribution

(CTGD)

In this section, the new proposed distribution CTGD is
demonstrated. Including the cumulative distribution
function (cdf), probability density function (pdf), survival
and hazard function.

2.1 Cumulative and density functions for CTGD

Theorem 1. Let X be a random variable with the CTGD.

The cdf and pdf are defined, respectively, as

F(x) = e−z[(1+λ1)+ (λ2 −λ1)e
−z −λ2e−2z] (7)

and

f (x) =
1

β
ze−z[(1+λ1)+ 2(λ2 −λ1)e

−z

− 3λ2e−2z]; x ∈ R

(8)

where z = e−(x−µ)/β , β ≥ 0 and µ ∈ R are a scale and
location parameters respectively, λ1, λ2 ∈ [−1,1] and
−2 ≤ λ1 +λ2 ≤ 1.
Proof. The proof is straightforward. Eq.(7) is obtained
by substituting Eq.(1) into Eq.(5) and Eq.(8) is gotten
from substituting Eq.(2) into Eq.(6).
Proposition 1. The limit of CTGD density as

x → ∞ and x →−∞ is 0
Proof.

lim
x→∞

f (x) =
1

β
lim
z→0

ze−z[(1+λ1)

+ 2(λ2−λ1)e
−z − 3λ2e−2z] = 0

whilst from L’Hopital’s rule we get

lim
x→−∞

f (x) =
1

β
lim
z→∞

ze−z[(1+λ1)+ 2(λ2−λ1)e
−z

− 3λ2e−2z] = 0

Proposition 2. f (x) of Eq. (8) is a pdf.

Proof. To show this proposition, we must prove that
f (x)≥ 0 and

∫ ∞
−∞ f (x)dx = 1

From Proposition 1 lim
x→−∞

f (x) = 0 and lim
x→∞

f (x) = 0. It

follows that f (x)≥ 0.
Proof of

∫ ∞
−∞ f (x)dx = 1

∫ ∞

−∞
f (x)dx =

∫ ∞

−∞
ee−(x−µ)/β [

(1+λ1)+ 2(λ2−λ1)

× e−e−(x−µ)/β − 3λ2e−2e−(x−µ)/β ]

dx

let z = e−(x−µ)/β ⇒ lnz = −(x− µ)/β and x = µ −β lnz

also if x →−∞ ⇒ z → ∞ and if x → ∞ ⇒ z → 0 then
∫ ∞

−∞
f (x)dx =

∫ 0

∞
f (z)

−β

z
dz

=
∫ ∞

0

(1

z

)

ze−z[(1+λ1)+ 2(λ2−λ1)e
−z

−3λ2e−2z]dz

= (1+λ1)+ (λ2 −λ1)−λ2

= 1

Therefore, the proposition is proved.
Fig. 1 and 2 illustrate respectively, some of possible
shapes of the pdf and cdf of CTGD for selected values of
parameters λ1 and λ2 where µ = 2 and β = 2.

From plot of pdf of Fig. 1, we can observe that for the
positive values of both transmuted parameters λ1 and λ2,
the distribution is approximately mesokurtic symmetrical
shape, while for the negative values of λ1 and λ2 the
distribution is shifting right with platykurtic shape.
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Fig. 1: The pd f of CTGD for different value of λ1 and λ2 where

µ = 2 and β = 2.

2.2 Survival and Hazard function

The survival function is defined as S(x) = 1−F(x) and for
the CTGD is given as

s(x) = 1− e−z[(1+λ1)+ (λ2 −λ1)e
−z −λ2e−2z]

The hazard function is defined as h(x) = f (x)
S(x)

and for the

CTGD is given as

h(x) =
z[(1+λ1)+ 2(λ2 −λ1)e

−z − 3λ2e−2z]

β [(1+λ1)+ (λ2 −λ1)e−z −λ2e−2z]

Fig. 3 and 4 show respectively some possible shapes of the
survival and hazard functions for the CTGD using different
combination of model parameters λ1 and λ2 where µ = 2
and β = 2

3 Statistical Properties

In this section, some statistical properties for the proposed
distribution, CTGD is discussed. These properties involve
moments, moment generating function, quantile function
and simulation of the random sample.

−5 0 5 10 15

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x value

F
(x

)

Parameters

(−1,−1)

(−0.5,−0.5)

(1,0)

(0.5,0.5)

(0.25,0.75)

(0,1)

Fig. 2: The cd f of CTGD for different value of λ1 and λ2 where

µ = 2 and β = 2.
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Fig. 3: The s(x) of CTGD for different value of λ1 and λ2 where

µ = 2 and β = 2.
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Fig. 4: The h(x) of CTGD for different value of λ1 and λ2 where

µ = 2 and β = 2.

3.1 The Moments

Theorem 2. Let X be a random variable having the

CTGD , then the rth moment of X about the origin is

E(X r) =
r

∑
i=0

(

r

i

)

µ (r−i)(−β )i

[

(1+λ1)Γ
(i)(1)

+
i

∑
k=0

(

i

k

)

Γ (k)(1)Ti,k

]

; r = 0,1,2, . . .

(9)

where Γ (i)(1) =
∫ ∞

0 [ln(z)]ie−zdz is the ith derivative of
gamma function and

Ti,k =

[

(λ2 −λ1)(ln(
1
2
))(i−k)−λ2(ln(

1
3
))(i−k)

]

.

Proof. we know that

E(X r) =
∫ ∞

−∞
xr f (x)dx

=

∫ 0

∞
[µ −β ln(z)]r f (z)

(−β

z

)

dz (see Prop. 2)

=

∫ ∞

0
[µ −β ln(z)]re−z

[

(1+λ1)+2(λ2 −λ1)e
−z −3λ2e−2z

]

dz

therefore,

E(X r) = (1+λ1)I1 + 2(λ2−λ1)I2 − 3λ2I3 (10)

where I1 =
∫ ∞

0 [µ −β ln(z)]re−zdz,

I2 =
∫ ∞

0 [µ −β ln(z)]re−2zdz and

I3 =
∫ ∞

0 [µ −β ln(z)]re−3zdz

Now, we calculate the value of I1 using binomial

Expansion as follows

I1 =

∫ ∞

0
[µ −β ln(z)]re−zdz

=

∫ ∞

0

r

∑
i=0

(

r

i

)

µ (r−i)[−β ln(z)]ie−zdz

=
r

∑
i=0

(

r

i

)

µ (r−i)(−β )i

∫ ∞

0
[ln(z)]ie−zdz

=
r

∑
i=0

(

r

i

)

µ (r−i)(−β )iΓ (i)(1)

(11)

Similarly, we can obtain the results

I2 =
1

2

{

r

∑
i=0

(

r

i

)

µ (r−i)(−β )i

[

i

∑
k=0

(

i

k

)

× [− ln(2)](i−k)Γ (k)(1)

]}

(12)

and

I3 =
1

3

{

r

∑
i=0

(

r

i

)

µ (r−i)(−β )i

[

i

∑
k=0

(

i

k

)

× [− ln(3)](i−k)Γ (k)(1)

]}

(13)

Substitute equations (11), (12), and (13) in Eq. (10) we get

E(X r) =
r

∑
i=0

(

r

i

)

µ (r−i)(−β )i

[

(1+λ1)Γ
(i)(1)

+
i

∑
k=0

(

i

k

)

Γ (k)(1)Ti,k

]

Therefore, the theorem is proved.
The mean and variance can be easily obtained by using

r = 1,2 in Eq(9) such that Γ (0)(1) = 1,Γ (1)(1) = −γ and

Γ (2)(1) = γ2 + π2

6
where γ ≈ 0.5772 is the Euler

Mascheroni constant. We get

E(X) = θ (1+λ1)+(λ2 −λ1)
[

θ +β ln(2)
]

−λ2

[

θ +β ln(3)
]

E(X2) =(1+λ1)
[

θ 2 +
(βπ)2

6

]

+(λ2 −λ1)
{

θ 2 +θβ ln(4)

+β 2
[π2

6
+
(

ln(2)
)2]

}

−λ2

{

θ 2 +θβ ln(9)

+β 2
[π2

6
+
(

ln(3)
)2]}

where θ = µ +β γ

Var[X ] = E(X2)− [E(X)]2

The mean and variance of CTGD for various
combinations of model parameters are given in Table 1
and Table 2 respectively. From Tables 1 and 2, it is
observed that, holding the location and scale parameters
µ and β constants, as the transmuted parameters λ1 and
λ2 increase the mean and variance of CTGD decrease.
Whilst, holding λ1 and λ2 constants, as the scale
parameter β increases the mean and variance also
increase.
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Table 1: Mean of the CTGD for various combinations of the parameters

µ β λ2 / λ1 λ1 =−1 λ1 =−0.5 λ1 = 1 λ1 = 0.5 λ1 = 0

µ=-2

β=1

λ2 =−1 -0.3242 -0.6707 -1.7105 -1.3639 -1.0173

λ2 =−0.5 -0.5269 -0.8735 -1.9132 -1.5666 -1.2201

λ2 = 0 -0.7296 -1.0762 -2.1159 -1.7694 -1.4228

λ2 = 0.5 -0.9324 -1.2789 – -1.9721 -1.6255

λ2 = 1 -1.1351 -1.4817 – – -1.8282

β=3

λ2 =−1 3.0275 1.9878 -1.1314 -0.0917 0.948

λ2 =−0.5 2.4193 1.3796 -1.7396 -0.6999 0.3398

λ2 = 0 1.8111 0.7714 -2.3478 -1.3081 -0.2684

λ2 = 0.5 1.2029 0.1632 – -1.9163 -0.8766

λ2 = 1 0.5947 -0.445 – – -1.4847

µ=0

β=1

λ2 =−1 1.6758 1.3293 0.2895 0.6361 0.9827

λ2 =−0.5 1.4731 1.1265 0.0868 0.4334 0.7799

λ2 = 0 1.2704 0.9238 -0.1159 0.2306 0.5772

λ2 = 0.5 1.0676 0.7211 – 0.0279 0.3745

λ2 = 1 0.8649 0.5183 – – 0.1718

β=3

-1 5.0275 3.9878 0.8686 1.9083 2.948

λ2 =−0.5 4.4193 3.3796 0.2604 1.3001 2.3398

λ2 = 0 3.8111 2.7714 -0.3478 0.6919 1.7316

λ2 = 0.5 3.2029 2.1632 – 0.0837 1.1234

λ2 = 1 2.5947 1.5550 – – 0.5153

µ =2

β=1

λ2 =−1 3.6758 3.3293 2.2895 2.6361 2.9827

λ2 =−0.5 3.4731 3.1265 2.0868 2.4334 2.7799

λ2 = 0 3.2704 2.9238 1.8841 2.2306 2.5772

λ2 = 0.5 3.0676 2.7211 – 2.0279 2.3745

λ2 = 1 2.8649 2.5183 – – 2.1718

β=3

λ2 =−1 7.0275 5.9878 2.8686 3.9083 4.948

λ2 =−0.5 6.4193 5.3796 2.2604 3.3001 4.3398

λ2 = 0 5.8111 4.7714 1.6522 2.6919 3.7316

λ2 = 0.5 5.2029 4.1632 – 2.0837 3.1234

λ2 = 1 4.5947 3.555 – – 2.5153
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Table 2: Variance of the CTGD for various combinations of the parameters

µ β λ2 / λ1 λ1 =−1 λ1 =−0.5 λ1 = 1 λ1 = 0.5 λ1 = 0

µ =−2

β=1

λ2 −1 1.6449 2.0461 1.8082 2.1277 2.207

λ2 =−0.5 1.686 1.9467 1.2872 1.7473 1.9671

λ2 = 0 1.6449 1.765 0.684 1.2846 1.6451

λ2 = 0.5 1.5216 1.5012 – 0.7397 1.2406

λ2 = 1 1.3161 1.1552 – – 0.754

β=3

λ2 −1 14.8044 18.4148 16.2739 19.1496 19.8633

λ2 =−0.5 15.1743 17.52 11.585 15.7254 17.7037

λ2 = 0 14.8044 15.8854 6.1563 11.5613 14.8044

λ2 = 0.5 13.6947 13.511 – 6.6575 11.1653

λ2 = 1 11.8452 10.3968 – – 6.7863

µ = 0

β=1

λ2 −1 1.6449 2.0461 1.8082 2.1277 2.207

λ2 =−0.5 1.686 1.9467 1.2872 1.7473 1.9671

λ2 = 0 1.6449 1.765 0.684 1.2846 1.6449

λ2 = 0.5 1.5216 1.5012 – 0.7397 1.2406

λ2 = 1 1.3161 1.1552 – – 0.754

β=3

λ2 =−1 14.8044 18.4148 16.2739 19.1496 19.8633

λ2 =−0.5 15.1743 17.52 11.585 15.7254 17.7037

λ2 = 0 14.8044 15.8854 6.1563 11.5613 14.8044

λ2 = 0.5 13.6947 13.511 – 6.6575 11.1653

λ2 = 1 11.8452 10.3968 – – 6.7863

µ = 2

β=1

λ2 =−1 1.6449 2.0461 1.8082 2.1277 2.207

λ2 =−0.5 1.686 1.9467 1.2872 1.7473 1.9671

λ2 = 0 1.64488 1.765 0.684 1.2846 1.64488

λ2 = 0.5 1.5216 1.5012 – 0.7397 1.2406

λ2 = 1 1.3161 1.1552 – – 0.754

β=3

λ2 =−1 14.8044 18.4148 16.2739 19.1496 19.8633

λ2 =−0.5 15.1743 17.52 11.585 15.7254 17.7037

λ2 = 0 14.8044 15.8854 6.1563 11.5613 14.8044

λ2 = 0.5 13.6947 13.511 – 6.6575 11.1653

λ2 = 1 11.8452 10.3968 – – 6.7863
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3.2 The Moment Generating Function of CTGD

The moment generating function of CTGD is present in
this theorem

Theorem 3. Let X be a random variable having the

CTGD, then the moment generating function (mgf) of X is

Mx(t) =eµtΓ (1−β t)
[

(1+λ1)

+ 2β t(λ2 −λ1)− 3β tλ2

] (14)

where Γ (1−β t) is the Gamma function.

Proof. We know that

MX (t) =

∫ ∞

−∞
etx f (x)dx

=

∫ 0

∞
et[µ−β ln(z)] f (z)(

−β

z
)dz

=

∫ ∞

0
et[µ−β ln(z)]e−z

[

(1+λ1)

+2(λ2 −λ1)e
−z − 3λ2e−2z

]

dz

Mx(t) = etµ
[

(1+λ1)I1 + 2(λ2 −λ1)I2 − 3λ2I3

]

(15)

where I1 =
∫ ∞

0 z−β te−zdz , I2 =
∫ ∞

0 z−β te−2zdz and

I3 =
∫ ∞

0 z−β te−3zdz

Now, we calculate the value of I1, I2 and I3 using the

relation
∫ ∞

0 tbe−atdt = Γ (1+b)

a(1+b) , we obtain

I1 =
∫ ∞

0 z−β te−zdz = Γ (1−β t),

I2 =
∫ ∞

0 z−β te−2zdz = 2(β t−1)Γ (1 − β t) and

I3 =
∫ ∞

0 z−β te−3zdz = 3(β t−1)Γ (1−β t).
By Substituting in Eq. (15), we get

Mx(t) = eµtΓ (1−β t)
[

(1+λ1)+ 2β t(λ2 −λ1)− 3β tλ2

]

So the theorem is proved.

3.3 Quantile function of CTGD

The quantile function for CTGD is derived by finding the
value of Q for which F(x) = p :

Q(p,µ ,β ) = µ −β ln [−(lny)] (16)

where

y =

[

3

√

(θ2 +
√

h)

a
3
√

54

]

−
[

θ1
3
√

2

3a
3

√

(θ2 +
√

h)

]

−
(

b

3a

)

(17)

such that
θ1 = 3ac− b2 ,θ2 = −2b3 + 9abc− 27da2 and h = 4θ 3

1 +

θ 2
2 , where a = λ2, b = (λ1 −λ2), c =−(1+λ1) and d = p

are the coefficients of the cubic equation of y

The three quartiles Q1, Q2 and Q3 can be obtained by
using p = 0.25,0.50 and 0.75 in Eq.(16), respectively.

3.4 Simulating the Random Sample of CTGD

Random numbers from the CTGD can be obtained by
equating cdf of the distribution in Eq.(7) with a uniform
random number and inverting the expression, that is the
random number from CTGD is obtained by solving
F(x) = u for x. The random sample from CTGD can be
further expressed as

x = µ −β ln [−(lny)] (18)

where y is given in Eq.(17) with d = u and u is an arbitrary
continuous uniform point over (0,1).

4 Parameters Estimation

This section pertains to discuss the maximum likelihood
estimation (MLE) for parameters of CTGD.
Let X1,X2, . . . ,Xn be a random sample of size n from
CTGD, then the likelihood function is given by

L =
n

∏
i=1

f (xi,µ,β ,λ1,λ2)

=
n

∏
i=1

{

( 1

β

)

zi e−zi

[

(1+λ1)+2(λ2 −λ1)e
−zi −3λ2e−2zi

]}

where zi = e
−(

xi−µ
β

)
; i = 1,2, . . . ,n.

so, the log-likelihood function is

l = lnL =−n lnβ +
n

∑
i=1

{

lnzi − zi + ln
[

(1+λ1)

+ 2(λ2 −λ1)e
−zi − 3λ2e−2zi

]

}
(19)

Therefore, the maximum likelihood estimates of µ ,β ,λ1

and λ2 which maximize Eq. (19), must satisfy the four
equations (20), (21), (22) and (23).

∂ l

∂ µ
=

1

β

[

n−
n

∑
i=1

( 9λ2zie
−2zi − (1+λ1)zi

(1+λ1)+2(λ2 −λ1)e−zi −3λ2e−2zi

)

]

n

∑
i=1

[ 9λ2zie
−2zi − (1+λ1)zi

(1+λ1)+ 2(λ2−λ1)e−zi − 3λ2e−2zi

]

= n (20)

∂ l

∂β
=
−1

β

{

n− 1

β

×
n

∑
i=1

[

( 9λ2zie
−2zi − (1+λ1)zi

(1+λ1)+ 2(λ2−λ1)e−zi − 3λ2e−2zi

)

−β

]

lnzi

}

n

∑
i=1

[

( 9λ2zie
−2zi − (1+λ1)zi

(1+λ1)+2(λ2 −λ1)e−zi −3λ2e−2zi

)

−β

]

lnzi = nβ

(21)
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∂ l

∂λ1

=
n

∑
i=1

[

1− 2e−zi

(1+λ1)+ 2(λ2−λ1)e−zi − 3λ2e−2zi

]

n

∑
i=1

[

1− 2e−zi

(1+λ1)+ 2(λ2−λ1)e−zi − 3λ2e−2zi

]

= 0 (22)

∂ l

∂λ2

=
n

∑
i=1

[

2e−zi − 3e−2zi

(1+λ1)+ 2(λ2−λ1)e−zi − 3λ2e−2zi

]

n

∑
i=1

[

2e−zi − 3e−2zi

(1+λ1)+ 2(λ2−λ1)e−zi − 3λ2e−2zi

]

= 0 (23)

The maximum likelihood estimates θ̂ = (µ̂ , β̂ , λ̂1, λ̂2) of
θ = (µ ,β ,λ1 , λ2) is obtained by solving the non-linear
system of equations (20), (21), (22) and (23).

5 Application of CTGD

In this section, the CTGD is applied to two real data sets.
The first data in Table 3 corresponds to a wind velocity
(WVD) involving 246 observations of the maximum of
monthly wind speed (mph) in Palm Beach, Florida (USA)
for the months January 1984 to December, 2005. Data is
available for download from NOAA website
The second data in Table 4 is related to the snow
accumulation (SAD) in inches in the Raleigh-Durham
airport, North Carolina, from 1948 to 2000. The data set
contains 63 observations. Summary statistics of the two
data sets is demonstrated in Table 5. The maximum
likelihood estimates, the log-likelihood value (-Log(L)),
the Kolmogorov-Smirnov (k-s) test statistic and the
p-value for the k-s statistic for the fitted distributions are
demonstrated in Tables 6 and 7 respectively. Latterly,
Yolanda et al. [15] used the data in Tables 3 and 4 to
investigate model fitting for Gumbel (GD) , Slash (SD)
and Slashed Gumbel (SGD) distributions.

Table 3: : the wind velocity (WVD) data set

33 40 46 41 31 37 41 56 45 31
40 35 33 43 36 36 48 45 51 44
38 36 40 32 51 37 43 33 35 44
41 41 33 45 38 43 62 45 51 39
35 58 48 35 43 49 43 39 39 40
39 45 48 43 45 36 40 36 47 35
40 39 44 37 36 38 37 41 38 36
36 48 37 40 38 37 37 38 49 66
39 45 37 35 39 52 66 51 39 64
59 36 36 36 41 41 39 45 40 37
33 66 38 59 38 41 45 35 43 39
74 63 37 45 52 43 44 52 36 43
46 40 43 29 39 53 32 41 52 31
46 48 49 41 32 37 29 43 40 47
45 38 28 30 40 36 37 38 37 33
30 34 38 45 40 31 39 31 31 38
32 34 45 39 31 29 39 36 34 55
38 37 36 34 44 32 54 30 39 30
41 33 36 39 33 33 30 40 44 61
34 26 38 26 34 36 28 36 43 35
43 37 40 35 36 28 41 30 31 48
43 43 49 36 38 30 33 35 36 45
29 43 33 39 38 29 38 41 31 35
40 33 51 33 40 45 32 29 35 37
35 30 32 39 32 39 38 39 83 30
33 39 33 36 39 44 31 43 44 43
41 101 37 33

Table 4: The snow accumulation (SAD) data set

1.0 2.5 1.2 1.2 4.1 9.0 3.0 1.0 1.4
2.0 3.0 1.7 1.2 1.2 1.1 1.5 5 1.6
2.0 0.1 0.4 0.8 3.7 1.3 3.8 0.1 0.1
0.2 2.0 7.6 0.1 1.8 0.5 0.5 0.5 1.1
1.4 1.0 1.0 0.7 5.7 0.4 0.3 1.8 0.4
1.0 1.2 2.6 1.0 5.0 1.7 2.4 0.1 0.5
7.1 0.2 0.7 0.1 2.7 2.9 0.4 2.0 20.3

Table 5: Summary Statistics for WVD and SAD data sets

Data n Mean Median Skewness kurtosis

WVD 264 40.11 39.00 2.3438 13.030

SAD 63 2.125 1.200 4.01015 23.250

Table 6: Parameters estimates, -log (L), k-s test value and p-

value for Gumbel, Transmuted Gumbel, and Cubic Transmuted

Gumbel for WVD data

Model Parameters estimates -log(L) k-s P-value

GD β = 1.3293 µ = 1.7361 126.036 0.1486 0.1236

TGD
β = 1.5036 µ = 1.5711

124.089 0.1335 0.2115
λ = 0.5592

CTGD
β = 1.5419 µ = 1.6799

123.217 0.1275 0.2288
λ1 = 0.7089 λ2 =−0.2859
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Fig. 5: The pdf of GD, TGD and CTGD for WVD data set

Table 7: Parameters estimates, -log (L), k-s test value and p-

value for Gumbel, Transmuted Gumbel, and Cubic Transmuted

Gumbel for SAD data

Model Parameters estimates -log(L) k-s P-value

GD β = 6.0802 µ = 36.466 898.880 0.0671 0.1848

TGD
β = 7.260 µ = 38.837

896.752 0.0612 0.2759
λ = 0.6233

CTGD
β = 7.5512 µ = 39.7094

895.894 0.0629 0.2456
λ1 = 0.99 λ2 =−0.360

By comparing the goodness of fit statistics in Table 6
among the three distributions, it is clear that all
distributions are competitors and fit the wind velocity data
well but the proposed distribution CTGD leads to a better
fit than the other two distributions (see Fig. 5). Moreover,
basing on -2log (L) criteria (the smaller the better),
CTGD performs better than GD and TGD. Regarding the
snow accumulation data, from Table 7 it is clear that the
three distributions fit the data well but the TGD is the best
(see Fig. 6), whilst, basing on -2log (L) criteria, the
CTGD performs better than GD and TGD.

6 Conclusions

In this paper, a new generalized version of the Gumbel
distribution which called cubic transmuted Gumbel
distribution (CTGD) is introduced by using the
generalization formula for transmuted distribution
proposed by [11]. Some statistical properties of CTGD
are derived. The model parameters are estimated by the
maximum likelihood method. Finally, an application of
CTGD to two real data sets and compared with some
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Fig. 6: The pdf of GD, TGD and CTGD for SAD data set

distributions based on Gumbel distribution is explained.
We conclude that the applications suggest that the
proposed distribution CTGD fits the two data sets very
well. Generally, CTGD performs better than the other
distributions. We recommend the CTGD for modelling
extreme data sets in the field of flood frequency analysis,
network, space, software reliability, structural and wind
engineering and hope that it would receive significant
applications in the future.
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