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Abstract: A fast and accurate numerical scheme for the solution of-@iftker boundary-value problems has been investigatedsn th
work. We apply the reproducing kernel method (RKM) for sotyithis problem. The analytical results of the equationseHaeen
acquired in terms of convergent series with easily compeatabmponents. We compare our results with the numericahoadst B-
spline method, decomposition method, variational iteratnethod, Sinc-Galerkin method and homotopy perturbatiethod. The
comparison of the results with exact ones is made to confienvalidity and efficiency.
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1 Introduction non-polynomial sextic spline functions and El-Gamel
. ) ) [12] employed the Sinc-Galerkin method for the solution
Fifth-order boundary-value problems arise in the o the fifth-order boundary-value problems. Lamnii et al.
mathematical modelling .of wscoelastlc flows anq othgr[13] developed and analyzed two sextic spline collocation
branches of mathematical, physical and engineeringneathods for the problems. Siddiqi et al4[15] used the
sciences],2]. Theorems which list the conditions for the non-polynomial  sextic spline method for special

existence and uniqueness of solutions of such problemgsin_order problems. Wang et all§] attempted to obtain
are thoroughly discussed in a book by Agarvl Khan  sher and lower approximate solutions of such problems
[4] investigated the fifth-order boundary-value problemsby applying the sixth-degree B-spline residual correction
by using finite difference methods. Wazwe ppplied  ethod.

Adomian decomposition method for solution of such type

of boundary-value problems. The use of spline function in

the context of fifth-order boundary-value problems was In this paper, RKM will be used to investigate the
studied by Fyfe 6], who used the quintic polynomial fifth-order boundary-value problems. In recent years, a lot
spline functions to develop consistency relationsof attention has been given to the study of RKM to
connecting the values of solution with fifth-order investigate various scientific models. RKM which
derivatives at the respective nodes. Polynomial sexticaccurately computes the series solution is of great interes
spline functions were used/][to develop the smooth to applied sciences. The method provides the solution in a
approximations to the solution of the fifth-order rapidly convergent series with components that can be
boundary-value problems. Caglar et a] jhave used elegantly computed. The efficiency of the method was
sixth-degree B-spline functions to develop first-orderused by many authors to research several scientific
accurate method for the solution two-point special applications. Cui et al.1[7] investigated solutions to the
fifth-order boundary-value problems. Noor and definite solution problem of differential equations in
Mohyud-Din [9,10] applied variational iteration and spaceW;[0,1]. The book [18] contains many useful
homotopy perturbation methods. Khahl] has used the reproducing kernel functions. Geng and Cu9[ and
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Zhou et al. Q] applied RKM to handle the second-order The last condition is called "the reproducing property”:
boundary value problems. Yao and CAl] and Wang et  the value of the functiog at the point is reproduced by
al. [22] investigated a class of singular boundary valuethe inner product op with K(.,t).

problems by this method. I12B], the method was used to

solve nonlinear infinite-delay-differential equations. ~ Definition 2.2. We define the spac¥\f[a, b] by

Wang and ChaoZ4], Li and Cui [25], Zhou and Cui 26]

independently employed RKM to variable-coefficient U’U, VNTORTURT TS

partial differential equations. Geng at aR7] solved are absolutely continuous [g, b],
singularly perturbed multipantograph delay equations®W2[a, b] =

based on the reproducing kernel method. Du and 28] | u® e L2[a,b], x € [a,b],

investigated the approximate solution of the forced u(a) = u(b) = u'(a) = u'(b) = u’(a) = 0.

Duffing equation with integral boundary conditions by
combining the homotopy perturbation method and RKM. The sixth derivative oli exists almost everywhere since
Lv and Cui R9] presented a new algorithm to solve linear u® is absolutely continuous. The inner product and the
fifth-order boundary value problems. 18G,31], authors  norm in®W$[a, b] are defined by

developed a new existence proof of solutions for
nonlinear boundary value problems. Li at a&2] used (U V)oys —
reproducing kernel method for fractional Riccati Howg = i;
differential equations. Wu and Li3@ applied iterative a
reproducing kernel method to obtain the analyticaland

approximate solution of a nonlinear oscillator with llullpe =, /(u,w)
discontinuities. Lan et al34] solved a class of singularly 2
perturbeq partial differential equation by using the Tpe spacéwzﬁ[a, b] is a reproducing kernel space, i.e., for
perturbation method and RKM. Readers can check

. each fixedy € [a,b] and anyu €° W2[a, b], there exists a
referencesdbs, 36,37,38,39,40] for more details of RKM. functionR, such that

< L0 (@ (@) 1 / " U6 (v (x)dx

0\p/6
ong’ u,ve®Wo'[a,b).

In this work we consider the numerical approximation
for the fifth-order boundary-value problems of the form

(1.1) Definition 2.3. We define the spadé?[a, b] by

u= <u,Ry>0W26.

YW =f(y+g(0), xelab],
with boundary conditions

y(@)=Ao, Y (a)=A1, Y'(a)=Az, y(b)=Bo, ¥ (b)=Bx,
(1.2)  where U(x) € L?a,b], x € [a,b] and the inner product

where the functions andg are continuous functions on gnd the norm iH3[a,b] are defined by

[a,b] andAg, A1, Az, Bp, B; are finite real constants.

The paper is organized as follows. Section 2
introduces several reproducing kernel spaces. Linear
operator and solution representation M/[a,b] have d
been presented in Section 3. The main results, the exa@” 1
and approximate solution d@fl.1) are given in Section 4. Ul =, /(uw) ., ueHlabl.

We have proved that the approximate solution converges z
to the exact solution uniformly in this section. Some The spaceHi[a,b] is a reproducing kernel space and its
numerical experiments are illustrated in Section 5. Therereproducing kernel functiof is given by
are some conclusions in the last section.
{ 1—a+x, x<y,

l-a+y, x>y.

Hi[a,b] = {u’u is absolutely continuous irfa, b]}

(Vs = U(@)V(a) + / "WV (dx uveHYab

Tx(y): (2.2)

2 Preliminaries

In this section, we define some useful reproducing kernel  Theorem 2.1.The space’Wg[a,b] is a reproducing

spaces for succeeding sections. kernel Hilbert space whose reproducing kernel function is
given by,

Definition 2.1. (Reproducing kernel function).et E
be a nonempty abstract set. A functidnE x E — Cis 2 G ( )x“l X <
a reproducing kernel function of the Hilbert spatéf and ;1 A% » XSV,
only if Ry (X) =

12
VteE, K(,t)eH , i-1
) ) ) 21 d y X 9 X> y
{VteE,queH, WOKG) =), @D 240
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Proof: Letu €° W{a, b]. By Definition 2.2 we have

5 . b
u,R =S u@RV(a +/ u® (xR (x)dx.
(WR), e = 3 U @R @+ [ O 0R (9
(2.3)
Through several integrations by parts for (2.3) we have

(uRy),  =58oul@) R @ - (-1 R (@)

ow,
+520(=1) O R (b)+ [ u)R (x)dx
(2.4)
Note that property of the reproducing kernel

(u, Ry>OW26 =u(y).

Now, if

(2.5)

then (2.4) implies that,
RI(x) = 8(x—y),

whenx #y, then

and therefore

Since

R (x) = 3(x—y),
we have

R¥Y(y)=RY(y). k=0,123456780910 (26)

and

Ry -RM(y) =1 (2.7)

SinceR,eW2|0, 1], it follows that
R/(a) =0, Ry(b) =0, R,(a) =0, R,(b) = 0,R}(a) = 0.

(2.8)
From (2.5)-(2.8), the unknown coefficierggy) andd;(y)

(i=1,2,...,12) can be obtained. This completes the proof.

O

3 Solution Representation in°We[a, b]

In this section, the solution of equation (1.1) is given ia th
reproducing kernel spac®V$[a, b].
On defining the linear operatbr® W[a, b] — H3[a, b]
as
Lu=u® (x) — f (x)u(x).
Model problem (1.1) changes the following problem:

Lu=K(x), x€ [0,1]
{ u@ =0, U@ =0, u'(a)=0, ulb)=0, U(b)=0.
(3.1)

Lemma 3.1. If u € W¢a,b], then
H“(k)HLw < Mi|[Uays, where M (k = 0,1,....5) are
positive constants.

Proof: For anyx € [a,b] it holds that

v Rx(x),

from the continuity ofRy, there exists a constahty > 0,
such that||RX(y)|\0W26 < Mo. By (2.1) one gets

IR long = /TRY), Re(¥) g =

9] = () R,
< IR o 1Y) s = Mo U3 o

(3.2)

For anyx,y € [a,b], there existdVly (k= 1,2,...,5), such
that

By reproducing property and Cauchy-Schwarz inequality
we have

R(xk)(y)HOW6 <My, (k=1,2,..,5).
2

‘u“()(x)’ = < ’

(k)
| = (RO | 10 g
= Mi|u(Y) lows
(3.3)
Combining (3.2) and (3.3), it follows that

oo

L < Mk||u(y)|\owze (k=1,2,...,5).
This completes the proof. [

Theorem 3.1.Supposef/ € L?[a,b] (i = 0,1,2,3,4).
ThenL : °W£[a, b] — H3[a, b] is a bounded linear operator.

Proof: (i) By the definition of the operator it is clear
thatL is a linear operator.
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(i) Due to the definition oH3[a, b] , we have

H('—U)(X)Hﬁl = ((Lu)(x), (Lu) (X)) g
+/ [(Lu)
b 12

+/ <Z} fi(x)u(i>(x)> ] dx

5
= [Za fi(au®(a)

[l wrac= [ -

where

b 2
[ ®00] dx< Jut)
a
and

[ [u“”(x) i< £ 09u” (00 + £,09u ()

2
< {/b [u(fﬂ(x)rdx}z {/b i( fi’(X)Um(X) + fi(x)u(i+1)<x>):| de} |

By Lemma 3.1 andf/(x) € L?[a,b], we can obtain a
constantN > 0, satisfying

dx

2
/-b {i( £ (3)u (x) + fi(x)u(iH)(x))} dx<N(b-a) nu(x)ngwg.
Furthermore one gets

b
100 0012ax < U0l + 20/ NTB=20 U [+ N (D=2 U9 [
letG = (1+ 2\/N(b—a)+N(b—a)) > 0, then

b 2
[ L0y 007%x < G ) g

Lemma 4.1. {#(x)};~, is complete system of
We[a,b].

Proof: Foru e®W2[a,b], let (u, ) =0 (i = 1,2,...),
that is
(u,L"Tx) = (Lu)(x) = 0.
Note that {x};~, is the dense set irfa,b], therefore
(Lu)(x) = 0. It follows thatu(x) = 0 from the existence of
Lt O

Lemma 4.2.Subscript) of operatorLn indicates that
the operatoL applies to function of] such that we have

H(x) = (LnR«(n)) (%)

Proof: By reproducing property and property of
conjugate operator we get

HO) = (H(E),Re(&))owsap
= (1" T (&), Re(&))owgany
= ((T6) (&), (LR () wgjapy
= (LnRx(n)) (%) .

This completes the proof. [
Remark 4.1. The orthonormal systefi¥; (x) }I , of

Wela,b] can be derived from Gram-Schmidt
orthogonalization process ¢f(x)};- ; .

X) = IZBik%(X), (Bi >0, i=12,.), (41)
k=1

wherefi are orthogonal coefficients.

Theorem 4.1.If uis the exact solution of (3.1) then

U—lekaXk )

(4.2)

ThereforeL is a bounded operator. This completes theWhere{Xi}i:1 is a dense setif, b,

proof. [ . .
Proof: From the (3.7) and uniqueness of solution of

(3.1), we have
4 The Normal Orthogonal Function System L e

of Wg)a, b u= .Zi<“a‘“i>ow26 Vi=3 k;ﬁik (UL T o ¥
Let {x };~, as any dense set [, b] and¥(y) = L*Tx(y), = Bik (LU, Te Bi (K, T Jyz Pi
WhereLI* is conjugate operator df and Ty is given by Z\ Z I Z\ Z I e
(2.2). Furthermore, for simplicity letH(x) = ¥ (X), © i
namely, =5 > BKX)¥i(x).
=1k=1

Y(x )dff W, (X) = LTy (x). This completes the proof. O
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Now the approximate solution, can be obtained by
truncating then— term of the exact solution as

Un = iikizlﬁikK(Xk)wi (%) (4.3)

Lemma 4.3.Assumeu is the solution of (3.1) and,
is the error between the approximate solutiprand the
exact solutioru. Then the error sequencg is monotone
decreasing in the sense |bf|0W26 andHrn(x)HOW; — 0.

Proof: From (4.2) and (4.3), we obtain Fig. 1: Absolute Error for Example 5.1.

HU— Un||oW26 = ’ g z BIKK(Xk)wl (X)

=ikl g After homogenizing the boundary conditions of (5.1),
we acquire
Thus
- 5 3 4
lu u“”owze =0, N u®(x) —u(x) = 1—5¢* {2—3»x+3x2 (2— E) + 43 (—5 + E)}
In addition
- 2 108" {—3+6x(2—§)+12x2 (_§+i‘)}
2 =3 Bk ° 2
Ju=un[® == ik K () Wi (X
wd :
2 i=n+1k=1 0W26 —10ef |:6(2—§) +24X(_§+il):| _ 5eX |:24(_§+L_1)}
) e 2 e 2 e
o i
= > (Z BikK(Xk)wi(X)> : —156¢ — 10xeX, 0<x<1
i=n+1 \k=1
Then, [[u— un||ays is monotonically decreasing i 4(0) =0, /() = 0, '(0) = 0, u(1) = 0, /(1) =0
(5.2)
Using RKM for this example we obtain Table 5.1 and
5 Numerical Results Figure 5.1.

Example 5.2. We now consider the nonlinear

. . . . boundary value problem
In this section, four numerical examples are provided to y P

show the accuracy of the present method. All { YO () = eX2(x), 0<x<1,

y(O) =1 )/(0) =1 )/’(O) =1 y(l) =6 y(l) =e
(5.3)

computations are performed by Maple. The RKM does
not require discretization of the variables, i.e., time and
space, it is not effected by computation round off errors
and one is not faced with necessity of large compute
memory and time. The accuracy of RKM for the
fifth-order boundary value problems is controllable and y(x) = &
absolute errors are small with present choicexdkee ’
Tables 1-4). The numerical results we obtained justify the
advantage of this methodology.

Example 5.1.We first consider the linear boundary
value problem

"The exact solution of (5.3) is given & 9]

{ yO (x) =y— 15— 10x&, 0<x<1,
¥(0)=0,¥(0) =1,¥"(0) = 0, y(1) = 0, y(1) = (_561)
The exact solution of (5.1) is given as [5,8,9] '

y(X) = x(1—x)€e*.
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Table 5.1.The absolute error of Example 5.1 for boundary conditior@& x < 1.0.

X Exact Solution| RKM HPM [10] | B-Spline [8] | ADM [5] Sinc [12]
0.0 | 0.0000 0.000 0.0000 0.0000 0.0000 0.0000
0.1 | 0.099465382 | 5.89x10 T [ 3x10 ™ [ 80x103 | 3x10 ' | 0.0000
0.2 | 0195424441 | 1.73x10 ™ [ 2x10 10 [ 12x103 | 2x10 10 | 01x10°
0.3 | 0.283470349 | 6.02x10 10 [ 4x10 10 [ 50x10°3 | 4x1010 | 03x10°
0.4 | 0.358037927 | 7.42x10 10 [ 8x10 10 [ 30x10°3 | 8x1010 | 03x10°
0.5 | 0412180317 | 3.32x10 11 | 12x10°°2 | 80x10° | 1.2x10° | 0.0000
0.6 | 0.437308512 | 3.10x10 10 | 2x107° 6.0x103 | 2x107° 0.5x10°°
0.7 | 0.422888068 | 3.08x10 10 | 22x 102 | 0.000 22x109 | 09x10°
0.8 | 0.356086548 | 458x10 7 [ 19x10°% | 9.0x10°3 [ 19x10°9 | 02x10 >
0.9 | 0.221364280 | 430x10°2 | 1.4x10° | 9.0x10° | 14x10°9 ] 01x10°
10| 0.0 0.0 0.0 0.0 0.0 0.0
Table 5.2.The absolute error of Example 5.2 for boundary conditior@& x < 1.0.
X Exact Solution| RKM HPM [10] | B-Spline[8] | ADM [5] VIM [9]
0.0 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.1 | 1.105170918 | 519x10°°2 | 1x10°° 70x10% | 1x10°° 1x10°°
0.2 | 1.221402758 | 0.60x 102 | 2x10°° 72x107% | 2x10°° 2x 1079
0.3 | 1.349858808 | 3.19x 102 | 1x10°° 41x10% | 1x107° 1x10°°
0.4 | 1.491824698 | 250x 102 | 2x 108 46x10% | 2x10°8 2x 1078
0.5 | 1.648721271 | 3.03x10° % | 31x108 | 47 x10% | 31x10° | 31x10°8
0.6 | 1.822118800 | 9.60x 109 | 37x108 | 48 x10% | 37x10° | 3.7x10°8
0.7 | 2013752707 | 420x10°8 | 41x108 | 39x10% | 41x10° | 41x10°8
0.8 | 2.225540928 | 4.09x10°% | 31x108 | 31x10% | 31x10° | 31x10°8
0.9 | 2459603111 | 5.46x10°8 | 1.4x108 | 1.6 x10% | 1.4x10° | 1.4x10°8
1.0 | 2.718281828 | 0.0000 0.0000 0.0000 0.0000 0.0000

Table 5.3.The absolute error (AE) of Example 5.3 for boundary condgiat 00 < x < 1.0.

. Approximate AE, 1.0OE -8 AE,1.0E —4[12]
X Exact Solution Solution RKM Sinc-Galerkin
0.0 0.0 0.0 0.0 0.0
0.0806 | 0.07751644243| 0.07751634304 | 0.003 0.0
0.1648 | 0.1525493985 | 0.1525493860 1.25 0.2
0.2285 | 0.2057939130 | 0.2057939053 0.77 0.2
0.3999 | 0.3364008055 | 0.3364007134 9.21 0.4
0.5 0.4054651081 | 0.4054650667 4.14 0.1
0.6923 | 0.5260885504 | 0.5260885142 | 3.62 0.2
0.7714 | 0.5717701944 | 0.5717701752 1.92 0.3
0.8836 | 0.6331848394 | 0.6331848843 | 4.49 0.2
0.9447 | 0.6651077235 | 0.6651077287 | 0.52 0.5
1.0 0.6931471806 | 0.6931471783 | 0.23 0.0

After homogenizing the boundary conditions of (5.3),

we get
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Table 5.4.The absolute error of Example 5.4 for boundary conditior@G& x < 1.0.
AE,
X Exact Approximate AE 1.0E —3[12] AE
Solution Solution RKM Sinc-Gal. [43]
0.0 1.0 1.0 0.0 0.0 0.0
0.0100 | 1.105170918] 1.105170918 0.0 0.0 7.79x10 10
0.1184 | 1.125694299| 1.125694299 0.0 0.0 7.83x 107
0.1517 | 1.163811041| 1.163811041 0.0 0.1 1.36x10°°
0.2410 | 1.272521035| 1.272521035 0.0 0.0 3.005x 10°©
0.3604 | 1.433902861| 1.433902861 0.0 0.1 252x10°°
0.4287 | 1.535260387| 1.535260387 0.0 0.0 257x 107
0.5000 | 1.648721271| 1.648721271 0.0 0.2 5.04x 10°°
0.6395 | 1.895532876| 1.895532876 0.0 0.1 1.58x% 10~ °
0.8482 | 2.335439276| 2.335439276 0.0 0.2 133x10 0
0.9996 | 2.717194733| 2.7171947329 | 1x10 10 [ 0.2 210x 10 10
1.0 2.718281828| 2.718281828 0.0 0.0 0.0

After homogenizing the boundary conditions of (5.5),
we have
X2
u(x)+x——=+x*(4In2-3)+x*(2-3In2)

5)(y) — ( 48
u®(x) = —24e + T

u® (x) —2e7* {1+eX (x— szz +x3 (2— 2) +x4 (72 + g))] u(x)

—eM2(x) +e {1+ex (x— X—22 +x3 (2* Z) +x (72 + g))r

u(0) =0, U(0) =0, u"(0) =0, u(l) =0, U (1) =0.

2
7@[x7%+x3<27§e>+x4<72+2 ] . . | (5.6)
Using RKM for this example we obtain Table 5.3 and
—5e {1—x+3x2 (27§> +43 <7§+‘—‘>} Figure 5.2.
€ ze (5.4)
—10e [—l+6x (27 Z) +12¢ <72 + %)]
04
5 3 4
—10e {6(2— E>+24x(75+5>] N
3 4
75@[24<7§+—e>], O<x<1, -
u(0)=0, U(0)=0, u"(0) =0, u(l) =0, U'(1)=0. - =4
Using RKM for this example we obtain Table 5.2. .
Example 5.3.Consider the nonlinear boundary value o o ® ., = A L
problem
yO(x) = —24eY¥ + B 0<x<1 — , - -
(115" ’ Fig. 2: Exact solution (AE) and Approximate Solution (AS) for
Example 5.3.
¥(0)=0,y(0)=1,y'(0) = —1, y(1) = In2, y(1) :(%55.)

The exact solution of (5.5) is given a&] Example 5.4.This is the nonlinear boundary value

problem
YO X) +yD(x) +e2y2(x) =28 +1 0<x<1,

y(0)=0,y(0) =1,y (0)=1, y(1) =e y(1) =e
(5.7)

y(X) =In(x+1).

We use the following transformation to homogenize the
boundary conditions:

The exact solution of (5.7) is given akq
y(x) =€

2

y(x) = u(x)—x+% —x (4In2—g> —x*(2-3In2).
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After homogenizing the boundary conditions of (5.7), require discretization or perturbation and it does not make

we obtain closure approximation. Results of numerical examples
- ) show that the present method is an accurate and reliable
U0+ () = &2 (ux) + L x+ 5 +:3(3e-8) +x' (¥ ~ 2¢)) analytical method for the fifth order problem with

+2¢+48e-131, boundary conditions.

u(0) =0, U'(0)=0, u"(0)=0, u(1) =0, u'(1) =0.

(5.8)

Using RKM for this example, we obtain Table 5.4.
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