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Abstract: A fast and accurate numerical scheme for the solution of fifth-order boundary-value problems has been investigated in this
work. We apply the reproducing kernel method (RKM) for solving this problem. The analytical results of the equations have been
acquired in terms of convergent series with easily computable components. We compare our results with the numerical methods: B-
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comparison of the results with exact ones is made to confirm the validity and efficiency.
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1 Introduction

Fifth-order boundary-value problems arise in the
mathematical modelling of viscoelastic flows and other
branches of mathematical, physical and engineering
sciences [1,2]. Theorems which list the conditions for the
existence and uniqueness of solutions of such problems
are thoroughly discussed in a book by Agarwal [3]. Khan
[4] investigated the fifth-order boundary-value problems
by using finite difference methods. Wazwaz [5] applied
Adomian decomposition method for solution of such type
of boundary-value problems. The use of spline function in
the context of fifth-order boundary-value problems was
studied by Fyfe [6], who used the quintic polynomial
spline functions to develop consistency relations
connecting the values of solution with fifth-order
derivatives at the respective nodes. Polynomial sextic
spline functions were used [7] to develop the smooth
approximations to the solution of the fifth-order
boundary-value problems. Caglar et al. [8] have used
sixth-degree B-spline functions to develop first-order
accurate method for the solution two-point special
fifth-order boundary-value problems. Noor and
Mohyud-Din [9,10] applied variational iteration and
homotopy perturbation methods. Khan [11] has used the

non-polynomial sextic spline functions and El-Gamel
[12] employed the Sinc-Galerkin method for the solution
of the fifth-order boundary-value problems. Lamnii et al.
[13] developed and analyzed two sextic spline collocation
methods for the problems. Siddiqi et al. [14,15] used the
non-polynomial sextic spline method for special
fifth-order problems. Wang et al. [16] attempted to obtain
upper and lower approximate solutions of such problems
by applying the sixth-degree B-spline residual correction
method.

In this paper, RKM will be used to investigate the
fifth-order boundary-value problems. In recent years, a lot
of attention has been given to the study of RKM to
investigate various scientific models. RKM which
accurately computes the series solution is of great interest
to applied sciences. The method provides the solution in a
rapidly convergent series with components that can be
elegantly computed. The efficiency of the method was
used by many authors to research several scientific
applications. Cui et al. [17] investigated solutions to the
definite solution problem of differential equations in
spaceWl

2 [0,1]. The book [18] contains many useful
reproducing kernel functions. Geng and Cui [19] and
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Zhou et al. [20] applied RKM to handle the second-order
boundary value problems. Yao and Cui [21] and Wang et
al. [22] investigated a class of singular boundary value
problems by this method. In [23], the method was used to
solve nonlinear infinite-delay-differential equations.
Wang and Chao [24], Li and Cui [25], Zhou and Cui [26]
independently employed RKM to variable-coefficient
partial differential equations. Geng at al. [27] solved
singularly perturbed multipantograph delay equations
based on the reproducing kernel method. Du and Cui [28]
investigated the approximate solution of the forced
Duffing equation with integral boundary conditions by
combining the homotopy perturbation method and RKM.
Lv and Cui [29] presented a new algorithm to solve linear
fifth-order boundary value problems. In [30,31], authors
developed a new existence proof of solutions for
nonlinear boundary value problems. Li at al. [32] used
reproducing kernel method for fractional Riccati
differential equations. Wu and Li [33] applied iterative
reproducing kernel method to obtain the analytical
approximate solution of a nonlinear oscillator with
discontinuities. Lan et al. [34] solved a class of singularly
perturbed partial differential equation by using the
perturbation method and RKM. Readers can check
references [35,36,37,38,39,40] for more details of RKM.

In this work we consider the numerical approximation
for the fifth-order boundary-value problems of the form

y(v) = f (x)y+g(x) , x∈ [a,b] , (1.1)

with boundary conditions

y(a) = A0, y′ (a) = A1, y′′ (a) = A2, y(b) = B0, y′ (b) = B1,

(1.2)
where the functionsf andg are continuous functions on
[a,b] andA0, A1, A2, B0, B1 are finite real constants.

The paper is organized as follows. Section 2
introduces several reproducing kernel spaces. Linear
operator and solution representation inoW6

2 [a,b] have
been presented in Section 3. The main results, the exact
and approximate solution of(1.1) are given in Section 4.
We have proved that the approximate solution converges
to the exact solution uniformly in this section. Some
numerical experiments are illustrated in Section 5. There
are some conclusions in the last section.

2 Preliminaries

In this section, we define some useful reproducing kernel
spaces for succeeding sections.

Definition 2.1. (Reproducing kernel function). Let E
be a nonempty abstract set. A functionK : E×E −→C is
a reproducing kernel function of the Hilbert spaceH if and
only if

{

∀t ∈ E, K (., t) ∈ H,

∀t ∈ E, ∀ϕ ∈ H, 〈ϕ (.) ,K (., t)〉= ϕ (t) . (2.1)

The last condition is called ”the reproducing property”:
the value of the functionϕ at the pointt is reproduced by
the inner product ofϕ with K (., t) .

Definition 2.2.We define the spaceoW6
2 [a,b] by

oW6
2 [a,b] =























u
∣

∣

∣u, u′, u′′, u′′′, u(4), u(5)

are absolutely continuous in[a,b],

u(6) ∈ L2[a,b], x∈ [a,b],
u(a) = u(b) = u′(a) = u′(b) = u′′(a) = 0.























The sixth derivative ofu exists almost everywhere since
u(5) is absolutely continuous. The inner product and the
norm inoW6

2 [a,b] are defined by

〈u,v〉oW6
2
=

5

∑
i=0

u(i)(a)v(i)(a)+
∫ b

a
u(6)(x)v(6)(x)dx,

and
‖u‖W6

2
=
√

〈u,u〉
oW6

2

, u,v∈o W6
2 [a,b].

The spaceoW6
2 [a,b] is a reproducing kernel space, i.e., for

each fixedy∈ [a,b] and anyu ∈o W6
2 [a,b], there exists a

functionRy such that

u=
〈

u,Ry
〉

oW6
2
.

Definition 2.3.We define the spaceH1
2 [a,b] by

H1
2 [a,b] =

{

u
∣

∣

∣
u is absolutely continuous in[a,b]

}

where u′(x) ∈ L2[a,b], x ∈ [a,b] and the inner product
and the norm inH1

2 [a,b] are defined by

〈u,v〉H1
2
= u(a)v(a)+

∫ b

a
u′(x)v′(x)dx, u,v∈ H1

2 [a,b]

and
‖u‖H1

2
=
√

〈u,u〉
H1

2

, u∈ H1
2 [a,b].

The spaceH1
2 [a,b] is a reproducing kernel space and its

reproducing kernel functionTx is given by

Tx(y)=







1−a+ x, x≤ y,

1−a+ y, x> y.
(2.2)

Theorem 2.1.The spaceoW6
2 [a,b] is a reproducing

kernel Hilbert space whose reproducing kernel function is
given by,

Ry(x) =



























12

∑
i=1

ci (y)xi−1
, x≤ y,

12

∑
i=1

di (y)xi−1
, x> y.
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Proof: Let u∈o W6
2 [a,b]. By Definition 2.2 we have

〈

u,Ry
〉

oW6
2

=
5

∑
i=0

u(i)(a)R(i)
y (a)+

∫ b

a
u(6)(x)R(6)

y (x)dx.

(2.3)
Through several integrations by parts for (2.3) we have

〈

u,Ry
〉

oW6
2

= ∑5
i=0u(i)(a)

[

R(i)
y (a)− (−1)(5−i)R(11−i)

y (a)
]

+∑5
i=0 (−1)(5−i)u(i)(b)R(11−i)

y (b)+
∫ b

a u(x)R(12)
y (x)dx.

(2.4)
Note that property of the reproducing kernel

〈

u,Ry
〉

oW6
2
= u(y).

Now, if














































R(5)
y (a)−R(6)

y (a) = 0,

R(4)
y (a)+R(7)

y (a) = 0,

R′′′
y (a)−R(8)

y (a) = 0,

R(6)
y (b) = 0,

R(7)
y (b) = 0,

R(8)
y (b) = 0,

R(9)
y (b) = 0,

(2.5)

then (2.4) implies that,

R(12)
y (x) = δ (x− y),

whenx 6= y, then

R(12)
y (x) = 0,

and therefore

Ry(x) =



























12

∑
i=1

ci(y)x
i−1

, x≤ y,

12

∑
i=1

di(y)x
i−1

, x> y.

Since

R(12)
y (x) = δ (x− y),

we have

R(k)
y+ (y) = R(k)

y− (y), k= 0,1,2,3,4,5,6,7,8,9,10, (2.6)

and
R(11)

y+ (y)−R(11)
y− (y) = 1. (2.7)

SinceRy∈W6
2 [0,1], it follows that

Ry(a) = 0, Ry(b) = 0, R′
y(a) = 0, R′

y(b) = 0, R′′
y(a) = 0.

(2.8)
From (2.5)-(2.8), the unknown coefficientsci(y) anddi(y)
(i = 1,2, ...,12) can be obtained. This completes the proof.
�

3 Solution Representation inoW6
2 [a,b]

In this section, the solution of equation (1.1) is given in the
reproducing kernel spaceoW6

2 [a,b].
On defining the linear operatorL :o W6

2 [a,b]→H1
2 [a,b]

as

Lu= u(5)(x)− f (x)u(x).

Model problem (1.1) changes the following problem:

{

Lu= K(x), x∈ [0,1]
u(a) = 0, u′(a) = 0, u′′(a) = 0, u(b) = 0, u′(b) = 0.

(3.1)

Lemma 3.1. If u ∈ oW6
2 [a,b], then

∥

∥

∥u(k)
∥

∥

∥

L∞
≤ Mk‖u‖oW6

2
, where Mk (k = 0,1, ...,5) are

positive constants.

Proof: For anyx∈ [a,b] it holds that

‖Rx(y)‖oW6
2
=
√

〈Rx(y),Rx(y)〉oW6
2
=
√

Rx(x),

from the continuity ofRx, there exists a constantM0 > 0,
such that‖Rx(y)‖oW6

2
≤ M0. By (2.1) one gets

|u(x)|=

∣

∣

∣

∣

〈u(y),Rx(y)〉
oW6

2

∣

∣

∣

∣

≤ ‖Rx(y)‖oW6
2
‖u(y)‖oW6

2
= M0‖u(y)‖oW6

2
.

(3.2)

For anyx,y ∈ [a,b], there existsMk (k = 1,2, ...,5), such
that

∥

∥

∥R(k)
x (y)

∥

∥

∥

oW6
2

≤ Mk, (k= 1,2, ...,5).

By reproducing property and Cauchy-Schwarz inequality
we have

∣

∣

∣
u(k)(x)

∣

∣

∣
=

∣

∣

∣

∣

∣

〈

u(y),R(k)
x (y)

〉

oW6
2

∣

∣

∣

∣

∣

≤
∥

∥

∥
R(k)

x (y)
∥

∥

∥

oW6
2

‖u(y)‖oW6
2

= Mk‖u(y)‖oW6
2

(3.3)
Combining (3.2) and (3.3), it follows that

∥

∥

∥u(k)(x)
∥

∥

∥

L∞
≤ Mk‖u(y)‖oW6

2
(k= 1,2, ...,5).

This completes the proof. �

Theorem 3.1.Supposef ′i ∈ L2[a,b] (i = 0,1,2,3,4).
ThenL : oW6

2 [a,b]→H1
2 [a,b] is a bounded linear operator.

Proof: (i) By the definition of the operator it is clear
thatL is a linear operator.
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(ii) Due to the definition ofH1
2 [a,b] , we have

‖(Lu)(x)‖2
H1

2
= 〈(Lu)(x),(Lu)(x)〉H1

2

= [(Lu)(a)]2+
∫ b

a
[(Lu)′(x)]2dx

=

[

5

∑
i=0

fi(a)u
(i)(a)

]2

+
∫ b

a

[(

5

∑
i=0

fi(x)u
(i)(x)

)′]2

dx.

∫ b

a
[(Lu)′(x)]2dx =

∫ b

a

[

u(6)(x)+
4

∑
i=0

( f ′i (x)u
(i)(x)+ fi (x)u

(i+1)(x))

]2

dx

=

∫ b

a

[

u(6)(x)
]2

dx+2
∫ b

a

[

u(6)(x)
4

∑
i=0

( f ′i (x)u
(i)(x)+ fi(x)u

(i+1)(x))

]

dx

+
∫ b

a

[

4

∑
i=0

( f ′i (x)u
(i)(x)+ fi(x)u

(i+1)(x))

]2

dx,

where

∫ b

a

[

u(6)(x)
]2

dx≤ ‖u(x)‖2
oW6

2
,

and
∫ b

a

[

u(6)(x)
4

∑
i=0

( f ′i (x)u
(i)(x)+ fi(x)u

(i+1)(x))

]

dx

≤

{

∫ b

a

[

u(6)(x)
]2

dx

}2






∫ b

a

[

4

∑
i=0

( f ′i (x)u
(i)(x)+ fi(x)u

(i+1)(x))

]2

dx







2

.

By Lemma 3.1 andf ′i (x) ∈ L2[a,b], we can obtain a
constantN > 0, satisfying

∫ b

a

[

4

∑
i=0

( f ′i (x)u
(i)(x)+ fi (x)u

(i+1)(x))

]2

dx≤ N(b−a)‖u(x)‖2
oW6

2
.

Furthermore one gets

∫ b

a
[(Lu)′(x)]2dx≤ ‖u(x)‖2

oW6
2
+2
√

N(b−a)‖u(x)‖2
oW6

2
+N(b−a)‖u(x)‖2

oW6
2
,

let G=
(

1+2
√

N(b−a)+N(b−a)
)

> 0, then

∫ b

a
[(Lu)′(x)]2dx≤ G‖u(x)‖2

oW6
2
.

ThereforeL is a bounded operator. This completes the
proof. �

4 The Normal Orthogonal Function System
of oW6

2 [a,b]

Let {xi}
∞
i=1 as any dense set in[a,b] andΨx(y) = L∗Tx(y),

whereL∗ is conjugate operator ofL and Tx is given by
(2.2). Furthermore, for simplicity letΨi(x) = Ψxi (x),
namely,

Ψi(x)
de f
= Ψxi (x) = L∗Txi (x).

Lemma 4.1. {Ψi(x)}
∞
i=1 is complete system of

oW6
2 [a,b].

Proof: For u∈o W6
2 [a,b], let 〈u,Ψi〉 = 0 (i = 1,2, ...),

that is
〈u,L∗Txi 〉= (Lu)(xi) = 0.

Note that {xi}
∞
i=1 is the dense set in[a,b], therefore

(Lu)(x) = 0. It follows thatu(x) = 0 from the existence of
L−1. �

Lemma 4.2.Subscriptη of operatorLη indicates that
the operatorL applies to function ofη such that we have

Ψi(x) = (LηRx(η)) (xi) .

Proof: By reproducing property and property of
conjugate operator we get

Ψi(x) = 〈Ψi(ξ ),Rx(ξ )〉oW6
2 [a,b]

= 〈L∗ Txi (ξ ) ,Rx(ξ )〉oW6
2 [a,b]

=
〈

(Txi )(ξ ) ,(Lη Rx(η)) (ξ )
〉

W1
2 [a,b]

= (LηRx(η)) (xi) .

This completes the proof. �

Remark 4.1.The orthonormal system
{

Ψ i(x)
}∞

i=1 of
oW6

2 [a,b] can be derived from Gram-Schmidt
orthogonalization process of{Ψi(x)}

∞
i=1 ,

Ψ i(x) =
i

∑
k=1

βikΨk(x), (βii > 0, i = 1,2, ...), (4.1)

whereβik are orthogonal coefficients.

Theorem 4.1.If u is the exact solution of (3.1) then

u=
∞

∑
i=1

i

∑
k=1

βikK(xk)Ψ i(x), (4.2)

where{xi}
∞
i=1 is a dense set in[a,b].

Proof: From the (3.7) and uniqueness of solution of
(3.1), we have

u =
∞

∑
i=1

〈

u,Ψ i
〉

oW6
2

Ψ i =
∞

∑
i=1

i

∑
k=1

βik
〈

u,L∗Txk

〉

oW6
2

Ψ i

=
∞

∑
i=1

i

∑
k=1

βik
〈

Lu,Txk

〉

W1
2

Ψ i =
∞

∑
i=1

i

∑
k=1

βik
〈

K,Txk

〉

W1
2

Ψ i

=
∞

∑
i=1

i

∑
k=1

βikK(xk)Ψ i(x).

This completes the proof. �
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Now the approximate solutionun can be obtained by
truncating then− term of the exact solutionu as

un =
n

∑
i=1

i

∑
k=1

βikK(xk)Ψ i(x). (4.3)

Lemma 4.3.Assumeu is the solution of (3.1) andrn
is the error between the approximate solutionun and the
exact solutionu. Then the error sequencern is monotone
decreasing in the sense of‖.‖oW6

2
and‖rn(x)‖oW6

2
→ 0.

Proof: From (4.2) and (4.3), we obtain

‖u−un‖oW6
2
=

∥

∥

∥

∥

∥

∞

∑
i=n+1

i

∑
k=1

βikK(xk)Ψ i(x)

∥

∥

∥

∥

∥

oW6
2

.

Thus
‖u−un‖

oW6
2

→ 0, n→ ∞.

In addition

‖u−un‖
2
oW6

2

=

∥

∥

∥

∥

∥

∞

∑
i=n+1

i

∑
k=1

βikK(xk)Ψ i(x)

∥

∥

∥

∥

∥

2

oW6
2

=
∞

∑
i=n+1

(

i

∑
k=1

βikK(xk)Ψ i(x)

)2

.

Then,‖u−un‖oW6
2

is monotonically decreasing inn.

5 Numerical Results

In this section, four numerical examples are provided to
show the accuracy of the present method. All
computations are performed by Maple. The RKM does
not require discretization of the variables, i.e., time and
space, it is not effected by computation round off errors
and one is not faced with necessity of large computer
memory and time. The accuracy of RKM for the
fifth-order boundary value problems is controllable and
absolute errors are small with present choice ofx (see
Tables 1-4). The numerical results we obtained justify the
advantage of this methodology.

Example 5.1.We first consider the linear boundary
value problem







y(5)(x) = y−15ex−10xex
, 0< x< 1,

y(0) = 0, y′(0) = 1, y′′(0) = 0, y(1) = 0, y′(1) =−e.
(5.1)

The exact solution of (5.1) is given as [5,8,9]

y(x) = x(1− x)ex
.

Fig. 1: Absolute Error for Example 5.1.

After homogenizing the boundary conditions of (5.1),
we acquire



















































































u(5)(x)−u(x) = 1−5ex
[

2−3x+3x2
(

2−
5
e

)

+4x3
(

−
3
2
+

4
e

)]

−10ex
[

−3+6x

(

2−
5
e

)

+12x2
(

−
3
2
+

4
e

)]

−10ex
[

6

(

2−
5
e

)

+24x

(

−
3
2
+

4
e

)]

−5ex
[

24

(

−
3
2
+

4
e

)]

−15ex−10xex, 0< x< 1

u(0) = 0, u′(0) = 0, u′′(0) = 0, u(1) = 0, u′(1) = 0.
(5.2)

Using RKM for this example we obtain Table 5.1 and
Figure 5.1.

Example 5.2. We now consider the nonlinear
boundary value problem






y(5)(x) = e−xy2(x), 0< x< 1,

y(0) = 1, y′(0) = 1, y′′(0) = 1, y(1) = e, y′(1) = e.
(5.3)

The exact solution of (5.3) is given as [5,9]

y(x) = ex
.
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Table 5.1.The absolute error of Example 5.1 for boundary conditions at0.0≤ x≤ 1.0.

x Exact Solution RKM HPM [10] B-Spline [8]
0.0 0.0000 0.000 0.0000 0.0000
0.1 0.099465382 5.89×10−11 3×10−11 8.0×10−3

0.2 0.195424441 1.73×10−11 2×10−10 1.2×10−3

0.3 0.283470349 6.02×10−10 4×10−10 5.0×10−3

0.4 0.358037927 7.42×10−10 8×10−10 3.0×10−3

0.5 0.412180317 3.32×10−11 1.2×10−9 8.0×10−3

0.6 0.437308512 3.10×10−10 2×10−9 6.0×10−3

0.7 0.422888068 3.08×10−10 2.2×10−9 0.000
0.8 0.356086548 4.58×10−9 1.9×10−9 9.0×10−3

0.9 0.221364280 4.30×10−9 1.4×10−9 9.0×10−3

1.0 0.0 0.0 0.0 0.0

ADM [5] Sinc [12]
0.0000 0.0000
3×10−11 0.0000
2×10−10 0.1×10−5

4×10−10 0.3×10−5

8×10−10 0.3×10−5

1.2×10−9 0.0000
2×10−9 0.5×10−5

2.2×10−9 0.9×10−5

1.9×10−9 0.2×10−5

1.4×10−9 0.1×10−5

0.0 0.0

Table 5.2.The absolute error of Example 5.2 for boundary conditions at0.0≤ x≤ 1.0.

x Exact Solution RKM HPM [10] B-Spline[8]
0.0 0.0000 0.0000 0.0000 0.0000
0.1 1.105170918 5.19×10−9 1×10−9 7.0 ×10−4

0.2 1.221402758 0.60×10−9 2×10−9 7.2 ×10−4

0.3 1.349858808 3.19×10−9 1×10−9 4.1 ×10−4

0.4 1.491824698 2.50×10−9 2×10−8 4.6 ×10−4

0.5 1.648721271 3.03×10−9 3.1×10−8 4.7 ×10−4

0.6 1.822118800 9.60×10−9 3.7×10−8 4.8 ×10−4

0.7 2.013752707 4.20×10−8 4.1×10−8 3.9 ×10−4

0.8 2.225540928 4.09×10−9 3.1×10−8 3.1 ×10−4

0.9 2.459603111 5.46×10−8 1.4×10−8 1.6 ×10−4

1.0 2.718281828 0.0000 0.0000 0.0000

ADM [5] VIM [9]
0.0000 0.0000
1×10−9 1×10−9

2×10−9 2×10−9

1×10−9 1×10−9

2×10−8 2×10−8

3.1×10−8 3.1×10−8

3.7×10−8 3.7×10−8

4.1×10−8 4.1×10−8

3.1×10−8 3.1×10−8

1.4×10−8 1.4×10−8

0.0000 0.0000

Table 5.3.The absolute error (AE) of Example 5.3 for boundary conditions at 0.0≤ x≤ 1.0.

x Exact Solution
Approximate
Solution

AE, 1.0E−8
RKM

0.0 0.0 0.0 0.0
0.0806 0.07751644243 0.07751634304 0.003
0.1648 0.1525493985 0.1525493860 1.25
0.2285 0.2057939130 0.2057939053 0.77
0.3999 0.3364008055 0.3364007134 9.21
0.5 0.4054651081 0.4054650667 4.14
0.6923 0.5260885504 0.5260885142 3.62
0.7714 0.5717701944 0.5717701752 1.92
0.8836 0.6331848394 0.6331848843 4.49
0.9447 0.6651077235 0.6651077287 0.52
1.0 0.6931471806 0.6931471783 0.23

AE,1.0E−4 [12]
Sinc-Galerkin

0.0
0.0
0.2
0.2
0.4
0.1
0.2
0.3
0.2
0.5
0.0

After homogenizing the boundary conditions of (5.3),
we get
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Table 5.4.The absolute error of Example 5.4 for boundary conditions at0.0≤ x≤ 1.0.

x Exact
Solution

Approximate
Solution

AE
RKM

0.0 1.0 1.0 0.0
0.0100 1.105170918 1.105170918 0.0
0.1184 1.125694299 1.125694299 0.0
0.1517 1.163811041 1.163811041 0.0
0.2410 1.272521035 1.272521035 0.0
0.3604 1.433902861 1.433902861 0.0
0.4287 1.535260387 1.535260387 0.0
0.5000 1.648721271 1.648721271 0.0
0.6395 1.895532876 1.895532876 0.0
0.8482 2.335439276 2.335439276 0.0
0.9996 2.717194733 2.7171947329 1×10−10

1.0 2.718281828 2.718281828 0.0

AE,
1.0E−3 [12]
Sinc-Gal.

0.0
0.0
0.0
0.1
0.0
0.1
0.0
0.2
0.1
0.2
0.2
0.0

AE
[43 ]

0.0
7.79×10−10

7.83×10−7

1.36×10−6

3.005×10−6

2.52×10−6

2.57×10−7

5.04×10−6

1.58×10−5

1.33×10−5

2.10×10−10

0.0



































































































































































u(5)(x)−2e−x

[

1+ex

(

x−
x2

2
+x3

(

2−
5
e

)

+x4

(

−
3
2
+

4
e

))]

u(x)

= e−xu2(x)+e−x

[

1+ex

(

x−
x2

2
+x3

(

2−
5
e

)

+x4

(

−
3
2
+

4
e

))]2

−ex

[

x−
x2

2
+x3

(

2−
5
e

)

+x4

(

−
3
2
+

4
e

)]

−5ex

[

1−x+3x2

(

2−
5
e

)

+4x3

(

−
3
2
+

4
e

)]

−10ex

[

−1+6x

(

2−
5
e

)

+12x2

(

−
3
2
+

4
e

)]

−10ex

[

6

(

2−
5
e

)

+24x

(

−
3
2
+

4
e

)]

−5ex

[

24

(

−
3
2
+

4
e

)]

, 0< x< 1,

u(0) = 0, u′(0) = 0, u′′(0) = 0, u(1) = 0, u′(1) = 0.

(5.4)

Using RKM for this example we obtain Table 5.2.
Example 5.3.Consider the nonlinear boundary value

problem







y(5)(x) =−24e−y(x)+ 48
(1+x)5

, 0< x< 1,

y(0) = 0, y′(0) = 1, y′′(0) =−1, y(1) = ln2, y′(1) = 0.5.
(5.5)

The exact solution of (5.5) is given as [12]

y(x) = ln(x+1).

We use the following transformation to homogenize the
boundary conditions:

y(x) = u(x)− x+
x2

2
− x3

(

4ln2−
5
2

)

− x4(2−3ln2) .

After homogenizing the boundary conditions of (5.5),
we have






















u(5)(x) =−24e
−



u(x)+x−
x2

2
+x3(4ln2− 5

2)+x4(2−3ln2)





+ 48
(1+x)5 ,

u(0) = 0, u′(0) = 0, u′′(0) = 0, u(1) = 0, u′(1) = 0.
(5.6)

Using RKM for this example we obtain Table 5.3 and
Figure 5.2.

Fig. 2: Exact solution (AE) and Approximate Solution (AS) for
Example 5.3.

Example 5.4. This is the nonlinear boundary value
problem






y(5)(x)+ y(4)(x)+e−2xy2(x) = 2ex+1 0< x< 1,

y(0) = 0, y′(0) = 1, y′′(0) = 1, y(1) = e, y′(1) = e.
.

(5.7)
The exact solution of (5.7) is given as [12]

y(x) = ex
.
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After homogenizing the boundary conditions of (5.7),
we obtain


















u(5)(x)+u(4)(x) =−e−2x
(

u(x)+1+x+ x2

2 +x3(3e−8)+x4
(

11
2 −2e

)

)2

+2ex +48e−131,

u(0) = 0, u′(0) = 0, u′′(0) = 0, u(1) = 0, u′(1) = 0.
(5.8)

Using RKM for this example, we obtain Table 5.4.

Remark 5.1. Lamnii et al. [13] solved the problem
(3.1) by using sextic spline collocation method. He
obtained the accurate approximate solutions of this
problem for the smallh values. Zhang [41] investigated
approximate solution of the problem (3.1) by using
variational iteration method. In addition, the same
problem is solved by Noor and Mohyud-Din [9]
previously and they got better results by using the
variational iteration method. Lv and Cui [29] and Wang at
al. [42] studied only the linear fifth-order two-point
boundary value problems and Akram and Rehman [43]
solved two examples by RKM. We chose different
reproducing kernel functions and we obtained better
results. We also showed how to homogenize the boundary
conditions for Example 5.3. Homogenizing the boundary
conditions is necessary for this method. Therefore, this
work will be a new contribution for solving boundary
value problems by RKM.

Using our method we chose 36 points on[0,1]. In
Tables 1-4, we computed the absolute errors
|u(x, t)−un(x, t)| at the points
{(xi) : xi = i, i = 0.0,0.1, ...,1.0} .

Remark 4.2. RKM tested on four problems, one
linear and three nonlinear. A comparison with
decomposition method by Wazwaz [5], sixth B-spline
method by Caglar et al. [8], variational iteration and
homotopy perturbation methods by Noor and
Mohyid-Din [9,10] and Sinc-Galerkin method by Gamel
[12] were made and it was seen that the present method
yields good results (see Tables 1-4).

6 Conclusion

In this paper, we introduced an algorithm for solving the
fifth-order problem with boundary conditions. For
illustration purposes, we chose four examples which were
selected to show the computational accuracy. It may be
concluded that, the RKM is very powerful and efficient in
finding exact solution for a wide class of boundary value
problems. The method gives more realistic series
solutions that converge very rapidly in physical problems.
The approximate solution obtained by the present method
is uniformly convergent.

Clearly, the series solution methodology can be
applied to much more complicated nonlinear differential
equations and boundary value problems. However, if the
problem becomes nonlinear, then the RKM does not

require discretization or perturbation and it does not make
closure approximation. Results of numerical examples
show that the present method is an accurate and reliable
analytical method for the fifth order problem with
boundary conditions.
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