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Abstract: In this paper we consider a more general class of polynomials P(R(z)) introduced by Shah and Liman [10] of degree mr,
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1 Introduction

In a prize-winning essay on a problem of best
approximation, Bernstein [2],[3] proved and made
considerable use of an inequality concerning derivative of
polynomial. However the first result in this area was
connected with investigations of the well-known chemist
Mendeleev, who asked ?If the bound of a rational
polynomial over a given interval is known, how large may
its derivative in this interval?? He then conveyed this
result to A. A. Markov, who generalized the result to
polynomials of degree n and the analogue to Markov?s
result for the unit disk in the complex plane, instead of
interval [-1,1] was formulated by Bernstein, who proved

that if P(z) =
n

∑
j=0

a jz
j is a polynomial of degree at most n

and P′(z) is its derivative, then

max
|z|=1

|P′(z)| ≤ nmax
|z|=1

|P(z)|. (1.1)

Since the answer is provided in the form of inequality,
therefore there is always desire to refine this inequality,
which has motivated mathematicians to work in this field.
With this inspiration here we prove some Bernstein type
inequalities concerning the class of composite
polynomials which in turn yields the results for algebraic
polynomials as special cases.

The next inequality is a simple deduction from the
maximum modulus principle [9, p.346](see also [4] and

[6]), which states that if P(z) is a polynomial of degree at
most n, then

max
|z|=R>1

|P(z)| ≤ Rn max
|z|=1

|P(z)|. (1.2)

In both inequalities (1.1) and (1.2) equality holds only
when P(z) is a constant multiple of zn.

If we restrict ourselves to a class of polynomials
having no zero in |z|< 1, then the above inequality can be
sharpened. In fact, Erdös conjectured and latter Lax [8]
proved that if P(z) 6= 0 in |z| ≤ 1, then

max
|z|=1

|P′(z)| ≤
n

2
max
|z|=1

|P(z)| (1.3)

and

max
|z|=R>1

|P(z)| ≤
Rn + 1

2
max
|z|=1

|P(z)|. (1.4)

Turán [11] proved that, if P(z) has all its zeros in |z| ≤
1, then

max
|z|=1

|P′(z)| ≥
n

2
max
|z|=1

|P(z)|. (1.5)

Concerning the minimum modulus of a polynomial
P(z) and its derivative P′(z), Aziz and Dawood [1] proved
that, if P(z) has all its zeros in |z| ≤ 1, then

min
|z|=1

|P′(z)| ≥ n min
|z|=1

|P(z)|, (1.6)

and
min

|z|=R>1
|P(z)| ≥ Rn min

|z|=1
|P(z)|. (1.7)
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As an improvement of Inequality (1.4), Aziz and Dawood
[1], proved if P(z) does not vanish in the disk |z|< 1, then

max|z|=R>1|P(z)| ≤

(

Rn + 1

2

)

max
|z|=1

|P(z)|

−

(

Rn − 1

2

)

min
|z|=1

|P(z)|. (1.8)

In this paper we consider the more generalized class
of polynomials P(Q(z)), introduced by Shah and Liman
[10], where Q(z) is a polynomial of degree at most m

defined by (PoQ)(z) = P(Q(z)), so that PoQ ∈ Pnm and
prove the following interesting results:

First we prove the following inequality which not only
includes inequality (1.1), as a special case, but also gives
the compact generalization of inequality (1.2).

Theorem 1: If P(Q(z)) ∈ Pnm, then for any real or
complex number β , with |β | ≤ 1 and R ≥ r ≥ 1,

|P(Q(Rz))−β P(Q(rz))|

≤ |Rnm − rnmβ ||z|nm max
|z|=1

|P(Q(z))|, for |z| ≥ 1. (1.9)

The result is best possible and equality in inequality (1.9),
holds for P(Q(z)) = αznm, where Q(z) = zm.

Dividing both side inequality (1.9) by R− 1 and take
the limit as R → 1 along with β = r = 1, we get the
following result:

Corollary 1: If P(Q(z)) ∈ Pnm, then for |z| ≥ 1, we
have

|P′(Q(z))| ≤
nm

|Q′(z)|
|z|nm max

|z|=1
|P(Q(z))| (1.10).

Substituting Q(z) = z in inequality (1.10), we get
Bernstein’s inequality.

Taking β = 0 in the inequality (1.9), we get the
following result:

Corollary 2: If P(Q(z)) ∈ Pnm, then for R ≥ 1,

|P(Q(Rz))| ≤ |R|nm|z|nm max
|z|=1

|P(Q(z))|,

for |z| ≥ 1. (1.11)

For Q(z) = z, inequality (1.11) reduce to inequality
(1.2).

Next, we prove the following which includes the result
of Govil and Rahman [7] as a special case.

Theorem 2: If P(S(z)) is a polynomial of degree nm

such that P(S(0)) 6= 0 and Q(S(z)) = znmP(S( 1
z
)), then for

any complex number β with |β | ≤ 1 and R > r ≥ 1
|P(S(Rz))−β P(S(rz))|+ |Q(S(Rz))−β Q(S(rz))|

≤ {|Rnm−rnmβ ||z|nm+ |1−β |}max
|z|=1

|P(S(z))|, for |z| ≥ 1.

(1.12)

The result is best possible and equality in inequality (1.12),
holds for P(Q(z)) = znm + 1, where Q(z) = zm.

Dividing both side inequality (1.12) by R− 1 and take
the limit as R → 1 along with β = r = 1, we get the
following result:

Corollary 3: If P(S(z)) is a polynomial of degree nm

such that P(S(0)) 6= 0 and Q(S(z)) = znmP(S( 1
z
)), then for

|z| ≥ 1, we have

|P′(S(z))|+ |Q′(S(z))| ≤

{

nm|z|nm + 1

|S′(z)|

}

max
|z|=1

|P(S(z))|.

For S(z) = z, we have

|P′(z)|+ |Q′(z)| ≤ {n|z|n + 1}max
|z|=1

|P(z)|, for |z| ≥ 1.

(1.13)
Inequality (1.13), is a special case of result proved by
Govil and Rahman [7, Inequality (2.3)].

Substituting β = 0 in inequality (1.12), we get the
following result:

Corollary 4: If P(S(z)) is a polynomial of degree nm

such that P(S(0)) 6= 0 and Q(S(z)) = znmP(S( 1
z
)), then for

R > 1, we have

|P(S(Rz))|+ |Q(S(Rz))| ≤ {|Rnm||z|nm + 1}max
|z|=1

|P(z)|,

for |z| ≥ 1. (1.14)

For S(z) = z, inequality (1.14) gives

|P(Rz)|+ |Q(Rz)| ≤ {|Rn||z|n + 1}max
|z|=1

|P(S(z))|,

for |z| ≥ 1. (1.15)

Letting R → 1 in inequality (1.15), we have

|P(z)|+ |Q(z)| ≤ {|z|n + 1}max
|z|=1

|P(z)|, for |z| ≥ 1.

(1.16)
Next, we prove a result for the class of polynomials,

which does not vanish outside the unit disc and obtain
compact generalization of inequalities (1.6) and (1.7).

Theorem 3: If P(Q(z)) is a polynomial of degree nm

having all its zeros in |z| ≤ 1, then for any complex number
β with |β | ≤ 1 and R > r ≥ 1

min
|z|=1

|P(Q(Rz))−β P(Q(rz))|

≥ |Rnm − rnmβ ||z|nm min
|z|=1

|P(Q(z))|,

for |z| ≥ 1. (1.17)

The result is best possible and equality holds in
inequality (1.17), for P(Q(z)) = teiαznm

, t > 0, where
Q(z) = zm.

Dividing both side inequality (1.17) by R− 1 and take
the limit as R → 1 along with β = r = 1, we get the
following result:
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Corollary 5: If P(Q(z)) is a polynomial of degree nm

having all its zeros in |z| ≤ 1, then for |z| ≥ 1

min
|z|=1

|P′(Q(z))| ≥
nm|z|nm

|Q′(z)|
min
|z|=1

|P(Q(z))|. (1.18)

For |Q(z)| = z, inequality (1.18) will reduce to inequality
(1.6).
Substituting β = 0 in inequality (1.17), we get the
following:

Corollary 6: If P(Q(z)) is a polynomial of degree nm

having all its zeros in |z| ≤ 1, then for R > 1, we have

min
|z|=1

|P(Q(Rz))| ≥ |Rnm||z|nm min
|z|=1

|P(Q(z))|, for |z| ≥ 1.

(1.19)
For Q(z) = z, inequality (1.19) will reduce to inequality
(1.7).

We now prove the following interesting result, which
provides the compact generalization of inequality (1.8).

Theorem 4: If P(S(z)) is a polynomial of degree nm

which does not vanish in |z| < 1, then for every real or
complex number β with |β | ≤ 1 and R > r ≥ 1

P(S(Rz))−β P(S(rz))|

≤

{

|Rnm − rnmβ ||z|nm + |1−β |

2

}

max
|z|=1

|P(S(z))|

−

{

|Rnm −β ||z|nm −|1−β |

2

}

min
|z|=1

|P(S(z))|,

for |z| ≥ 1. (1.20)

The result is best possible and equality holds in
inequality (1.20), for P(Q(z)) = aznm + b, |a| ≤ |b|, where
Q(z) = zm.

Dividing both side inequality (1.20) by R− 1 and take
the limit as R → 1 along with β = r = 1, we get the
following result:

Corollary 7: If P(S(z)) is a polynomial of degree nm

which does not vanish in |z| < 1, then for R > 1, we have
for |z| ≥ 1

|P′(S(z))| ≤

{

nm|z|nm + 1

2|S′(z)|

}

max
|z|=1

|P(S(z))|

−

{

nm|z|nm − 1

2|S′(z)|

}

min
|z|=1

|P(S(z))| (1.21)

For S(z) = z, inequality (1.21) will reduce to

|P′(z)| ≤

{

n|z|n + 1

2

}

max
|z|=1

|P(z)|−

{

n|z|n − 1

2

}

min
|z|=1

|P(z)|.

(1.22)
Substituting β = 0 in inequality (1.20), we get the

following result:

Corollary 8: If P(S(z)) is a polynomial of degree nm

which does not vanish in |z|< 1, then for R > 1 and |z| ≥ 1

|P(S(Rz))| ≤

{

|Rnm||z|nm + 1

2

}

max
|z|=1

|P(S(z))|

−

{

|Rnm|z|nm − 1

2

}

min
|z|=1

|P(S(z))|. (1.23)

For S(z) = z inequality (1.23), reduces to

|P(Rz)| ≤

{

|Rn||z|n + 1

2

}

max
|z|=1

|P(z)|

−

{

|Rn|z|n − 1

2

}

min
|z|=1

|P(z)|, (1.24)

for |z| ≥ 1, which is the compact generalization of
inequality (1.8).

Letting R → 1 in inequality (1.24), we have

|P(z)| ≤

{

|z|n + 1

2

}

max
|z|=1

|P(z)|−

{

|z|n − 1

2

}

min
|z|=1

|P(z)|,

(1.25)
for |z| ≥ 1.

2 Lemmas

For the proof of these Theorems we need the following
lemmas.
The first lemma is a special case of the result due to Govil
et al. [5].

Lemma 1: If G(z) is a polynomial of degee at most n

having all its zeros in |z| < k, where k ≤ 1, then
|G(Rz)|> |G(rz)|, for |z| ≥ 1 and R > r ≥ 1.

Lemma 2: If P(S(z)) is a polynomial of degree nm

which does not vanish in |z| < 1, then for every real or
complex number β with |β | ≤ 1 and R ≥ r ≥ 1

|P(S(Rz))−β P(S(rz))|

≤ |Q(S(Rz))−β Q(S(rz))|, for |z| ≥ 1.

Proof: Clearly the result is true for R = 1. Hence we
suppose that R > r ≥ 1. Since all the zeros of P(z) lie in
|z| ≥ 1, therefore for every real or complex number λ
with |λ |> 1, the polynomial G(z) = P(S(z))−λ Q(S(z)),

where Q(S(z)) = znmP(S( 1
z
)) has all its zeros in |z| ≤ 1.

Now applying Lemma 1 to the polynomial G(z), we get

|G(Rz)|> |G(rz)|, for |z|= 1 and R > r ≥ 1.

Since all the zeros of G(z) lie in |z| < 1, therefore all the

zeros of G(Rz) lie in |z| ≤ 1
R
< 1. Hence, for any real or
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complex number β with |β | ≤ 1, we have by Rouché’s
theorem all the zeros of the polynomial

H(z) = G(Rz)−β G(rz) = (P(S(Rz))−β P(S(rz)))

−λ (Q(S(Rz))−β Q(S(rz))). (1.26)

lie in |z| < 1 for |λ | > 1 and R > r ≥ 1. Inequality (1.26)
implies

|P(S(Rz))−β P(S(rz))| ≤ |Q(S(Rz))−β Q(S(rz))|,

for |z| ≥ 1 and R > r ≥ 1. (1.27)

For if this is not true, then there is a point z = zo with
|zo| ≥ 1, such that

|P(S(Rzo))−β P(S(zo))|> |Q(S(Rzo))−β Q(S(z0))|,

for R > 1.

We take

λ =
P(S(Rzo))−β P(S(rzo))

Q(S(Rzo))−β Q(S(rz0))
.

So that |λ | > 1, for this choice of λ , we have H(zo) = 0
for |zo| ≥ 1, which is contradiction to the fact that all the
zeros of H(z) lie in |z|< 1. Thus

|P(S(Rz))−β P(S(rz))| ≤ |Q(S(Rz))−β Q(S(rz))|,

for |z| ≥ 1 and R > r ≥ 1.

3 Proof of Theorems

Proof of Theorem 1: For R = 1 there is nothing to prove.
Henceforth we assume R > 1. If max|z|=1 |P(Q(z))| = M,

then |P(Q(z))| ≤ M, for |z| = 1. Therefore, by Rouché’s
theorem it follows that all the zeros of G(z) = P(Q(z))+
λ znmM lie in |z|< 1, for every λ with |λ |> 1.

Now, by lemma 1 we have |G(z)| ≤ |G(R(z))|, for
|z| = 1 and R > r ≥ 1. Since all the zeros of the

polynomial G(R(z)) lie in |z| < ( 1
R
) < 1, therefore, for

any real or complex number β with |β | < 1, we have by
Rouché’s theorem, all the zeros of the polynomial

G(Rz)−G(rz) = (P(Q(Rz))−β P(Q(rz)))

+λ (Rnm− rnmβ )znmM

also lie in |z|< 1 for every R > r ≥ 1 and |λ |> 1.

This implies, for |z| ≥ 1 and R > r ≥ 1

|P(Q(Rz))−β P(Q(rz))| ≤ |Rnm −β ||z|nm max
|z|=1

|P(Q(z))|.

For if this is not true, then there is some point z = zo with
|zo| ≥ 1, such that

|P(Q(Rzo))−β P(Q(rzo))|> |Rnm − rnmβ ||zo|
nmM,

we take

λ =
P(Q(Rzo))−β P(Q(rzo))

(Rnm − rnmβ )znm
o M

,

then |λ | > 1 and for this choice of λ we have G(Rzo)−
β G(rzo) = 0 with |z| ≥ 1, which is a contradiction. Hence

|P(Q(Rz))−βP(Q(rz))| ≤

|Rnm − rnmβ ||z|nm max
|z|=1

|P(Q(z))|.

for |z| ≥ 1 and R > r ≥ 1. That proves the Theorem 1.

Proof of Theorem 2: If max|z|=1 |P(Q(z))| = M, then

|P(Q(z))| ≤ M, for |z| = 1. Therefore, for any real or
complex number α with |α| > 1 we have by Rouché’s
theorem, that the polynomial G(z) = P(S(z))+αM does
not vanish in |z| < 1. Now, applying Lemma 2 to the
polynomial G(z) we get for every real or complex number
β with |β | ≤ 1,

|P(S(Rz))−β P(S(rz))+α(1−β )M|

≤ |Q(S(Rz))−β Q(S(rz))+α(Rnm − rnmβ )znmM|,

(3.1)

for |z| ≥ 1 and R > r ≥ 1, where Q(S(z)) = znmP(S( 1
z
)).

Choosing the argument of α in the right hand side of
inequality (3.1), we have

|Q(S(Rz))−β Q(S(rz))+α(Rnm − rnmβ )znmM|

= |α||Rnm − rnmβ ||z|nmM−|Q(S(Rz))−β Q(S(rz))|.

Therefore, from inequality (3.1) , we have

|P(S(Rz))−β P(S(rz))|− |α||1−β |M

≤ |α||Rnm − rnmβ ||z|nmM−|Q(S(Rz))−β Q(S(rz)|,

for |z| ≥ 1 and R > r ≥ 1. Equivalently, for |z| ≥ 1 and
R > r ≥ 1, we have

|P(S(Rz))−β P(S(rz))|+ |Q(S(Rz))−β Q(S(rz))|

≤ |α|{|Rnm − rnmβ ||z|nm + |1−β |}max
|z|=1

|P(S(z))|.

Let |α| → 1, we get for R > r ≥ 1

|P(S(Rz))−β P(S(rz))|+ |Q(S(Rz))−β Q(S(rz))|

≤ {|Rnm − rnmβ ||z|nm + |1−β |}max
|z|=1

|P(S(z))|,

|z| ≥ 1. That proves the Theorem 2.

Proof of Theorem 3: If P(Q(z)) has a zero on |z| = 1,
then the result is trivial. So we assume all the zeros of
P(Q(z)) li in |z| < 1. If m = min|z|=1 |P(Q(z))|, then

m > 0 and m ≤ |P(Q(z))| for |z| = 1. Suppose that
P(Q(z)) has all its zeros in |z| ≤ 1. Therefore if α is any
complex number with |α| < 1, then it follows by
Rouché’s theorem that the polynomial
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F(z) = P(Q(z)) − αmznm has all its zeros in |z| < 1.
Further, we have by lemma 1

|F(rz)| < |F(Rz)|, for |z|= 1 and R > r ≥ 1.

Since all the zeros of F(Rz) lie in |z| < 1
R
< 1, it follows

from Rouché’s theorem for every real or complex number
β with |β | ≤ 1 and R > r ≥ 1, that the polynomial F(Rz)−
β F(rz) has all its zeros in |z|< 1. That is

F(Rz)−β F(rz) 6= 0 for |z| ≥ 1 and R > r ≥ 1.

or equivalently

G(z)= (P(Q(Rz))−β P(Q(rz)))−αm(Rnm−rnmβ )zn 6= 0.

This give for every |β | ≤ 1, |z| ≥ 1 and R > r ≥ 1

|P(Q(Rz))−β P(Q(rz))| ≥ |α|m|Rnm − rnmβ ||z|nm
.

For if this is not true, there is a point z = zo with |zo| ≥ 1
such that

|P(Q(Rzo))−β P(Q(rzo))|< |α|m|Rnm − rnmβ ||zo|
nm
.

We take

α =
P(Q(Rzo))−β P(Q(rzo))

m(Rnm − rnmβ )znm
o

,

then |α| < 1 and with this choice of α, we have for
inequality G(zo) = 0 for |zo| ≥ 1. But this is contradiction
to the fact that G(z) 6= 0 for |z| ≥ 1. Thus

|P(Q(Rz))−β P(Q(z))| ≥ |α|m|Rnm − rnmβ ||z|nm

Letting |α| → 1, we get for |β | ≤ 1, |z| ≥ 1 and R > r ≥ 1

|P(Q(Rz))−β P(Q(rz))| ≥ m|Rnm − rnmβ ||z|nm
.

That proves the Theorem 3.

Proof of Theorem 4: If m = min|z|=1 |P(S(z))| then

m ≤ |P(S(z))| for |z| ≤ 1. If P(S(z)) has all its zeros in
|z| ≥ 1 then for any given complex number α with
|α| ≤ 1 the polynomial G(z) = P(S(z))+mαznm does not
vanish in |z| < 1. Now applying Lemma 2 to the
polynomial G(z), we get

|P(S(Rz))−β P(S(rz))+αm(Rnm− rnmβ )znm|

≤ |Q(S(Rz))−β Q(S(rz))+αm(1−β )|,

for |z| ≥ 1 and R > r ≥ 1 where Q(S(z)) = znmP(S( 1
z
)).

Choosing the argument of α in the left hand side of
above inequality such that

|P(S(Rz))−β P(S(rz))+αm(Rnm− rnmβ )znm|

= |P(S(Rz))−β P(S(rz))|+ |α|m|Rnm− rnmβ ||z|nm|

for |z| ≥ 1, we get
|P(S(Rz))−β P(S(rz))|+ |α|m|Rnm− rnmβ ||z|nm

≤ |Q(S(Rz))−β Q(S(rz))|+ |α|m|1−β |,

for |z| ≥ 1 and R > r ≥ 1. Let |α| → 1, we obtain for every
β with |β | ≤ 1,

|P(S(Rz))−β P(S(rz))|

≤ |Q(S(Rz))−β Q(S(rz))|

+m{|Rnm− rnmβ ||z|nm −|1−β |}. (3.2)

for |z| ≥ 1 and R > r ≥ 1. The inequality (3.2), with the
help of Theorem 2 gives

|P(S(Rz))−β P(S(rz))| ≤
{

|Rnm − rnmβ ||z|nm + |1−β |

2

}

max
|z|=1

|P(S(z))|

−

{

|Rnm −β ||z|nm−|1−β |

2

}

min
|z|=1

|P(S(z))|,

for |z| ≥ 1.

This completes the proof of the Theorem 4.
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