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Abstract: In this work we introduce a wide generalization of dynamisgétems over graphs, by considering that the states of the
entities can take values in an arbitrary Boolean algebra #fittlementsp € N, p > 1. Then the orbit structure of these more general
parallel dynamical systems over undirected graphs whereublution operator is an arbitrary maxterm or minterm edyaed. Finally,

we also study the cases of parallel dynamical systems whagetien update is defined by means of independent local &ool
functions.
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1 Introduction to update different entities, which can be the restriction
of a global one (se€l[10]) or independently defined (see

A graph dynamical system (GDS) is a dynamical system [3]). Thus, general PDS can have more involved update

constructed over a graph whose vertices, naemgidies, schemes.

can have different states, such that all these states ®geth  ca zre also updated in a parallel or synchronous

at a given time constitute a state of the system which canyanner by applying local functions on a subset that

evolve thanks to an updating scheme. The states of thgyniains the (state value of the) cell. Nevertheless, in the

vertices are commonly modeled by the Boolean values Qag¢ few years some extensions of the concept of CA,

and 1, while the updating scheme consists of as manygnsidering sequential or asynchronous updating, have

local functions as vertices and a series of rules tha'appeared in the literature (se#1[19,23)). In fact, the

indicate the order in which the local functions act. concept of SDS constitutes a generalization of such a CA
When all the local functions act synchronously the gytension.

system is calledparallel (PDS) [1,2,3,4,5,10. In

contrast, when the local functions follow an order to act, th BN arefa generalizt_ati?n of (finitef) goDoSIegn CA bgt "?‘t
the system is callesequential (SDS) [L0,20]. e same time, a particular case o y considering

In the specific literature, other related topics appeare odes as entities. One of the main differences with CA is

previously, asellular automata (CA) [15,22,25,26] and hat, in .BN’ the stgte of each node. is not affected
Boolean networks (BN) [16,17], which are, in fact necessanly by its neighbors, but pqtenually by any node
particular cases of GD5 T ' " in the network. Thus, the uniform structure of

CA, when finite, can be considered as a special kind oinenghborho_od n- CA . disappears. quever, some
PDS by considering cells as entities. Nevertheless, CA argomoge.nelty remains, since each node is affgctedk by
restricted cases of PDS in several ways. First of all, for connections with other (or the same) entities. T.h's
CA seen as a PDS, the dependency graph, which is derive! mogeneity makes BN a particular case of GDS, since
from the lattice and the neighborhood structure, is regularl GPS connections can be totally arbitrary. Another
whereas the graph of a general PDS is arbitrary. Secondly portant difference between BN and CA is that, for BN,

CA have a fixed local function or rule, associated to everybCaI Boolear_l functions oik—_vanables are generated
cell, while general PDS can have distinct local functions'@ndomly, which provides a different update schedule for
each entity. This idea has been carried out and extended
1 The abbreviations GDS, PDS, SDS, CA and BN will be used for PDS in two directions. Firstly, as can be seeni [
for the singular and plural forms of the corresponding terms local Boolean functions acting on each entity can have
since it seems better from an aesthetic point of view. different number of variables (what cannot occur for BN);
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and secondly, they can be totally independent for each This paper is organized as follows. In Section 2, we
entity [3]. recall some notation concerning Boolean algebras and
GDS, as a concept that generalizes theintroduce the concepts of parallel and sequential
aforementioned ones, is relatively young and unexploreddynamical systems on general Boolean algebras. Also in
In fact, the first ideas appeared i6],[ which constituted this second section, we determine the orbit structure of
an important step in the development of the mathematicaparallel dynamical systems on general Boolean algebras,
foundations for the theory of Computation. In this work, whose evolution operator is given by the simplest
sequentially updated cellular automata (SCA) overmaxtermOR and the simplest minterrAND. In Section
arbitrary graphs are employed as a paradigmatic3, we present a convenient adaptation of the Stones’
framework. This first work was followed byr], [8] and  representation theorem on which is based the posterior
[9], where the authors developed this theory, analyzingdevelopment that allows us to describe how the orbit
the asymptotic behavior of such mathematical modelsstructure of a parallel dynamical system on a general
Later, many other works have appeared in order toBoolean algebra is, either with a maxterm or minterm as
describe the behavior of these dynamical systems (see [ evolution operator or with an evolution operator
2,3,4,5,10]) and also as applications of them to other constituted by independent local functions.
qguestions (se€lp,14,13,18)).
In all of these works, the entities in the model can
only have two state values, i.e., each entity can be eithep preliminaries and first results
activated or deactivated. This is usually modeled by

means of Boolean variableg ?{07 1,}’ i =12...n, Usually, in order to get a graphical idea of the situation,
wheren is the number of entities, in such a way that gyery entity is represented by a vertex of an undirected

x =1 (resp.x = 0) means that the entityis activated gra5h and two vertices are adjacent if their states
(resp. deactivated). However, the original definition of CA jfuence each other in the update of the system. The

in [25] contemplates the possibility that the cells take \,ngirected graph so built is called th@ndirected)

state values in a finite set, although subsequently th&jcnendency aranh of the system (sed.
majority of studies have been made in the case of Booleanephc we ge%c?rp‘)ninate thig grapé _ (E})E) whereV —

CA. In fact, in experimental models, the state values of{l 2,....n} is the vertex set and is the edge set, then

the entities can belong to a more general (finite) set. Thigo, each vertex/entity ¥ i < n, it is natural to consider
situation naturally appears, for instance, when eachyentit i, it state; € {0,1}. Thatis, the entity can be activated
can have different levels of activation or intensity, 5 qeactivated.

belonging to a totally ordered finite set which can be = o ihe other hand, for every vertex/entitycd < n, we

represented by0,1,...,m} (see 4 for this approach in  neeq to consider all the vertices which influence it. Thus,
the context of probabilistic Boolean networks); or when .o qenote

each entity consists of several sub-entities, which can be
activated or deactivated. As(i)={jeV:{j,iteE}

This last conception has inspired our extended model
in this work. In this sense, we introduce a wide the sets of vertices which are adjacent to the vertex
generalization of GDS, by considering that the state  Nevertheless, in many occasions, the influences are
values of the entities can belong to an arbitrary Booleamot bidirectional. This situation can be represented by an
algebra B with 2P elements,p € N, p > 1. This  arc whose initial vertex is the influencing entity and the
consideration widely extends the traditional one where itfinal vertex corresponds to the influenced entity, so
is assumed that every entity can take values only in theybtaining a directed graph or digraph of relations. The
simplest Boolean algebi@®, 1}. directed graph so built is called thierected dependency

In particular, we develop some techniques which graph of the system. In order to unify the notation in our
allow us to study the orbit structure of these dynamicalresults, it will be also denoted bg = (V,E), although in
systems. As an application, we study the orbit structure othis caseE is a set of arcs instead of edges. With the same
parallel dynamical systems over undirected graphs whergim, given a directed dependency graph asdv, Ag(i)
the evolution operator is an arbitrary maxterm or will stand for the set of vertice§ € V such that there
minterm, using and generalizing at the same time theexists an arc fronj toii.
results in [l]. Moreover, taking into account the results in Observe that ({0,1},V,A,’,0,1) is the simplest
[3, we also analyze the case of parallel dynamicalBoolean algebra, being
systems on general Boolean algebras whose evolution

update scheme is defined by means of independent local 1v0=0v1l=1v1=1, ov0o=0
functions chosen amon@R,AND,NAND and NOR. IN0=0A1=0A0=0, IN1=1
Finally, as a consequence, the results for parallel =0, 0=1

dynamical systems over directed dependency graphs in
[2] and [3] can be also extended to this more general Recall (see for instance]]) that a Boolean algebra
context. (B, Y, A,,0,1) is a bounded distributive latticgB, ¥, A)
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with ordered structure given by section can be easily adapted to study PDS over directed
graphs and SDS over directed or undirected graphs.
XSYE= XY Yy=y<=XAYy=X (1) The first question we deal with is the problem of
determining the orbit structure of a POB,G,F] where
and such that F = OR(resp.F = AND).

oY :BxB—» BisaninneroperationiBsuchthaky  Theorem 2.1.Let [B,G,OR] be the parallel dynamical
y = sup{x,y}, X,y € B, when considering the ordered System associated to the maxte@R over an undirected
structure ofB as a lattice. graphG = (V,E), where the vertices/entities take values
e\ :BxB—»BisaninneroperationiBsuchthak.  in a Boolean algebr& with 2P elementsp € N, p > 1.
y = inf{x,y}, x,y € B, when considering the ordered Then, all the orbits of this system are fixed points or

structure o8 as a lattice. eventually fixed points.
oX € B stands for the complementw€ B (i.e.x Y X =1 More precisely, the system presents exactlyfired
andx A X = 0). points and the maximum number of iterations needed by
¢O = inf(B) satisfies thak ¥ O = x andx A O = O, an eventually fixed point to reach the corresponding fixed
x e B. one is at most as large as the diameter d of the dependency

ol = sup(B) satisfies thax v | =1 andx A | =x,x€ B.  graph.

Proof. It is not difficult to check that if all the

Here, we introduce a wide generalization of parallel ertices/entities have the same initial state value, i.e
dynamical systems over graphs, by considering that the/ o 0 . N
X - = Xp, then they remain so forever. Since

states of the entities can take values in an arbitrary’l — 72 =

Boolean algebraB, v, 1./, 0,1) of 2P elementsp € N, X €B forll =1,2,...,n, the possible initial state vallues
p>1. for an entity are exactlyPand consequently this provides

o . ) 2P distinct fixed points of the system.
Definition 2.1.LetG= (V, E) be a (directed or undirected) In general, denoting by

graph withV = {1,2, ..., n}. Then the following map

0,0 0
F :Bn_>Bn7 F(X17X27"'7Xn):(ylay27"'7yn)7 a Sup{x:bxz’“.’xn}’
we are able to prove tha€ = a for i = 1,2,...,n and
k > d. In other words, the maximum number of iterations
to attain an eventually fixed point is at most as large as the
diameter of the dependency graph.

In order to do that, observe that given an entjtjor
every entityj, j # i, there exists a path of length less than
or equal tod joining i andj.

Then, thanks to the distributive property of the
supremum, we have

wherey; is the updated state of the entity/vertexy
locally applying the functionF over the states of the
vertices in{i} UAg(i), constitutes a discrete dynamical
system called aparallel (discrete) dynamical system
(PDS) on the Boolean algebi, over the dependency
graph G and with evolution operatoF, which will be
denoted byB, G, F].

In general, we will writext, to indicate the state value
of the entityi afterk iterations of the evolution operatBr,
while x? will stand for the initial state value of the entity xd > sup{xio,x?}
Definiton 2.2. Let G = (V,E) be a (directed or
undirected) graph with V. = {1,2,...,n} and
T=TyTh--- T a permutation or/. Then the following .
map 1=

Since, this inequality yields for eveljy-# i,

_ . pn n
[F, 1M =Fro---oFgoFy :B"— B, On the other hand, it is clear that

whereFy; : B" — B" is the update function on the state ‘
vector(x, X, . .., Xn) Which updates the state of the vertex X <a
1t while keeping the other states unchanged, constitutes

a discrete dynamical system callegeguential (discrete) ~ 'oF everyk e N.

dynamical system (SDS) on the Boolean algebr8, over Both inequalities allow us to infer thaf = a. As this

the dependency grapB and with evolution operatof, reasoning can be _d_one foe=1,...,n, afterd iterations

which will be denoted byB, G, F, 7. all thedvertlces/gntltles have the same state vatlueg._,
Here, we mainly focus on the study of PDS over x| =>§ = .- =x3 = a, and they remain so forever, giving

undirected graphs whose vertices/entities take values iRS & result a fixed point of the systeim.

an arbitrary Boolean algeb&with 2P elementsp € N, Dually, we have

p > 1. As usual, we will assume that the graph is Theorem 2.2.Let [B,G,AND] be the parallel dynamical
connected; otherwise one can work on each connectedystem associated to the minteAND over an undirected
component of the graph analogously. Nevertheless, thgraphG = (V,E), where the vertices/entities take values in
kind of tools and reasonings which we develop in the nexta Boolean algebrB with 2P elementspe N, p > 1. Then,
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all the orbits of this system are fixed points or eventually

fixed points.
More precisely, the system presents exactlyfized

points and the maximum number of iterations needed by
an eventually fixed point to reach the corresponding fixed X Vi
one is at most as large as the diameter of the dependency *! Yi

graph.

Although these first results are quite intuitive, this
intuitiveness disappears when we try to deal with the
general problem of determining the orbit structure of a

PDS [B,G,F], where F is an arbitrary maxterm or

Consider now the Boolean algebra
({0,1}P,v,A/,0,1), whose elements arep-tuples
(X1,%2,...,Xp), Wherex; € {0,1} and,

'(X1,X2a---7Xp)\/(Y17YZ7--- 3yp) = (215225"'7ZP)1 Zj =

o(X1, X2, ,Xp) A (Y1,Y2,+,¥p) = (Z,22,...,2p),
Zj = Xj \Yj

®(X1,X2, - %n) = (X1, X, -+, Xp)

0= (0,0,...,0)

ol1=(11,...,1)

minterm. It motivates the development of the techniquesHere, we are denoting in the same way the disjunction,

which we introduce in the next section.

3 Main results

conjunction and complement operators of the Boolean
algebras {0,1} and {0,1}P, since they can be
distinguished easily from the context.

An atom of({0,1}P,\,A,,0,1) is ap-tuple with 1 in
one of the positions and 0’s in the rest of positions. Then,

As was explained, the main purpose of this section is toreasoning as abov#, : B — {0,1}P defined by (0) =
describe the orbit structure of PDS over undirected graphg and

where the vertices/entities take values in a given Boolean

algebra(B, Y, A,”,0,1) with 2P elementspe N, p > 1.

More precisely, we will show how to translate the
known results for the simplest case whBr= {0,1} to
this more complex scenario. In this sense, &iene's
Representation Theorem for Boolean algebras (see, for
instance, 21]) will play an essential role.

Theorem 3.1. Let [B,G,F] be the parallel dynamical
system associated to an evolution operdfolover an
undirected graplc = (V,E), where the vertices/entities
take values in a Boolean algebBawith 2P elements,
p € N, p > 1. Then, the state value of any entitgan be
represented by a Boolean state value
(Xi1,Xi2,---,Xip), With xij € {0,1} for j =1,2,...,p, such
that the updating of thg¢-th coordinate only depends on

the j-th coordinates of the state value vectors of the

entities in the sefi} UAG(i).

Proof. Recall that, according to the ordered structure

described in 1), the atoms of the Boolean algebrB are
the minimal elements oB\ {O}. In particular, sinceB
has 2 elements, B has p atoms. Denote by
A= {ag,ay,...,ap} the set of atoms oB, and by #(A)
the power set (set of subsets) Af As is well-known,
(2(A),U,n,/,0,A) is a Boolean algebra ofP2elements
(see, for instance2fl]).

Every elemenk € B\ {O} can be univocally expressed
as the disjunction (supremum) of a set of atoms

S(: {axl,axz,...,axr} S e@(A),

wherer depends om. That is,

1<r<p,

X=28y Y8y Y - Yay =sup{ay,ax,...,a}-
Then, the map
®:B— Z(A

defined by®(O) = 0 and®(x) = S is an isomorphism of
Boolean algebras (Stone’s Theorem).

vector®

. 1 ifay €
W(X) = (X1,%2,...,Xp) With Xxj= {O i az ¢§
is an isomorphism of Boolean algebras.

Bearing this in mind, let us takéB,G,F] the PDS
associated to the evolution operakor B" — B", over the
undirected graph G (V,E) whose vertices
V ={1,2,...,n} take values in the Boolean algetBaof
2P elements. Then, without loss of generality, we can
assume that the entities take values §0,1} by
identifying eachx € B with ¥(x) € {0,1}P. That is, the
tate value of any entitiycan be represented by a Boolean
state value vecto(xi1,%z,...,Xp), with x;; € {0,1} for
j = 17 27 AR p

Hence, we have to analyze how Boolean functions act
over the Boolean algebf®, 1}P. A Boolean function of
variables ovef0,1}P is a map

L:{0,1}P"— {0,1}P

where L(X1,Xz,...,Xn) € {0,1}P is obtained from
X1, X2, ..., %y € {0,1}P using the logicaAND, the logical
OR, the logicalNOT and the elemen®3, 1 € {0,1}P.

In particular, if (Xg,Xg,..., %) € {0,1}" and
Xi = (Xilaxi27' . le) € {OJ 1}p

AND : {0,1}"" —; {0,1}P,
is defined byAND(Xy,...,Xn) = (Y1,...,Yp), Wherey; =
AND (X1j,X2j, - - - s Xnj)-
Likewise,
OR: {0,1}P" —; {0,1}P
is given by OR(Xi,...,Xn)

Yj = OR(X1j,X2j, - .-, Xnj)-
On the other hand,

= (Y1,..-,Yp), Where

":{0,1}P — {0,1}P
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is defined by(xq, Xz, ..., Xp)" = (X1, X5, .., Xp). {0,1}P, we also solve the problem of studying systems
Therefore, since a Boolean evolution operator where the entities can take state values in different (Jinite
Boolean algebras.
F:{0,1}P"— {0,1}™ In relation to previous studies in this direction on BN

. [24], we study completely the problem when the state
of a PDS on the Boolean algebf@,1}P consists ofn  values set is any Boolean algebra in the more general

(local) Boolean functions, context of PDS.
on o In particular, we analyze the orbit structure of PDS
L:{0,1}""— {0,1} over undirected graphs. Nevertheless, the kinds of tools

, ) ) . ) and reasonings which we develop in this work can be
which act on an entity and its adjacent ones, it can bg;geq to study PDS over directed graphs and SDS over
expressed by means of the Boolean functiéhtD, OR directed or undirected graphs.
the logical NOT and the elements0,1 € {0,1}P. This also constitutes an important issue for
Moreover: from thg argumentation above it follows that applications, since it provides an appropriate model for
the updating of thg-th coordinate of a state value vector ihae case where entities of a system are composed of a

(Xi1,X2,-,Xip) of a vertexi, only depends on thg-th finite number of parts that can be activated or deactivated.
coordinates of the state value vectors of itself and its

adjacent ones.]
In view of that, we can translate the results obtained in
[1] to this much more general context as follows.

Corollary 3.1. Let [B,G,MAX] be the parallel dynamical Thjs work has been partially supported by the Spanish
system associated to a maxtekiX over an undirected npational grant MTM2011-23221 and by the grant

graphG = (V,E), where the vertices/entities take values pg(-2014-001-A.
in a Boolean algebr8. Then the periodic orbits of this
system are fixed points or 2-periodic orbits.

As usual, dually we have,

Corollary 3.2. Let [B,G,MIN] be the parallel dynamical

system associated to a minteiN over an undirected [1]J.A. Aledo, S. Martinez, F.L. Pelayo and J.C. Valverde,
graphG = (V,E), where the vertices/entities take values  Mathematical and Computer Modellif®$, 666-671 (2012).

in a Boolean algebr®. Then the periodic orbits of this [2]J.A. Aledo, S. Martinez and J.C. Valverde, Applied
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