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Abstract: In this work we introduce a wide generalization of dynamicalsystems over graphs, by considering that the states of the
entities can take values in an arbitrary Boolean algebra with 2p elements,p ∈ N, p ≥ 1. Then the orbit structure of these more general
parallel dynamical systems over undirected graphs where the evolution operator is an arbitrary maxterm or minterm is analyzed. Finally,
we also study the cases of parallel dynamical systems whose evolution update is defined by means of independent local Boolean
functions.
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1 Introduction

A graph dynamical system (GDS) is a dynamical system
constructed over a graph whose vertices, namedentities,
can have different states, such that all these states together
at a given time constitute a state of the system which can
evolve thanks to an updating scheme. The states of the
vertices are commonly modeled by the Boolean values 0
and 1, while the updating scheme consists of as many
local functions as vertices and a series of rules that
indicate the order in which the local functions act.

When all the local functions act synchronously the
system is calledparallel (PDS) [1,2,3,4,5,10]. In
contrast, when the local functions follow an order to act,
the system is calledsequential (SDS) [10,20].

In the specific literature, other related topics appeared
previously, ascellular automata (CA) [15,22,25,26] and
Boolean networks (BN) [16,17], which are, in fact,
particular cases of GDS.1.

CA, when finite, can be considered as a special kind of
PDS by considering cells as entities. Nevertheless, CA are
restricted cases of PDS in several ways. First of all, for a
CA seen as a PDS, the dependency graph, which is derived
from the lattice and the neighborhood structure, is regular,
whereas the graph of a general PDS is arbitrary. Secondly,
CA have a fixed local function or rule, associated to every
cell, while general PDS can have distinct local functions

1 The abbreviations GDS, PDS, SDS, CA and BN will be used
for the singular and plural forms of the corresponding terms,
since it seems better from an aesthetic point of view.

to update different entities, which can be the restriction
of a global one (see [1,10]) or independently defined (see
[3]). Thus, general PDS can have more involved update
schemes.

CA are also updated in a parallel or synchronous
manner by applying local functions on a subset that
contains the (state value of the) cell. Nevertheless, in the
last few years some extensions of the concept of CA,
considering sequential or asynchronous updating, have
appeared in the literature (see [11,19,23]). In fact, the
concept of SDS constitutes a generalization of such a CA
extension.

BN are a generalization of (finite) Boolean CA but, at
the same time, a particular case of GDS by considering
nodes as entities. One of the main differences with CA is
that, in BN, the state of each node is not affected
necessarily by its neighbors, but potentially by any node
in the network. Thus, the uniform structure of
neighborhood in CA disappears. However, some
homogeneity remains, since each node is affected byk
connections with other (or the same) entities. This
homogeneity makes BN a particular case of GDS, since
in GDS connections can be totally arbitrary. Another
important difference between BN and CA is that, for BN,
local Boolean functions ofk−variables are generated
randomly, which provides a different update schedule for
each entity. This idea has been carried out and extended
for PDS in two directions. Firstly, as can be seen in [1],
local Boolean functions acting on each entity can have
different number of variables (what cannot occur for BN);

∗ Corresponding author e-mail:jose.valverde@uclm.es

c© 2015 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/090417


1804 J. A. Aledo et. al. : Graph Dynamical Systems with General Boolean States

and secondly, they can be totally independent for each
entity [3].

GDS, as a concept that generalizes the
aforementioned ones, is relatively young and unexplored.
In fact, the first ideas appeared in [6], which constituted
an important step in the development of the mathematical
foundations for the theory of Computation. In this work,
sequentially updated cellular automata (SCA) over
arbitrary graphs are employed as a paradigmatic
framework. This first work was followed by [7], [8] and
[9], where the authors developed this theory, analyzing
the asymptotic behavior of such mathematical models.
Later, many other works have appeared in order to
describe the behavior of these dynamical systems (see [1,
2,3,4,5,10]) and also as applications of them to other
questions (see [12,14,13,18]).

In all of these works, the entities in the model can
only have two state values, i.e., each entity can be either
activated or deactivated. This is usually modeled by
means of Boolean variablesxi ∈ {0,1}, i = 1,2, . . . ,n,
where n is the number of entities, in such a way that
xi = 1 (resp.xi = 0) means that the entityi is activated
(resp. deactivated). However, the original definition of CA
in [25] contemplates the possibility that the cells take
state values in a finite set, although subsequently the
majority of studies have been made in the case of Boolean
CA. In fact, in experimental models, the state values of
the entities can belong to a more general (finite) set. This
situation naturally appears, for instance, when each entity
can have different levels of activation or intensity,
belonging to a totally ordered finite set which can be
represented by{0,1, . . . ,m} (see [24] for this approach in
the context of probabilistic Boolean networks); or when
each entity consists of several sub-entities, which can be
activated or deactivated.

This last conception has inspired our extended model
in this work. In this sense, we introduce a wide
generalization of GDS, by considering that the state
values of the entities can belong to an arbitrary Boolean
algebra B with 2p elements, p ∈ N, p ≥ 1. This
consideration widely extends the traditional one where it
is assumed that every entity can take values only in the
simplest Boolean algebra{0,1}.

In particular, we develop some techniques which
allow us to study the orbit structure of these dynamical
systems. As an application, we study the orbit structure of
parallel dynamical systems over undirected graphs where
the evolution operator is an arbitrary maxterm or
minterm, using and generalizing at the same time the
results in [1]. Moreover, taking into account the results in
[3], we also analyze the case of parallel dynamical
systems on general Boolean algebras whose evolution
update scheme is defined by means of independent local
functions chosen amongOR,AND,NAND and NOR.
Finally, as a consequence, the results for parallel
dynamical systems over directed dependency graphs in
[2] and [3] can be also extended to this more general
context.

This paper is organized as follows. In Section 2, we
recall some notation concerning Boolean algebras and
introduce the concepts of parallel and sequential
dynamical systems on general Boolean algebras. Also in
this second section, we determine the orbit structure of
parallel dynamical systems on general Boolean algebras,
whose evolution operator is given by the simplest
maxtermOR and the simplest mintermAND. In Section
3, we present a convenient adaptation of the Stones’
representation theorem on which is based the posterior
development that allows us to describe how the orbit
structure of a parallel dynamical system on a general
Boolean algebra is, either with a maxterm or minterm as
evolution operator or with an evolution operator
constituted by independent local functions.

2 Preliminaries and first results

Usually, in order to get a graphical idea of the situation,
every entity is represented by a vertex of an undirected
graph and two vertices are adjacent if their states
influence each other in the update of the system. The
undirected graph so built is called the(undirected)
dependency graph of the system (see [10]).

If we denominate this graphG = (V,E), whereV =
{1,2, . . . ,n} is the vertex set andE is the edge set, then,
for each vertex/entity 1≤ i ≤ n, it is natural to consider
that its statexi ∈ {0,1}. That is, the entity can be activated
or deactivated.

On the other hand, for every vertex/entity 1≤ i≤ n, we
need to consider all the vertices which influence it. Thus,
we denote

AG(i) = { j ∈V : { j, i} ∈ E}

the sets of vertices which are adjacent to the vertexi.
Nevertheless, in many occasions, the influences are

not bidirectional. This situation can be represented by an
arc whose initial vertex is the influencing entity and the
final vertex corresponds to the influenced entity, so
obtaining a directed graph or digraph of relations. The
directed graph so built is called thedirected dependency
graph of the system. In order to unify the notation in our
results, it will be also denoted byG = (V,E), although in
this caseE is a set of arcs instead of edges. With the same
aim, given a directed dependency graph andi ∈ V , AG(i)
will stand for the set of verticesj ∈ V such that there
exists an arc fromj to i.

Observe that ({0,1},∨,∧,′ ,0,1) is the simplest
Boolean algebra, being

1∨0= 0∨1= 1∨1= 1, 0∨0= 0
1∧0= 0∧1= 0∧0= 0, 1∧1= 1

1′ = 0, 0′ = 1

Recall (see for instance [21]) that a Boolean algebra
(B,g,f,′ ,O, I) is a bounded distributive lattice(B,g,f)
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with ordered structure given by

x ≤ y ⇐⇒ xg y = y ⇐⇒ xf y = x (1)

and such that

•g : B×B −→ B is an inner operation inB such thatxg
y = sup{x,y}, x,y ∈ B, when considering the ordered
structure ofB as a lattice.
•f : B×B −→ B is an inner operation inB such thatxf
y = inf{x,y}, x,y ∈ B, when considering the ordered
structure ofB as a lattice.
•x′ ∈B stands for the complement ofx∈B (i.e.xgx′ = I
andxf x′ = O).
•O = inf(B) satisfies thatx gO = x and x fO = O,
x ∈ B.
•I = sup(B) satisfies thatxg I = I andxf I = x, x ∈ B.

Here, we introduce a wide generalization of parallel
dynamical systems over graphs, by considering that the
states of the entities can take values in an arbitrary
Boolean algebra(B,g,f,′ ,O, I) of 2p elements,p ∈ N,
p ≥ 1.

Definition 2.1.Let G=(V,E) be a (directed or undirected)
graph withV = {1,2, . . . ,n}. Then the following map

F : Bn → Bn, F(x1,x2, . . . ,xn) = (y1,y2, . . . ,yn),

where yi is the updated state of the entity/vertexi by
locally applying the functionF over the states of the
vertices in{i} ∪ AG(i), constitutes a discrete dynamical
system called aparallel (discrete) dynamical system
(PDS) on the Boolean algebraB, over the dependency
graph G and with evolution operatorF , which will be
denoted by[B,G,F ].

In general, we will writexk
i , to indicate the state value

of the entityi afterk iterations of the evolution operatorF ,
while x0

i will stand for the initial state value of the entityi.

Definition 2.2. Let G = (V,E) be a (directed or
undirected) graph with V = {1,2, . . . ,n} and
π = π1π2 · · ·πn a permutation onV . Then the following
map

[F,π ] = Fπn ◦ · · · ◦Fπ2 ◦Fπ1 : Bn → Bn,

whereFπi : Bn → Bn is the update function on the state
vector(x1,x2, . . . ,xn) which updates the state of the vertex
πi while keeping the other states unchanged, constitutes
a discrete dynamical system called asequential (discrete)
dynamical system (SDS) on the Boolean algebraB, over
the dependency graphG and with evolution operatorF ,
which will be denoted by[B,G,F,π ].

Here, we mainly focus on the study of PDS over
undirected graphs whose vertices/entities take values in
an arbitrary Boolean algebraB with 2p elements,p ∈ N,
p ≥ 1. As usual, we will assume that the graph is
connected; otherwise one can work on each connected
component of the graph analogously. Nevertheless, the
kind of tools and reasonings which we develop in the next

section can be easily adapted to study PDS over directed
graphs and SDS over directed or undirected graphs.

The first question we deal with is the problem of
determining the orbit structure of a PDS[B,G,F ] where
F = OR (resp.F = AND).

Theorem 2.1. Let [B,G,OR] be the parallel dynamical
system associated to the maxtermOR over an undirected
graphG = (V,E), where the vertices/entities take values
in a Boolean algebraB with 2p elements,p ∈ N, p ≥ 1.
Then, all the orbits of this system are fixed points or
eventually fixed points.

More precisely, the system presents exactly 2p fixed
points and the maximum number of iterations needed by
an eventually fixed point to reach the corresponding fixed
one is at most as large as the diameter d of the dependency
graph.

Proof. It is not difficult to check that if all the
vertices/entities have the same initial state value, i.e.,
x0

1 = x0
2 = · · · = x0

n, then they remain so forever. Since
xi ∈ B for i = 1,2, . . . ,n, the possible initial state values
for an entity are exactly 2p and consequently this provides
2p distinct fixed points of the system.

In general, denoting by

α = sup{x0
1,x

0
2, . . . ,x

0
n},

we are able to prove thatxk
i = α for i = 1,2, . . . ,n and

k ≥ d. In other words, the maximum number of iterations
to attain an eventually fixed point is at most as large as the
diameter of the dependency graph.

In order to do that, observe that given an entityi, for
every entityj, j 6= i, there exists a path of length less than
or equal tod joining i and j.

Then, thanks to the distributive property of the
supremum, we have

xd
i ≥ sup{x0

i ,x
0
j}

Since, this inequality yields for everyj 6= i,

xd
i ≥ α

On the other hand, it is clear that

xk
i ≤ α

for everyk ∈ N.
Both inequalities allow us to infer thatxd

i = α. As this
reasoning can be done fori = 1, . . . ,n, after d iterations
all the vertices/entities have the same state valueα, i.e.,
xd

1 = xd
2 = · · ·= xd

n = α, and they remain so forever, giving
as a result a fixed point of the system.�

Dually, we have

Theorem 2.2.Let [B,G,AND] be the parallel dynamical
system associated to the mintermAND over an undirected
graphG = (V,E), where the vertices/entities take values in
a Boolean algebraB with 2p elements,p∈N, p ≥ 1. Then,
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all the orbits of this system are fixed points or eventually
fixed points.

More precisely, the system presents exactly 2p fixed
points and the maximum number of iterations needed by
an eventually fixed point to reach the corresponding fixed
one is at most as large as the diameter of the dependency
graph.

Although these first results are quite intuitive, this
intuitiveness disappears when we try to deal with the
general problem of determining the orbit structure of a
PDS [B,G,F ], where F is an arbitrary maxterm or
minterm. It motivates the development of the techniques
which we introduce in the next section.

3 Main results

As was explained, the main purpose of this section is to
describe the orbit structure of PDS over undirected graphs
where the vertices/entities take values in a given Boolean
algebra(B,g,f,′ ,O, I) with 2p elements,p ∈ N, p ≥ 1.

More precisely, we will show how to translate the
known results for the simplest case whenB = {0,1} to
this more complex scenario. In this sense, theStone’s
Representation Theorem for Boolean algebras (see, for
instance, [21]) will play an essential role.

Theorem 3.1. Let [B,G,F] be the parallel dynamical
system associated to an evolution operatorF over an
undirected graphG = (V,E), where the vertices/entities
take values in a Boolean algebraB with 2p elements,
p ∈ N, p ≥ 1. Then, the state value of any entityi can be
represented by a Boolean state value vector
(xi1,xi2, . . . ,xip), with xi j ∈ {0,1} for j = 1,2, . . . , p, such
that the updating of thej-th coordinate only depends on
the j-th coordinates of the state value vectors of the
entities in the set{i}∪AG(i).

Proof. Recall that, according to the ordered structure
described in (1), the atoms of the Boolean algebraB are
the minimal elements ofB \ {O}. In particular, sinceB
has 2p elements, B has p atoms. Denote by
A = {a1,a2, . . . ,ap} the set of atoms ofB, and byP(A)
the power set (set of subsets) ofA. As is well-known,
(P(A),∪,∩,′ , /0,A) is a Boolean algebra of 2p elements
(see, for instance, [21]).

Every elementx∈B\{O} can be univocally expressed
as the disjunction (supremum) of a set of atoms

Sx = {ax1,ax2, . . . ,axr} ∈ P(A), 1≤ r ≤ p,

wherer depends onx. That is,

x = ax1 gax2 g · · ·gaxr = sup{ax1,ax2, . . . ,axr}.

Then, the map

Φ : B −→ P(A)

defined byΦ(O) = /0 andΦ(x) = Sx is an isomorphism of
Boolean algebras (Stone’s Theorem).

Consider now the Boolean algebra
({0,1}p,∨,∧,′ ,0,1), whose elements arep-tuples
(x1,x2, . . . ,xp), wherex j ∈ {0,1} and,

•(x1,x2, . . . ,xp)∨(y1,y2, . . . ,yp) = (z1,z2, . . . ,zp), z j =
x j ∨ y j
•(x1,x2, · · · ,xp) ∧ (y1,y2, · · · ,yp) = (z1,z2, . . . ,zp),
z j = x j ∧ y j
•(x1,x2, . . . ,xn)

′ = (x′1,x
′
2, . . . ,x

′
p)

•0= (0,0, . . . ,0)
•1= (1,1, . . . ,1)

Here, we are denoting in the same way the disjunction,
conjunction and complement operators of the Boolean
algebras {0,1} and {0,1}p, since they can be
distinguished easily from the context.

An atom of({0,1}p,∨,∧,′ ,0,1) is a p-tuple with 1 in
one of the positions and 0’s in the rest of positions. Then,
reasoning as above,Ψ : B −→ {0,1}p defined byΨ(O) =
0 and

Ψ(x) = (x1,x2, . . . ,xp) with x j =

{

1 if ax j ∈ Sx

0 if ax j /∈ Sx

is an isomorphism of Boolean algebras.
Bearing this in mind, let us take[B,G,F ] the PDS

associated to the evolution operatorF : Bn → Bn, over the
undirected graph G = (V,E) whose vertices
V = {1,2, . . . ,n} take values in the Boolean algebraB of
2p elements. Then, without loss of generality, we can
assume that the entities take values in{0,1}p by
identifying eachx ∈ B with Ψ (x) ∈ {0,1}p. That is, the
state value of any entityi can be represented by a Boolean
state value vector(xi1,xi2, . . . ,xip), with xi j ∈ {0,1} for
j = 1,2, . . . , p

Hence, we have to analyze how Boolean functions act
over the Boolean algebra{0,1}p. A Boolean function ofn
variables over{0,1}p is a map

L : {0,1}pn −→ {0,1}p

where L(X1,X2, . . . ,Xn) ∈ {0,1}p is obtained from
X1,X2, . . . ,Xn ∈ {0,1}p using the logicalAND, the logical
OR, the logicalNOT and the elements0,1∈ {0,1}p.

In particular, if (X1,X2, . . . ,Xn) ∈ {0,1}pn and
Xi = (xi1,xi2, . . .xip) ∈ {0,1}p

AND : {0,1}pn −→ {0,1}p,

is defined byAND(X1, . . . ,Xn) = (y1, . . . ,yp), wherey j =
AND(x1 j,x2 j, . . . ,xn j).

Likewise,

OR : {0,1}pn −→ {0,1}p

is given by OR(X1, . . . ,Xn) = (y1, . . . ,yp), where
y j = OR(x1 j,x2 j, . . . ,xn j).

On the other hand,

′ : {0,1}p −→ {0,1}p
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is defined by(x1,x2, . . . ,xp)
′ = (x′1,x

′
2, . . . ,x

′
p).

Therefore, since a Boolean evolution operator

F : {0,1}pn −→ {0,1}pn

of a PDS on the Boolean algebra{0,1}p consists ofn
(local) Boolean functions,

L : {0,1}pn −→ {0,1}p

which act on an entity and its adjacent ones, it can be
expressed by means of the Boolean functionsAND, OR
the logical NOT and the elements0,1 ∈ {0,1}p.
Moreover, from the argumentation above it follows that
the updating of thej-th coordinate of a state value vector
(xi1,xi2, . . . ,xip) of a vertexi, only depends on thej-th
coordinates of the state value vectors of itself and its
adjacent ones.�

In view of that, we can translate the results obtained in
[1] to this much more general context as follows.

Corollary 3.1. Let [B,G,MAX ] be the parallel dynamical
system associated to a maxtermMAX over an undirected
graphG = (V,E), where the vertices/entities take values
in a Boolean algebraB. Then the periodic orbits of this
system are fixed points or 2-periodic orbits.

As usual, dually we have,

Corollary 3.2. Let [B,G,MIN] be the parallel dynamical
system associated to a mintermMIN over an undirected
graphG = (V,E), where the vertices/entities take values
in a Boolean algebraB. Then the periodic orbits of this
system are fixed points or 2-periodic orbits.

In [3], the cases concerned with parallel dynamical
systems withOR, AND, NAND and NOR functions as
independent local functions were analyzed. Taking our
previous reasonings into account, it can be stated the
following corollary.

Corollary 3.3. Let [B,G,{ fi}] a PDS associated to the
local Boolean functionsfi ∈ {AND,OR,NOR,NAND}
over an undirected graphG = (V,E), where the
vertices/entities take values in a Boolean algebraB. Then
the periodic orbits of this system are fixed points or
2-periodic orbits.

In a similar way, we can extend the results for PDDS
shown in [2] and [3] to this more general context.

4 Conclusions

We provide a method that allows us to study the orbit
structure of GDS, for which the states of the entities can
take values in an arbitrary Boolean algebra with 2p

elements,p ∈ N, p ≥ 1.
In fact, since any set with structure of Boolean algebra

is isomorphic to a subalgebra of a Boolean algebra of the
form {0,1}p and then one could establish a injection from
this algebra to{0,1}p in order to make a correspondence
among elements of the Boolean algebra and elements of

{0,1}p, we also solve the problem of studying systems
where the entities can take state values in different (finite)
Boolean algebras.

In relation to previous studies in this direction on BN
[24], we study completely the problem when the state
values set is any Boolean algebra in the more general
context of PDS.

In particular, we analyze the orbit structure of PDS
over undirected graphs. Nevertheless, the kinds of tools
and reasonings which we develop in this work can be
used to study PDS over directed graphs and SDS over
directed or undirected graphs.

This also constitutes an important issue for
applications, since it provides an appropriate model for
the case where entities of a system are composed of a
finite number of parts that can be activated or deactivated.
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