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Abstract: This paper deal with the problem of estimating the finite population product in the presence of non-response and

measurement error in successive sampling under different situations: (i) when there is non-response and measurement error on first

occasion only; (ii) when there is non-response on first occasion only; (iii) when there is measurement error on first occasion only; (iv)

when there is non-response and measurement error on second occasion only; (v) when there is non-response on second occasion only;

(vi) when there is measurement error on second occasion only. The properties of the proposed estimators are studied and the gain in

efficiency of the proposed estimators over the direct estimate using no information gathered on the first occasion is computed. The

proposed strategy has been compared with other existing estimators and the efficiency conditions have been obtained. An empirical

study is carried out to study the performance of the theoretical findings.

Keywords: Product estimator, successive sampling, non-response, measurement error and gain in efficiency.

1 Introduction

The theory and practice of surveying the same population
at different points of time called repetitive or successive
sampling. Usually, information collected on the same
population from one period to the next. In such a
sampling technique, we perform a partial replacement of
units from one occasion to another. For example, labor
force surveys are conducted monthly to estimate the
employment status, monthly/weekly data on the price of
goods are collected to determine Consumer Price Index
(CPI), political opinion surveys are conducted at regular
intervals to know the voter preference, etc. (Karna and
Nath [1]). In such cases, the use of successive sampling
may be a better alternative to provide an efficient and
reliable estimate. Theory of Successive (Rotation)
sampling started with the work of Jessen [2] by utilizing
the entire information collected in the previous
investigation. Further, this theory was extended by
Patterson [3], Rao and Graham [4], Gupta [5], Das [6],
Chaturvedi and Tripathi [7], Okafor and Arnab [8],
Okafor [9], Feng and Zou [10], Birader and Singh [11],
Singh and Singh [12], Singh and Vishwakarma [13],

Singh and Vishwakarma [14], Singh and Kumar [15],
Kumar [16], Singh and Pal [17,18], etc. In many
situations, information on an auxiliary variable may be
readily available on the first as well as second occasion.
For example, the seating capacity of each vehicle or ship
is known in survey sampling of transportation, the
number of beds in different hospitals may be known in
the hospital surveys, etc. (Singh [19]). In the case of
successive sampling, the auxiliary information is
considered advantageous to utilize the entire information
collected in the previous investigation. Sen [20,21,22]
used the auxiliary information on the first occasion for
estimating the population mean on the current occasion.
Further, Singh et al. [23], and Singh and Pal [24] have
also used auxiliary information on both occasions in
successive sampling. It is very common to experience in
most of the sample surveys that the data cannot be
collected from all the units that are selected in the sample
survey. For example, the selected families (units) may not
be at home on the first attempt and some may refuse to
cooperate with the interviewer, even if contacted. This is
particularly happening in mail surveys, who are requested
to send back their response (Singh and Kumari Priyanka

∗ Corresponding author e-mail: monicachoudhary68071@gmail.com

c© 2021 NSP

Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/msl/100301


72 S. Kumar, M. Choudhary: Estimation of population product...

[25]). In that case, many respondents do not reply even
after some callbacks. The resulting incompleteness of
sample units is called non-response. Hansen and Hurwitz
[26] suggested a technique of handling non-response
while estimating the population mean by taking a
sub-sample from the non-respondent group. Further, this
technique was studied by Cochran [27], Rao [28], Khare
and Srivastava [29], Kumar et al. [30], Singh and Kumar
[31], etc. It is also experienced that in sample survey, the
researchers also face the problem of measurement error
while collecting the data from the respondents
(individuals). Measurement error is the difference
between the value that is observed and the true value of
the variable in the study. For example, in the survey
regarding household consumption or expenditure, there
may be a great possibility that the respondent may fail to
recall that how much they spend on various items over
time (Kumar et al. [32]). Many researchers have studied
measurement error like Cochran [33], Cochran [34],
Fuller [35], Shalabh [36], Manisha and Singh [37,38],
Wang [39], Allen et al. [40], Singh and Karpe [41,42,43],
Shukla, Pathak and Thakur [44], Sharma and Singh [45],
etc. Further, it is also possible that the problem of
measurement error and non-response face at the same
time. Jackman [46] dealt with both non-response and
measurement error simultaneously in the case of voter
turnout. Dixon [47] also studied the estimation of
non-response bias and measurement error on the data
from Consumer Expenditure Quarterly Interview Survey
(CEQ), Current Population Survey (CPS), National
Health Interview Survey (NHIS), etc. As we know that
very few numbers of studies are available where the
interaction of both non-response and measurement error
are studied together. Azeem [48], Kumar et al. [49],
proposed a class of estimators for estimating the
population mean in the presence of both non-response
and measurement error in the case of stratified random
sampling by utilizing two auxiliary variables which are
highly correlated variable with the variable under study.
Azeem and Hanif [50] were also studied the together
effect of non-response and measurement error for
estimating the population mean in a simple random
sampling scheme. Furthermore, Zahid and Shabbir [51]
have also studied the effect of both non-response and
measurement error for estimating the population mean in
the case of stratified random sampling by using single
auxiliary information. Recently, El-Din et al. [52], Zhao
et al. [53], Almongy et al. [54,55] have studied the
application of different statistical distribution. In the
present paper, we made an attempt to estimate the
population product in presence of non-response and
measurement error in successive sampling over two
occasions. To support the theoretical findings, we
investigate an empirical study.

2 Sample Selection Procedure

Consider the size of the population contains N units.
Assume that the sample size on both occasions is of size
n. Here we use a simple random sampling and ignored the
factor of correction for the population size N is
adequately large (large enough). A simple random
sampling of size n be drawn on the first occasion from a
population of size N. Let y and x are the characteristics
variable on the first and second occasion, respectively.
Here we assume that there is the presence of some
non-response for estimating the population product in
successive sampling. We can divide the population into
two classes, in the first class those who will respond and
in the second class, those who will not respond and the
size of these two classes are N1 and N2, respectively. By
using simple random sampling n units are selected on the
first occasion and the questionnaire is mailed to the
selected sample units. Out of these n units, a random
sub-sample of size m = np (0 < p < 1) units are retained
(matched) in the second occasion and also an additional
independent (unmatched with t he first occasion) sample
of size u = nq = n−m,(q = 1 − p) is drawn on the
second occasion from the remaining population (N − n)
units, so that the sample size on the second occasion is
also n. Also, let us assume that in the unmatched portion
of the sample for both occasions u1 units respond and u2

units do not respond. Similarly, on the matched portion
m1 units respond and m2 units do not respond. Again, a
sub-sample of size mh2 units are drawn from the
non-respondent class of the matched portion of the
sample for both occasions for collecting information
through personal interviews. Similarly, a sub-sample of
size uh2 units is drawn from the non-respondent class of
the unmatched portion of the sample on both occasions.
Also, there is a presence of measurement error associated
with these sample units i.e. Vi = xi - Xi , Ui = yi - Yi ; for
both occasion, which are random in nature with mean
zero and population variance S2

U and S2
V . S2

x and S2
y are

population variances of X and Y , respectively. C2
U , C2

V ,

C2
x and C2

y are the coefficient of variation for variables,
respectively. Also, ρyx , ρuv , ρyu and ρvx are coefficient of
correlation between the variable y and x. In our study,
both non-response and measurement error are present
simultaneously. Following notation are uesd:
xi (yi) : the variable x(y) for the ith occasion, i = 1,2;
T1 = µy1

µx1
(T2 = µy2

µx2
) : the population product on the

first (second) occasion;
T̂1 = µ̂y1

µ̂x1
(T̂2 = µ̂y2

µ̂x2
): the estimator of the population

product on the first (second)occasion;

R1 =
µy1
µx1

(R2 =
µy2
µx2

): the population ratio on the first

(second) occasion;
T̂ ∗∗

1m = µ̂∗∗
y1m

µ̂∗∗
x1m

(T̂ ∗∗
2m = µ̂∗∗

y2m
µ̂∗∗

x2m
) : the estimator of the

population product on the first (second) occasion based
on both non-response and measurement error for the
matched portion.
T̂ ∗∗

1u = µ̂∗∗
y1u

µ̂∗∗
x1u

(T̂ ∗∗
2u = µ̂∗∗

y2u
µ̂∗∗

x2u
) : the estimator of the
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population product on the first (second) occasion based
on both non-response and measurement error for the
unmatched portion.
Thus, we have the following set up

where

µ̂∗∗
y1m

=
m1µ̂y1m1

+m2µ̂y1mh2

m
, µ̂y∗∗2m

=
m1µ̂y2m1

+m2µ̂y2mh2

m
,

µ̂y∗∗1u
=

u1µ̂y1u1
+ u2µ̂y1uh2

u
, µ̂y∗∗2u

=
u1µ̂y2u1

+ u2µ̂y2uh2

u
,

µ̂x∗∗1m
=

m1µ̂x1m1
+m2µ̂x1mh2

m
, µ̂x∗∗2m

=
m1µ̂x2m1

+m2µ̂x2mh2

m
,

µ̂x∗∗1u
=

u1µ̂x1u1
+ u2µ̂x1uh2

u
, µ̂x∗∗2u

=
u1µ̂x2u1

+ u2µ̂x2uh2

u
,

µ̂y jm1
= 1

m1
∑

m1
i=1 y ji, µ̂x jm1

= 1
m1

∑
m1
i=1 x ji, µ̂y jmh2

= 1
mh2

∑
mh2
l=1 y jl ,

µ̂x jmh2
= 1

mh2
∑

mh2

l=1 x jl , µ̂y ju1
= 1

u1
∑

u1
k=1 y jk, µ̂x ju1

= 1
u1

∑
u1
k=1 x jk,

µ̂y juh2
= 1

uh2
∑

uh2
r=1 y jr, µ̂x juh2

= 1
uh2

∑
uh2
r=1 x jr; j = 1,2.

Now, consider the estimator for population product T2

on current (second) occasion as:

T̂ ∗∗
2 = aT̂ ∗∗

1u + bT̂ ∗∗
1m + cT̂∗∗

2m + dT̂ ∗∗
2u (1)

where (a,b,c,d) are constants.

We have

E(T̂ ∗∗
1u ) = E(T̂ ∗∗

1m) = T1 and E(T̂ ∗∗
2u ) = E(T̂ ∗∗

2m) = T2

We find that

E(T̂ ∗∗
2 ) = (a+ b)T1 +(c+ d)T2. (2)

The estimator T̂ ∗∗
2 be an unbiased estimator of T2, then we

must have

(a+ b) = 0 and (c+ d) = 1.

Substituting the values of b and d , we have

T̂ ∗∗
2 = a(T̂ ∗∗

1u − T̂ ∗∗
1m)+ cT̂∗∗

2m +(1− c)T̂∗∗
2u (3)

To obtain the variance of T̂ ∗∗
2 in the presence of

non-response and measurement error, we write

µ̂∗∗
y1u

= µy1
+ω∗

y1uo, µ̂
∗∗
y2u

= µy2
+ω∗

y2uo,

µ̂∗∗
y1m

= µy1
+ω∗

y1mo, µ̂
∗∗
y2m

= µy2
+ω∗

y2mo,

µ̂∗∗
x1u

= µx1
+ω∗

x1u1, µ̂
∗∗
x2u

= µx2
+ω∗

x2u1,
µ̂∗∗

x1m
= µx1

+ω∗
x1m1, µ̂

∗∗
x2m

= µx2
+ω∗

x2m1,

where

ω∗
y1uo =

1√
u

(

ω∗
y1u +ω∗

U1u

)

, ω∗
y2uo =

1√
u

(

ω∗
y2u +ω∗

U2u

)

,

ω∗
y1mo =

1√
m

(

ω∗
y1m +ω∗

U1m

)

, ω∗
y2mo =

1√
m

(

ω∗
y2m +ω∗

U2m

)

,

ω∗
x1u1 =

1√
u

(

ω∗
x1u +ω∗

V1u

)

, ω∗
x2u1 =

1√
u

(

ω∗
x2u +ω∗

V2u

)

,

ω∗
x1m1 =

1√
m

(

ω∗
x1m +ω∗

V1m

)

, ω∗
x2m1 =

1√
m

(

ω∗
x2m +ω∗

V2m

)

,

ω∗
y1u =

1√
u ∑u

i=1

(

Y ∗
1i − µy1

)

, ω∗
y2u =

1√
u ∑u

i=1

(

Y ∗
2i − µy2

)

,

ω∗
y1m = 1√

m ∑m
i=1

(

Y ∗
1i − µy1

)

, ω∗
y2m = 1√

m ∑m
i=1

(

Y ∗
2i − µy2

)

,

ω∗
x1u =

1√
u ∑u

i=1

(

X∗
1i − µx1

)

, ω∗
x2u =

1√
u ∑u

i=1

(

X∗
2i − µx2

)

,

ω∗
x1m = 1√

m ∑m
i=1

(

X∗
1i − µx1

)

, ω∗
x2m = 1√

m ∑m
i=1

(

X∗
2i − µx2

)

,

ω∗
U1u =

1√
u ∑u

i=1 U∗
1i, ω∗

U2u =
1√
u ∑u

i=1 U∗
2i,

ω∗
U1m = 1√

m ∑m
i=1 U∗

1i, ω∗
U2m = 1√

m ∑m
i=1 U∗

2i,

ω∗
V1u =

1√
u ∑u

i=1 V ∗
1i, ω∗

V2u =
1√
u ∑u

i=1 V ∗
2i,

ω∗
V1m = 1√

m ∑m
i=1V ∗

1i, ω∗
V 2m = 1√

m ∑m
i=1 V ∗

2i,

U∗
1i = y∗1i −Y ∗

1i,V
∗
1i = x∗1i −X∗

1i,
U∗

2i = y∗2i −Y ∗
2i,V

∗
2i = x∗2i −X∗

2i,

such that

E(ω∗
y juo) = E

(

ω∗
x ju1

)

= E
(

ω∗
y jmo

)

= E
(

ω∗
x jm1

)

= 0;( j =

1,2).

E
(

ω∗
y1uo

)2
= 1

u

(

S2
y1 + S2

U1

)

+ θ
u

(

S2
y1(2)+ S2

U1(2)

)

,

E
(

ω∗
y2uo

)2
= 1

u

(

S2
y2 + S2

U2

)

+ θ
u

(

S2
y2(2)+ S2

U2(2)

)

,

E
(

ω∗
y1mo

)2
= 1

m

(

S2
y1 + S2

U1

)

+ θ
m

(

S2
y1(2)+ S2

U1(2)

)

,

E
(

ω∗
y2mo

)2
= 1

m

(

S2
y2 + S2

U2

)

+ θ
m

(

S2
y2(2)+ S2

U2(2)

)

,

E
(

ω∗
x1u1

)2
= 1

u

(

S2
x1 + S2

V1

)

+ θ
u

(

S2
x1(2)+ S2

V1(2)

)

,

E
(

ω∗
x2u1

)2
= 1

u

(

S2
x2 + S2

V2

)

+ θ
u

(

S2
x2(2)+ S2

V2(2)

)

,

E
(

ω∗
x1m1

)2
= 1

m

(

S2
x1 + S2

V1

)

+ θ
m

(

S2
x1(2)+ S2

V1(2)

)

,

E
(

ω∗
x2m1

)2
= 1

m

(

S2
x2 + S2

V2

)

+ θ
m

(

S2
x2(2)+ S2

V2(2)

)

,

E
(

ω∗
y1uoω∗

x1u1

)

= 1
u
ρy1x1Sy1Sx1 +

θ
u

ρy1x1(2)Sy1(2)Sx1(2) ,

E
(

ω∗
y2uoω∗

x2u1

)

= 1
u
ρy2x2Sy1Sx1 +

θ
u

ρy2x2(2)Sy2(2)Sx2(2) ,

E
(

ω∗
y1moω∗

x1m1

)

= 1
m

ρy1x1Sy1Sx1 +
θ
m

ρy1x1(2)Sy1(2)Sx1(2) ,

E
(

ω∗
y2moω∗

x2m1

)

= 1
m

ρy2x2Sy2Sx2 +
θ
m

ρy2x2(2)Sy2(2)Sx2(2) ,

E
(

ω∗
y1moω∗

y2mo

)

= 1
m

ρy1y2Sy1Sy2 +
θ
m

ρy1y2(2)Sy1(2)Sy2(2) ,

E
(

ω∗
y1moω∗

x2m1

)

= 1
m

ρy1x2Sy1Sx2 +
θ
m

ρy1x2(2)Sy1(2)Sx2(2) ,

E
(

ω∗
x1m1ω∗

y2mo

)

= 1
m

ρx1y2Sx1Sy2 +
θ
m

ρx1y2(2)Sx1(2)Sy2(2) ,

E
(

ω∗
x1m1ω∗

x2m1

)

= 1
m

ρx1x2Sx1Sx2 +
θ
m

ρx1x2(2)Sx1(2)Sx2(2).

It can be easily seen that
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Cov
(

T̂ ∗∗
1u , T̂

∗∗
1m

)

= Cov
(

T̂ ∗∗
1u , T̂

∗∗
2m

)

= Cov
(

T̂ ∗∗
1u , T̂

∗∗
2u

)

= Cov
(

T̂ ∗∗
1m, T̂

∗∗
2u

)

= Cov
(

T̂ ∗∗
2m, T̂

∗∗
2u

)

= 0

where
θ =W2(k− 1),W2 = (N2/N),k = (u2/uh2) = (m2/mh2),
Sy j = (µy j

Cy j),Sy j(2) = (µy j
Cy j(2)); j = 1,2,

Sx j = (µx j
Cx j),Sx j(2) = (µx jCx j(2)); j = 1,2,

(

C2
y j,C

2
x j; j = 1,2

)

and
(

C2
y j(2),C

2
x j(2); j = 1,2,

)

,

respectively denote the coefficient of variation to response
and non-response class of

(

x j,y j; j = 1,2
)

.
(

ρy jx j,ρy jx j(2); j = 1,2,
)

and
(

ρy jx j,ρy jx j(2); i 6= j = 1,2,
)

,
are the correlation coefficient between y j and x j, for
respondent and non-respondents respectively.
Then, the variance of T̂ ∗∗

2 is

Var
(

T̂ ∗∗
2

)

=

(

a2µ2
x1

npq

)

B∗+

(

c2

np
+

(1− c)2

nq

)

µ2
x2

D∗

−
(

2acµx1
µx2

np

)

K∗ (4)

where

B∗ =
{

A+θA(2)

}

,D∗ =
{

C+θC(2)

}

,

K∗ =
[{

ρy1y2Sy1Sy2 +R2ρy1x2Sy1Sx2 +R1ρx1y2Sx1Sy2

+ R1R2ρx1x2Sx1Sx2

}

+θ
{

ρy1y2(2)Sy1(2)Sy2(2)

+ R2ρy1x2(2)Sy1(2)Sx2(2)+R1ρx1y2(2)Sx1(2)Sy2(2)

+ R1R2ρx1x2(2)Sx1(2)Sx2(2)

}]

,

A =
{

S2
y1 + S2

U1 +R2
1S2

x1 +R2
1S2

V1 + 2R1ρy1x1Sy1Sx1

}

,

A(2) =
{

S2
y1(2)+ S2

U1(2)+R2
1S2

x1(2)+R2
1S2

V1(2)

+ 2R1ρy1x1(2)Sy1(2)Sx1(2)

}

,

C =
{

S2
y2 + S2

U2 +R2
2S2

x2 +R2
2S2

V2 + 2R2ρy2x2Sy2Sx2

}

,

C(2) =
{

S2
y2(2)+ S2

U2(2)+R2
2S2

x2(2)+R2
2S2

V2(2)

+ 2R2ρy2x2(2)Sy2(2)Sx2(2)

}

,

R2
1 =

(

µ2
y1
/µ2

x1

)

,R2
2 =

(

µ2
y2
/µ2

x2

)

.

The variance of T̂ ∗∗
2 is minimum when

a =
pqµx2

D∗K∗

µx1
(D∗B∗− q2K∗2)

= a
(0)
opt (5)

and

c =
pD∗B∗

(D∗B∗− q2K∗2)
= c

(0)
opt (6)

Substitute the optimum value of a and c from (5) and (6)
in (3), we get the optimum estimator T̂ ∗∗

2 as

T̂ ∗∗∗
2 =

[

pqµx2
D∗K∗

µx1
(D∗B∗− q2K∗2)

(

T̂ ∗∗
1u − T̂ ∗∗

1m

)

+
pD∗B∗

(D∗B∗− q2K∗2)
T̂ ∗∗

2m

+

{

1− pD∗B∗

(D∗B∗− q2K∗2)

}

T̂ ∗∗
2u

]

(7)

The variance of T̂ ∗∗∗
2 is obtained as

Var
(

T̂ ∗∗∗
2

)

=
D∗µ2

x2

n

(

(D∗B∗− qK∗2)

(D∗B∗− q2K∗2)

)

(8)

Note that if q = 0, p = 1, complete matching or p = 0,q =
1, no matching, thus the variance of T̂ ∗∗∗

2 given at (8) has
the same value as

Var
(

T̂ ∗∗∗
2

)

=
D∗µ2

x2

n
(9)

Thus, for current estimates, equal precision is obtained
either by keeping the same sample or by changing it on a
every occasion.

If µx1
= µx2

, thus estimator given in (7) is simplified as

T̂ ∗∗∗
2 =

[

pqD∗K∗

(D∗B∗− q2K∗2)

(

T̂ ∗∗
1u − T̂∗∗

1m

)

+
pD∗B∗

(D∗B∗− q2K∗2)
T̂ ∗∗

2m

+

{

1− pD∗B∗

(D∗B∗− q2K∗2)

}

T̂ ∗∗
2u

]

(10)

then the variance is unchanged i.e. same as in (8).

To minimize the variance of T̂ ∗∗∗
2 , differentiate Var

(

T̂ ∗∗∗
2

)

with respect to q and equating to zero, we have

q =
D∗B∗−

√
D∗2B∗2 −D∗B∗K∗2

K∗2
= q

(0)
opt (11)

Thus, the minimum variance of T̂ ∗∗∗
2 is given as

min.Var
(

T̂ ∗∗∗
2

)

=
D∗µ2

x2

n

D∗B∗+
√

D∗2B∗2 −D∗B∗K∗2

2D∗B∗
(12)

However, if only the estimate using information gathered
on the second occasion is considered, then the estimator of
the population product is

T̂ ∗∗ = pT̂ ∗∗
2m + qT̂ ∗∗

2u (13)

The variance of T̂ ∗∗ is given as:

Var
(

T̂ ∗∗)=
D∗µ2

x2

n
(14)
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Remark 1: When there is non-response and measurement
error on the first occasion only, then minimum variance
linear unbiased estimator (MVLUE) for the population
product on current occasion can be obtained as follow

T̂ ∗∗
21 = a

(

T̂ ∗∗
1u − T̂ ∗∗

1m

)

+ cT̂2m+
(

1− c
)

T̂2u (15)

where

T̂2m = µ̂y2mµ̂x2m, T̂2u = µ̂y2uµ̂x2u,

µ̂y2m = µy2

(

1+ ε2m0

)

, µ̂x2m = µx2

(

1+ ε2m1

)

,

µ̂y2u = µy2

(

1+ ε2u0

)

, µ̂x2u = µx2

(

1+ ε2u1

)

,

E
(

ε2m0

)

= E
(

ε2m1

)

= E
(

ε2u0

)

= E
(

ε2u1

)

= 0,

E
(

ε2m0

)2
= 1

m
C2

y2,E
(

ε2m1

)2
= 1

m
C2

x2,

E
(

ε2u0

)2
= 1

u
C2

y2,E
(

ε2u1

)2
= 1

u
C2

x2,

E
(

ε2m0ε2m1

)

= 1
m

ρy2x2Cy2Cx2,

E
(

ε2u0ε2u1

)

= 1
u
ρy2x2Cy2Cx2.

The variance of T̂ ∗∗
21 is given as

Var
(

T̂ ∗∗
21

)

=

(

a2µ2
x1

npq

)

B∗+

(

c2

np
+

(1− c)2

nq

)

µ2
x2

H

−
(

2acµx1
µx2

np

)

k1 (16)

where

H1 =
{

S2
y2 +R2

2S2
x2 + 2R2Sy2x2

}

,

k1 =
{

Sy1y2 +R2Sy1x2 +R1Sx1y2 +R1R2Sx1x2

}

The variance of T̂ ∗∗
21 is minimum when

a =
pqµx2

k1H

µx1
(HB∗−q2k2

1)
= a

(1)
opt and c = pHB∗

(HB∗−q2k2
1)
= c

(1)
opt

Substitute the optimum values of a and c in (15). Thus,
the estimator T̂ ∗∗

21 turns out to be:

T̂ ∗∗∗
21 =

[

pqµx2
k1H

µx1
(HB∗− q2k2

1)

(

T̂ ∗∗
1u − T̂∗∗

1m

)

+
pHB∗

(HB∗− q2k2
1)

T̂2m

+

{

1− pHB∗

(HB∗− q2k2
1)

}

T̂2u

]

(17)

The variance of T̂ ∗∗∗
21 is obtained as

Var
(

T̂ ∗∗∗
21

)

=
Hµ2

x2

n

(

(HB∗− qk2
1)

(HB∗− q2k2
1)

)

(18)

The optimum value of q is obtained as

q =
HB∗−

√

H2B∗2 −HB∗k2
1

k2
1

= q
(1)
opt (19)

Now put the optimum value of q from (19) in (18), we get
the minimum variance of T̂ ∗∗∗

21 as

min.Var
(

T̂ ∗∗∗
21

)

=
Hµ2

x2

n

HB∗+
√

H2B∗2 −HB∗k2
1

2HB∗ (20)

Remark 2: When there is non-response on the first
occasion only, then minimum variance linear unbiased
estimator (MVLUE) for the population product on current
occasion can be obtained as follows

T̂ ∗
22 = a

(

T̂ ∗
1u − T̂∗

1m

)

+ cT̂2m +
(

1− c
)

T̂2u (21)

where

T̂ ∗
1u = µ̂∗

y1uµ̂∗
x1u, T̂ ∗

1m = µ̂∗
y1mµ̂∗

x1m,

µ̂∗
y1u = µy1

(1+ e1u0), µ̂∗
x1u = µx1

(1+ e1u1),

µ̂∗
y1m = µy1

(1+ e1m0), µ∗
x1m = µx1

(1+ e1m1),

E(e1u0) = E(e1u1) = E(e1m0

)

= E
(

e1m1

)

= 0,

E(e1u0)
2 = 1

u
C2

y1 +
θ
u
C2

y1(2), E(e1u1)
2 = 1

u
C2

x1 +
θ
u
C2

x1(2),

E(e1u0e1u1) =
1
u
ρy1x1Cy1Cx1 +

θ
u

ρy1x1(2)Cy1(2)Cx1(2),

E(e1m0)
2 = 1

m
C2

y1 +
θ
m

C2
y1(2), E(e1m1)

2 = 1
m

C2
x1 +

θ
m

C2
x1(2),

E(e1m0e1m1) =
1
m

ρy1x1Cy1Cx1 +
θ
m

ρy1x1(2)Cy1(2)Cx1(2).

The variance of T̂ ∗
22 is obtained as

Var
(

T̂ ∗
22

)

=

(

a2µ2
x1

npq

)

E∗+

(

c2

np
+

(1− c)2

nq

)

µ2
x2

H

−
(

2acµx1
µx2

np

)

k1 (22)

where

E∗ =
{

G+θG(2)

}

, G = S2
y1 +R2

1S2
x1 + 2R1Sy1x1,

G(2) = S2
y1(2)+R2

1S2
x1(2)+ 2R1Sy1x1(2).

The variance of T̂ ∗
22 is minimum when

a =
pqµx2

k1H

µx1
(HE∗−q2k2

1)
= a

(2)
opt and c = pHE∗

(HE∗−q2k2
1)
= c

(2)
opt

Substitute the optimum values of a and c in (21), the
optimum estimator T̂ ∗

22 can be written as

T̂ ∗∗
22 =

[

pqµx2
k1H

µx1
(HE∗− q2k2

1)

(

T̂ ∗
1u − T̂ ∗

1m

)

+
pHE∗

(HE∗− q2k2
1)

T̂2m

+

{

1− pHE∗

(HE∗− q2k2
1)

}

T̂2u

]

(23)

The variance of T̂ ∗∗
22 is obtained as

Var
(

T̂ ∗∗
22

)

=
Hµ2

x2

n

(

(HE∗− qk2
1)

(HE∗− q2k2
1)

)

(24)
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which is minimum, when

q =
HE∗−

√

H2E∗2 −HE∗k2
1

k2
1

= q
(2)
opt (25)

After putting the optimum value of q from (25) in (24), we
get the minimum variance of T̂ ∗∗

22 as

min.Var
(

T̂ ∗∗
22

)

=
Hµ2

x2

n

HE∗+
√

H2E∗2 −HE∗k2
1

2HE∗ (26)

Remark 3: When there is measurement error on the first
occasion only, then minimum variance linear unbiased
estimator (MVLUE) for the population product on current
occasion can be obtained as follows

T̂
′

23 = a
(

T̂
′

1u − T̂
′
1m

)

+ cT̂2m +
(

1− c
)

T̂2u (27)

where

T̂
′

1u = µ̂
′
y1uµ̂

′
x1u, T̂

′
1m = µ̂

′
y1mµ̂

′
x1m,

µ̂
′
y1u = µy1

+ωy1u0, µ̂
′
x1u = µx1

+ωx1u1,

µ̂
′
y1m = µy1

+ωy1m0, µ̂
′
x1m = µX1

+ωx1m1,

ωy1uo =
1√
u

(

ωy1u +ωU1u

)

, ωx1u1 =
1√
u

(

ωx1u +ωV1u

)

,

ωy1mo =
1√
m

(

ωy1m +ωU1m

)

, ωx1m1 =
1√
m

(

ωx1m +ωV1m

)

,

E
(

ωy1uo

)2
= 1

u

(

S2
y1 + S2

U1

)

, E
(

ωx1u1

)2
= 1

u

(

S2
x1 + S2

V1

)

,

E
(

ωy1uoωx1u1

)

= 1
u
ρy1x1Sy1Sx1,

E
(

ωy1mo

)2
= 1

m

(

S2
y1 + S2

U1

)

, E
(

ωx1m1

)2
= 1

m

(

S2
x1 + S2

V1

)

,

E
(

ωy1moωx1m1

)

= 1
m

ρy1x1Sy1Sx1.

The variance of T̂
′

23 is given as

Var
(

T̂
′

23

)

=

(

a2µ2
x1

npq

)

A+

(

c2

np
+

(1− c)2

nq

)

µ2
x2

H

−
(

2acµx1
µx2

np

)

k1 (28)

The above variance of T̂
′

23 is minimum when

a =
pqµx2

k1H

µx1
(HA−q2k2

1)
= a

(3)
opt and c = pHA

(HA−q2k2
1)
= c

(3)
opt

Substitute the optimum values of a and c in (27),we get

T̂
′′

23 =

[

pqµx2
k1H

µx1
(HA− q2k2

1)

(

T̂
′

1u − T̂
′
1m

)

+
pHA

(HA− q2k2
1)

T̂2m

+

{

1− pHA

(HA− q2k2
1)

}

T̂2u

]

(29)

The variance of T̂
′′

23 is obtained as

Var
(

T̂
′′

23

)

=
Hµ2

x2

n

(

(HA− qk2
1)

(HA− q2k2
1)

)

(30)

which is minimum, when

q =
HA−

√

H2A2 −HAk2
1

k2
1

= q
(3)
opt (31)

After putting the optimum value of q from (31) in (30), we

get the minimum variance of T̂
′′

23 as

min.Var
(

T̂
′′

23

)

=
Hµ2

x2

n

HA+
√

H2A2 −HAk2
1

2HA
(32)

Remark 4: When there is non-response and measurement
error on the second occasion only, then minimum
variance linear unbiased estimator (MVLUE) for the
population product on current occasion can be obtained as
follow

T̂ ∗∗
24 = a

(

T̂1u − T̂1m

)

+ cT̂∗∗
2m +

(

1− c
)

T̂ ∗∗
2u (33)

where

T̂1u = µ̂y1uµ̂x1u, T̂1m = µ̂y1m
µ̂x1m,

µ̂y1u = µy1

(

1+ ε1u0

)

, µ̂x1u = µx1

(

1+ ε1u1

)

,

µ̂y1m
= µy1

(

1+ ε1m0

)

, µ̂x1m = µx1

(

1+ ε1m1

)

,

E
(

ε1u0

)

= E
(

ε1u1

)

= E
(

ε1m0

)

= E
(

ε1m1

)

= 0,

E
(

ε1u0

)2
= 1

u
C2

y1,E
(

ε1u1

)2
= 1

u
C2

x1,

E
(

ε1m0

)2
= 1

m
C2

y1,E
(

ε1m1

)2
= 1

m
C2

x1,

E
(

ε1u0ε1u1

)

= 1
u
ρy1x1Cy1Cx1,

E
(

ε1m0ε1m1

)

= 1
m

ρy1x1Cy1Cx1.

The variance of T̂ ∗∗
24 is given as

Var
(

T̂ ∗∗
24

)

=

(

a2µ2
x1

npq

)

G+

(

c2

np
+

(1− c)2

nq

)

µ2
x2

D∗

−
(

2acµx1
µx2

np

)

k1 (34)

The variance of T̂ ∗∗
24 is minimum when

a =
pqµx2

k1D∗
µx1

(D∗G−q2k2
1)
= a

(4)
opt and c = pD∗G

(D∗G−q2k2
1)
= c

(4)
opt

Substitute the optimum values of a and c in (33). Thus the
estimator T̂ ∗∗

24 becomes

T̂ ∗∗∗
24 =

[

pqµx2
k1D∗

µx1
(D∗G∗− q2k2

1)

(

T̂1u − T̂1m

)

+
pD∗G

(D∗G− q2k2
1)

T̂ ∗∗
2m

+

{

1− pD∗G

(D∗G− q2k2
1)

}

T̂ ∗∗
2u

]

(35)

The variance of T̂ ∗∗∗
24 is obtained as

Var
(

T̂ ∗∗∗
24

)

=
µ2

x2
D∗

n

(

(D∗G− qk2
1)

(D∗G− q2k2
1)

)

(36)
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which is minimum, when

q =
D∗G−

√

D∗2G2 −D∗Gk2
1

k2
1

= q
(4)
opt (37)

Substitute the optimum value of q from (37) in (36), we
get the minimum variance of T̂ ∗∗∗

24 as

min.Var
(

T̂ ∗∗∗
24

)

=
D∗µ2

x2

n

D∗G+
√

D∗2G2 −D∗Gk2
1

2D∗G
(38)

Remark 5: When there is non-response on the second
occasion only, then minimum variance linear unbiased
estimator (MVLUE) for the population product on current
occasion can be obtained as follows

T̂ ∗
25 = a

(

T̂1u − T̂1m

)

+ cT̂ ∗
2m +

(

1− c
)

T̂ ∗
2u (39)

where

T̂ ∗
2m = µ̂∗

y2mµ̂∗
x2m, T̂ ∗

2u = µ̂∗
y2uµ̂∗

x2u,

µ̂∗
y2m = µy2

(1+ e2m0), µ̂∗
x2m = µx2

(1+ e2m1),

µ̂∗
y2u = µy2

(1+ e2u0), µ̂∗
x2u = µx2

(1+ e2u1),
E(e2m0) = E(e2m1) = E(e2u0) = E(e2u1) = 0,

E(e2m0)
2 = 1

m
C2

y2 +
θ
m

C2
y2(2),E(e2m1)

2 = 1
m

C2
x2 +

θ
m

C2
x2(2),

E(e2m0e2m1) =
1
m

ρy2x2Cy2Cx2 +
θ
m

ρy2x2(2)Cy2(2)Cx2(2),

E(e2u0)
2 = 1

u
C2

y2 +
θ
u
C2

y2(2),E(e2u1)
2 = 1

u
C2

x2 +
θ
u
C2

x2(2),

E(e2u0e2u1) =
1
u
ρy2x2Cy2Cx2 +

θ
u

ρy2x2(2)Cy2(2)Cx2(2).

The variance of T̂ ∗
25 is given as

Var
(

T̂ ∗
25

)

=

(

a2µ2
x1

npq

)

G+

(

c2

np
+

(1− c)2

nq

)

µ2
x2

F∗

−
(

2acµx1
µx2

np

)

k1 (40)

where

F∗ =
{

H +θH(2)

}

,

The above variance of T̂ ∗
25 is minimum for

a =
pqµx2

k1F∗

µx1
(F∗G−q2k2

1
)
= a

(5)
opt and c = pF∗G

(F∗G−q2k2
1
)
= c

(5)
opt

Substitute the optimum values of a and c in (39), the
estimator T̂ ∗

25 becomes

T̂ ∗∗
25 =

[

pqµx2
k1F∗

µx1
(F∗G− q2k2

1)

(

T̂1u − T̂1m

)

+
pF∗G

(F∗G− q2k2
1)

T̂ ∗
2m

+

{

1− pF∗G

(F∗G− q2k2
1)

}

T̂ ∗
2u

]

(41)

The variance of T̂ ∗∗
25 is obtained as

Var
(

T̂ ∗∗
25

)

=
µ2

x2
F∗

n

(

(F∗G− qk2
1)

(F∗G− q2k2
1)

)

(42)

which is minimum, when

q =
F∗G−

√

F∗2G2 −F∗Gk2
1

k2
1

= q
(5)
opt (43)

After substituting the optimum value of q from (43) in
(42), we get the minimum variance of T̂ ∗∗

25 as

min.Var
(

T̂ ∗∗
25

)

=
F∗µ2

x2

n

F∗G+
√

F∗2G2 −F∗Gk2
1

2F∗G
(44)

Remark 6: When there is measurement error on the
second occasion only, then minimum variance linear
unbiased estimator (MVLUE) for the population product
on current occasion can be obtained as follows

T̂
′

26 = a
(

T̂1u − T̂1m

)

+ cT̂
′

2m +
(

1− c
)

T̂
′

2u (45)

where

T̂
′

2m = µ̂
′
y2mµ̂

′
x2m, T̂

′
2u = µ̂

′
y2uµ̂

′
x2u,

µ̂
′
y2m = µy2

+ωy2m0, µ̂
′
x2m = µx2

+ωx2m1,

µ̂
′
y2u = µy2

+ωy2u0, µ̂
′
x2u = µx2

+ωx2u1,

ωy2uo =
1√
u

(

ωy2u +ωU2u

)

, ωx2u1 =
1√
u

(

ωx2u +ωV2u

)

,

ωy2mo =
1√
m

(

ωy2m +ωU2m

)

, ωx2m1 =
1√
m

(

ωx2m +ωV2m

)

,

E
(

ωy2uo

)2
= 1

u

(

S2
y2 + S2

U2

)

, E
(

ωx2u1

)2
= 1

u

(

S2
x2 + S2

V2

)

,

E
(

ωy2mo

)2
= 1

m

(

S2
y2 + S2

U2

)

, E
(

ωx2m1

)2
= 1

m

(

S2
x2 + S2

V2

)

,

E
(

ωy2uoωx2u1

)

= 1
u
ρy2x2Sy2Sx2,

E
(

ωy2moωx2m1

)

= 1
m

ρy2x2Sy2Sx2.

The variance of T̂
′

26 is obtained as

Var
(

T̂
′

26

)

=

(

a2µ2
x1

npq

)

G+

(

c2

np
+

(1− c)2

nq

)

µ2
x2

C

−
(

2acµx1
µx2

np

)

k1 (46)

The above variance of T̂
′

26 is minimized when

a =
pqµx2

k1C

µx1
(CG−q2k2

1)
= a

(6)
opt and c = pCG

(CG−q2k2
1)
= c

(6)
opt

Substitute the optimum values of a and c in (45), the

estimator of T̂
′

26 turns out to be

T̂
′′

26 =

[

pqµx2
k1C

µx1
(CG− q2k2

1)

(

T̂1u − T̂1m

)

+
pCG

(CG− q2k2
1)

T̂
′

2m

+

{

1− pCG

(CG− q2k2
1)

}

T̂
′

2u

]

(47)

The variance of T̂
′′

26 is obtained as

Var
(

T̂
′′

26

)

=
Cµ2

x2

n

(

(CG− qk2
1)

(CG− q2k2
1)

)

(48)
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which is minimum, when

q =
CG−

√

C2G2 −CGk2
1

k2
1

= q
(6)
opt (49)

After putting the optimum value of q from (49) in (48), we

get the minimum variance of T̂
′′

26 as

min.Var
(

T̂
′′

26

)

=
Cµ2

x2

n

CG+
√

C2G2 −CGk2
1

2CG
(50)

3 Comparisons between Variance of the

estimators

(i) Comparisons between Variance of T̂ ∗∗∗
2 and T̂ ∗∗∗

21 ,
It can be seen that

Var
(

T̂ ∗∗∗
2

)

< Var
(

T̂ ∗∗∗
21

)

, if

(

HB∗− qk2
1

HB∗− q2k2
1

)

H >

(

D∗B∗− qK∗2

D∗B∗− q2K∗2

)

D∗ (51)

(ii) Comparisons between Variance of T̂ ∗∗∗
2 and T̂ ∗∗

22 ,
it can be seen that

Var
(

T̂ ∗∗∗
2

)

< Var
(

T̂ ∗∗
22

)

, if

(

HE∗− qk2
1

HE∗− q2k2
1

)

H >

(

D∗B∗− qK∗2

D∗B∗− q2K∗2

)

D∗ (52)

(iii) Comparisons between Variance of T̂ ∗∗∗
2 and T̂

′′
23,

it can be seen that

Var
(

T̂ ∗∗∗
2

)

< Var
(

T̂
′′

23

)

, if

(

HA− qk2
1

HA− q2k2
1

)

H >

(

D∗B∗− qK∗2

D∗B∗− q2K∗2

)

D∗ (53)

(iv) Comparisons between Variance of T̂ ∗∗∗
2 and T̂ ∗∗∗

24 ,
it can be seen that

Var
(

T̂ ∗∗∗
2

)

< Var
(

T̂ ∗∗∗
24

)

, if

(

D∗G− qk2
1

D∗G− q2k2
1

)

>

(

D∗B∗− qK∗2

D∗B∗− q2K∗2

)

(54)

(v) Comparisons between Variance of T̂ ∗∗∗
2 and T̂ ∗∗

25 ,
it can be seen that

Var
(

T̂ ∗∗∗
2

)

< Var
(

T̂ ∗∗
25

)

, if

(

F∗G− qk2
1

F∗G− q2k2
1

)

F∗ >

(

D∗B∗− qK∗2

D∗B∗− q2K∗2

)

D∗ (55)

(vi) Comparisons between Variance of T̂ ∗∗∗
2 and T̂

′′
26,

it can be seen that

Var
(

T̂ ∗∗∗
2

)

< Var
(

T̂
′′

26

)

, if

(

CG− qk2
1

CG− q2k2
1

)

C >

(

D∗B∗− qK∗2

D∗B∗− q2K∗2

)

D∗ (56)

(vii) Comparisons between Variance of T̂ ∗∗∗
2 and T̂ ∗∗,

it can be seen that

Var
(

T̂ ∗∗∗
2

)

< Var
(

T̂ ∗∗), if

q < 1 (57)

(viii) Comparisons between Variance of T̂ ∗∗∗
21 and T̂ ∗∗

22 ,
it can be seen that

Var
(

T̂ ∗∗∗
21

)

< Var
(

T̂ ∗∗
22

)

, if

(

HE∗− qk2
1

HE∗− q2k2
1

)

>

(

HB∗− qk2
1

HB∗− q2k2
1

)

(58)

(ix) Comparisons between Variance of T̂ ∗∗∗
21 and T̂

′′
23,

it can be seen that

Var
(

T̂ ∗∗∗
21

)

< Var
(

T̂
′′

23

)

, if

(

HA− qk2
1

HA− q2k2
1

)

>

(

HB∗− qk2
1

HB∗− q2k2
1

)

(59)

(x) Comparisons between Variance of T̂ ∗∗∗
21 and T̂ ∗∗,

it can be seen that

Var
(

T̂ ∗∗∗
21

)

< Var
(

T̂ ∗∗), only if

(

D∗

H

)

>

(

HB∗− qk2
1

HB∗− q2k2
1

)

(60)

(xi) Comparisons between Variance of T̂ ∗∗∗
24 and T̂ ∗∗

25 ,
it can be seen that

Var
(

T̂ ∗∗∗
24

)

< Var
(

T̂ ∗∗
25

)

, if

(

F∗G− qk2
1

F∗G− q2k2
1

)

F∗ >

(

D∗G− qk2
1

D∗G− q2k2
1

)

D∗ (61)

(xii) Comparisons between Variance of T̂ ∗∗∗
24 and T̂

′′
26,

it can be seen that

Var
(

T̂ ∗∗∗
24

)

< Var
(

T̂
′′

26

)

, if

(

CG− qk2
1

CG− q2k2
1

)

C >

(

D∗G− qk2
1

D∗G− q2k2
1

)

D∗ (62)
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(xiii) Comparisons between Variance of T̂ ∗∗∗
24 and T̂ ∗∗,

it can be seen that

Var
(

T̂ ∗∗∗
24

)

< Var
(

T̂ ∗∗), if

q < 1 (63)

4 Gain in precision

Now we can compute gain in precision of the estimate
obtained by using a linear estimate over the direct
estimate using no information gathered on the first
occasion.

G(1) =
Var
(

T̂ ∗∗)

Var
(

T̂ ∗∗∗
2

) =

(

D∗B∗− q2K∗2

D∗B∗− qK∗2

)

(64)

Gopt(1) =
Var
(

T̂ ∗∗)

min.Var
(

T̂ ∗∗∗
2

)

=

(

2D∗B∗

D∗B∗+
√

D∗2B∗2 −D∗B∗K∗2

)

(65)

G(2) =
Var
(

T̂ ∗∗)

Var
(

T̂ ∗∗∗
21

) =
D∗

H

(

HB∗− q2k2
1

HB∗− qk2
1

)

(66)

Gopt(2)=
Var
(

T̂ ∗∗)

min.Var
(

T̂ ∗∗∗
21

) =

(

2D∗B∗

HB∗+
√

H2B∗2 −HB∗k2
1

)

(67)

G(3) =
Var
(

T̂ ∗∗)

Var
(

T̂ ∗∗
22

) =
D∗

H

(

HE∗− q2k2
1

HE∗− qk2
1

)

(68)

Gopt(3) =
Var
(

T̂ ∗∗)

min.Var
(

T̂ ∗∗
22

) =

(

2D∗E∗

HE∗+
√

H2E∗2 −HE∗k2
1

)

(69)

G(4) =
Var
(

T̂ ∗∗)

Var
(

T̂
′′

23

) =
D∗

H

(

HA− q2k2
1

HA− qk2
1

)

(70)

Gopt(4) =
Var
(

T̂ ∗∗)

min.Var
(

T̂
′′

23

) =

(

2D∗A

HA+
√

H2A2 −HAk2
1

)

(71)

G(5) =
Var
(

T̂ ∗∗)

Var
(

T̂ ∗∗∗
24

) =

(

D∗G− q2k2
1

D∗G− qk2
1

)

(72)

Gopt(5)=
Var
(

T̂ ∗∗)

min.Var
(

T̂ ∗∗∗
24

) =

(

2D∗G

D∗G+
√

D∗2G2 −D∗Gk2
1

)

(73)

G(6) =
Var
(

T̂ ∗∗)

Var
(

T̂ ∗∗
25

) =
D∗

F∗

(

F∗G− q2k2
1

F∗G− qk2
1

)

(74)

Gopt(6) =
Var
(

T̂ ∗∗)

min.Var
(

T̂ ∗∗
25

) =

(

2D∗G

F∗G+
√

F∗2G2 −F∗Gk2
1

)

(75)

G(7) =
Var
(

T̂ ∗∗)

Var
(

T̂
′′

26

) =
D∗

C

(

CG− q2k2
1

CG− qk2
1

)

(76)

Gopt(7) =
Var
(

T̂ ∗∗)

min.Var
(

T̂
′′

26

) =

(

2D∗G∗

CG+
√

C2G2 −CGk2
1

)

(77)
Now, we assume that;

Cy1 =Cy2 =Cx1 =Cx2 =C0,
CU1 =CU2 =CV1 =CV 2 =C1,
Cy1(2) =Cy2(2) =Cx1(2) =Cx2(2) =C0(2),
CU1(2) =CU2(2) =CV 1(2) =CV 2(2) =C1(2),
ρ1 = ρ2 = ρ3 = ρ4 = ρ ,
ρ1(2) = ρ2(2) = ρ3(2) = ρ4(2) = ρ(2),
ρ5 = ρ6 = ρ0,ρ5(2) = ρ6(2) = ρ0(2),

where

ρ1(ρ2): is the correlation coefficients between the
variables y1 and x1

(

y2 and x2

)

,
ρ3(ρ4): is the correlation coefficients between the
variables y2 and x1

(

y1 and x2

)

,
ρ5(ρ6): is the correlation coefficients between the
variables x1 and x2

(

y1 and y2

)

,
ρ1(2)(ρ2(2)): is the correlation coefficients between the

variables y1(2) and x1(2)

(

y2(2) and x2(2)

)

,

ρ3(2)(ρ4(2)): is the correlation coefficients between the

variables y2(2) and x1(2)

(

y1(2) and x2(2)

)

,

ρ5(2)(ρ6(2)): is the correlation coefficients between the

variables x1(2) and x2(2)

(

y1(2) and y2(2)

)

.

Then, the expressions of B∗, D∗, K∗, E∗ and F∗ becomes

B∗ = 2µ2
y1

d∗, D∗ = 2µ2
y2

d∗, K∗ = 2µy1
µy2

t, E∗ = 2µ2
y1

d∗
1 ,

F∗ = 2µ2
y2

d∗
1 ,

where
d∗ =

{

α1 +θα1(2)

}

,

t =
{(

ρ +ρ0

)

C2
0 +θ

(

ρ(2)+ρ0(2)

)

C2
0(2)

}

,

d∗
1 =

{(

1+ρ
)

C2
0 +θ

(

1+ρ(2)

)

C2
0(2)

)}

,

where
α1 =

(

C2
0 +C2

1 +ρC2
0

)

,α1(2) =
(

C2
0(2)+C2

1(2)+ρ(2)C
2
0(2)

)

Considering the above assumption, the expressions of
(11), (19), (25), (31), (37), (43), (49),(64)-(77) becomes
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q
(0)
opt =

d∗2 −
√

d∗4 − d∗2t2

t2
(78)

q
(1)
opt = q

(4)
opt

=
d∗(1+ρ)−

√

d∗2(1+ρ)2 − d∗(1+ρ)(ρ +ρ0)2C2
0

(ρ +ρ0)2C2
0

(79)

q
(2)
opt = q

(5)
opt

=
d∗

1(1+ρ)−
√

d∗2
1 (1+ρ)2 − d∗

1(1+ρ)(ρ +ρ0)2C2
0

(ρ +ρ0)2C2
0

(80)

q
(3)
opt = q

(6)
opt

=
α1(1+ρ)−

√

α2
1 (1+ρ)2−α1(1+ρ)(ρ +ρ0)2C2

0

(ρ +ρ0)2C2
0

(81)

G(1) =

(

d∗2 − q2t2

d∗2 − qt2

)

(82)

Gopt(1) =

(

2d∗

d∗+
√

d∗2 − t2

)

(83)

G(2) =

[

d∗{d∗(1+ρ)− (ρ+ρ0)
2q2C2

0}
(1+ρ){d∗(1+ρ)− (ρ+ρ0)2qC2

0}C2
0

]

(84)

Gopt(2) =
[

2d∗2

{d∗(1+ρ)+
√

d∗2(1+ρ)2 −d∗(1+ρ)(ρ +ρ0)2C2
0}C2

0

]

(85)

G(3) =

[

d∗{d∗
1(1+ρ)− (ρ+ρ0)

2q2C2
0}

(1+ρ){d∗
1(1+ρ)− (ρ+ρ0)2qC2

0}C2
0

]

(86)

Gopt(3) =
[

2d∗d∗
1

{d∗
1 (1+ρ)+

√

d∗2(1+ρ)2 −d∗(1+ρ)(ρ +ρ0)2C2
0}C2

0

]

(87)

G(4) =

[

d∗{α1(1+ρ)− (ρ+ρ0)
2q2C2

0}
(1+ρ){α1(1+ρ)− (ρ+ρ0)2qC2

0}C2
0

]

(88)

Gopt(4) =
[

2d∗α1

{α1(1+ρ)+
√

α2
1 (1+ρ)2 −α1(1+ρ)(ρ +ρ0)2C2

0}C2
0

]

(89)

G(5) =

[

d∗(1+ρ)− (ρ+ρ0)
2q2C2

0

d∗(1+ρ)− (ρ+ρ0)2qC2
0

]

(90)

Gopt(5) =
[

2d∗(1+ρ)

{d∗(1+ρ)+
√

d∗2(1+ρ)2− d∗(1+ρ)(ρ +ρ0)2C2
0}

]

(91)

G(6) =

[

d∗{d∗
1(1+ρ)− (ρ+ρ0)

2q2C2
0}

d∗
1{d∗

1(1+ρ)− (ρ+ρ0)2qC2
0}

]

(92)

Gopt(6) =
[

2d∗(1+ρ)C2
0

{d∗
1(1+ρ)+

√

d∗2
1 (1+ρ)2− d∗

1(1+ρ)(ρ +ρ0)2C2
0}

]

(93)

G(7) =

[

d∗{α1(1+ρ)− (ρ+ρ0)
2q2C2

0}
α1{α1(1+ρ)− (ρ+ρ0)2qC2

0}

]

(94)

Gopt(7) =
[

2d∗(1+ρ)

{α1(1+ρ)+
√

α2
1 (1+ρ)2−α1(1+ρ)(ρ +ρ0)2C2

0}

]

(95)

5 Empirical Study

Further, we have calculated the gain in precision of
proposed estimator in different situations with respect to
T̂ ∗∗ for different values of coefficient of variation,
correlation coefficients, W2, k and q.
Tables 1 to 5 shows the results and the following points
are envisaged as

• for cases C0(>,=)C0(2), C1(<,>)C1(2), ρ(<)ρ0,

ρ(2)(<,>)ρ(2), W2 = 0.3,0.5,0.8, k = 1.5,2,2.5 and
q = 0.3,0.5,0.7, the gain in precision is maximum over
the direct estimator T̂ ∗∗ in T̂ ∗∗

22 i.e. in the situation when
there is non-response on the first occasion only.

• for case ρ(>)ρ0, the gain in precision is maximum over
the direct estimator T̂ ∗∗ in T̂ ∗∗

25 i.e. in the situation when
there is non-response on the second occasion only.
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• for cases C0 < C0(2), C1 = C1(2), ρ = ρ0, ρ(2) = ρ0(2),
the gain in precision is maximum over the direct

estimator T̂ ∗∗ in T̂
′′

23 i.e. in the situation when there is
measurement error on the first occasion only.

Table 1: Gain in precision, G(1), G(2), G(3), G(4), G(5), G(6) and

G(7) of different estimators over T̂ ∗∗ for different values of C0

and C0(2).

C0 <C0(2)

ρ = 0.7,ρ0 = 0.2,ρ(2) = 0.5,ρ0(2) = 0.3,C0 = 0.4,C1 = 0.5,C1(2) = 1.5,W2 = 0.8,q = 0.7 and k = 2.5

C0(2) d∗ d∗
1 t G(1) G(2) G(3) G(4) G(5) G(6) G(7)

1.00 5.02 2.02 1.10 1.01 18.52 18.61 19.09 1.00 2.44 9.95

1.50 7.27 4.32 2.31 1.02 26.79 26.84 27.65 1.00 1.69 14.41

2.00 10.42 7.47 3.98 1.03 38.36 38.40 39.63 1.00 1.40 20.65

C0 >C0(2)

ρ = 0.6,ρ0 = 0.4,ρ(2) = 0.4,ρ0(2) = 0.2,C0 (2) = 0.2,C1 = 1,C1(2) = 2,W2 = 0.6,q = 0.5 and k = 1.5

C0 d∗ d∗
1 t G(1) G(2) G(3) G(4) G(5) G(6) G(7)

0.30 2.36 0.16 0.10 1.00 16.49 18.13 16.60 1.01 16.24 2.09

0.50 2.62 0.42 0.26 1.00 6.64 7.30 6.74 1.02 7.00 1.92

0.70 3.00 0.80 0.50 1.00 3.93 4.28 4.01 1.03 4.19 1.76

C0 =C0(2)

ρ = 0.6,ρ0 = 0.3,ρ(2) = 0.5,ρ0(2) = 0.3,C1 = 1.5,C1(2) = 1.5,W2 = 0.7,q = 0.3 and k = 2

C0(2) d∗ d∗
1 t G(1) G(2) G(3) G(4) G(5) G(6) G(7)

0.10 1.85 0.03 0.01 1.00 115.79 120.64 116.18 1.00 72.84 6.99

0.10 1.85 0.03 0.01 1.00 115.79 120.64 116.18 1.00 72.84 6.99

0.10 1.85 0.03 0.01 1.00 115.79 120.64 116.18 1.00 72.84 6.99

Table 2: Gain in precision, G(1), G(2), G(3), G(4), G(5), G(6) and

G(7) of different estimators over T̂ ∗∗ for different values of C1

and C1(2).

C1 <C1(2)

ρ = 0.7,ρ0 = 0.2,ρ(2) = 0.5,ρ0(2) = 0.3,C0 = 0.4,C0(2) = 0.2,C1 = 0.5,W2 = 0.8,q = 0.7 and k = 2.5

C1(2) d∗ d∗
1 t G(1) G(2) G(3) G(4) G(5) G(6) G(7)

0.70 1.18 0.34 0.18 1.01 4.41 4.58 4.49 1.01 3.63 2.34

1.00 1.79 0.34 0.18 1.00 6.66 6.96 6.82 1.01 5.50 3.55

1.50 3.29 0.34 0.18 1.00 12.17 12.78 12.52 1.00 10.10 6.53

C1 >C1(2)

ρ = 0.6,ρ0 = 0.4,ρ(2) = 0.4,ρ0(2) = 0.2,C0 = 0.5,C0(2) = 0.3,C1(2) = 0.6,W2 = 0.6,q = 0.8 and k = 1.5

C1 d∗ d∗
1 t G(1) G(2) G(3) G(4) G(5) G(6) G(7)

0.80 1.19 0.44 0.27 1.01 3.03 3.20 3.05 1.02 2.93 1.17

1.00 1.55 0.44 0.27 1.00 3.93 4.17 3.94 1.02 3.81 1.13

1.50 2.80 0.44 0.27 1.00 7.05 7.55 7.06 1.01 6.90 1.07

C1 =C1(2)

ρ = 0.5,ρ0 = 0.3,ρ(2) = 0.6,ρ0(2) = 0.4,C0 = 0.1,C0 (2)= 0.3,W2 = 0.7,q = 0.6 and k = 2

C1(2) d∗ d∗
1 t G(1) G(2) G(3) G(4) G(5) G(6) G(7)

0.20 0.18 0.12 0.07 1.04 12.32 12.36 12.49 1.01 1.60 3.41

0.20 0.18 0.12 0.07 1.04 12.32 12.36 12.49 1.01 1.60 3.41

0.20 0.18 0.12 0.07 1.04 12.32 12.36 12.49 1.01 1.60 3.41

Table 3: Gain in precision, G(1), G(2), G(3), G(4), G(5), G(6) and

G(7) of different estimators over T̂ ∗∗ for different values of ρ and

ρ0.

ρ > ρ0

ρ = 0.7,ρ(2) = 0.6,ρ0(2) = 0.7,C0 = 0.5,C0(2) = 0.2,C1 = 0.8,C1(2) = 0.2,W2 = 0.2,q = 0.8 and k = 0.5

ρ0 d∗ d∗
1 t G(1) G(2) G(3) G(4) G(5) G(6) G(7)

0.30 1.05 0.42 0.24 1.01 2.54 2.68 2.54 1.03 2.72 1.01

0.40 1.05 0.42 0.27 1.01 2.56 2.72 2.56 1.03 2.78 1.02

0.50 1.05 0.42 0.27 1.01 2.58 2.82 2.58 1.04 2.86 1.03

ρ < ρ0

ρ0 = 0.7,ρ(2) = 0.2,ρ0(2) = 0.3,C0 = 0.7,C0 (2) = 0.3,C1 = 1,C1(2) = 2,W2 = 0.4,q = 0.3 and k = 1.5

ρ d∗ d∗
1 t G(1) G(2) G(3) G(4) G(5) G(6) G(7)

0.20 2.41 0.61 0.45 1.01 4.22 4.66 4.29 1.03 4.49 1.59

0.40 2.51 0.71 0.56 1.01 3.80 4.22 3.87 1.04 4.07 1.57

0.60 2.61 0.81 0.66 1.01 3.48 3.88 3.56 1.04 3.75 1.56

ρ = ρ0

ρ(2) = 0.5,ρ0(2) = 0.1,C0 = 0.4,C0 (2) = 0.6,C1 = 0.5,C1(2) = 1.5,W2 = 0.5,q = 0.6 and k = 2.5

ρ d∗ d∗
1 t G(1) G(2) G(3) G(4) G(5) G(6) G(7)

0.20 2.53 0.60 0.23 1.00 13.23 13.32 13.36 1.00 4.23 5.80

0.20 2.53 0.60 0.23 1.00 13.23 13.32 13.36 1.00 4.23 5.80

0.20 2.53 0.60 0.23 1.00 13.23 13.32 13.36 1.00 4.23 5.80

Table 4: Gain in precision, G(1), G(2), G(3), G(4), G(5), G(6) and

G(7) of different estimators over T̂ ∗∗ for different values of ρ(2)
and ρ0(2).

ρ(2) > ρ0(2)

ρ = 0.7,ρ0 = 0.4,ρ(2) = 0.5,C0 = 0.5,C0(2) = 0.6,C1 = 0.8,C1(2) = 0.2,W2 = 0.8,q = 0.8 and k = 2.5

ρ0(2) d∗ d∗
1 t G(1) G(2) G(3) G(4) G(5) G(6) G(7)

0.20 1.76 1.07 0.58 1.03 4.25 4.32 4.32 1.03 1.71 1.73

0.30 1.76 1.07 0.62 1.03 4.25 4.32 4.32 1.03 1.71 1.73

0.40 1.76 1.07 0.66 1.04 4.25 4.32 4.32 1.03 1.71 1.73

ρ(2) < ρ0(2)

ρ0 = 0.5,ρ0 = 0.6,ρ0(2) = 0.4,C0 = 0.5,C0(2) = 0.6,C1 = 1,C1(2) = 2,W2 = 0.6,q = 0.8 and k = 3.5

ρ(2) d∗ d∗
1 t G(1) G(2) G(3) G(4) G(5) G(6) G(7)

0.30 8.08 1.08 0.65 1.00 21.63 22.30 22.11 1.00 7.76 6.03

0.20 8.02 1.02 0.60 1.00 21.48 22.20 21.96 1.00 8.14 5.99

0.10 7.97 0.97 0.55 1.00 21.34 22.10 21.82 1.00 8.55 5.95

ρ(2) = ρ0(2)

ρ = 0.7,ρ0 = 0.2,C0 = 0.2,C0(2) = 0.6,C1 = 0.5,C1(2) = 1.5,W2 = 0.6,q = 0.5 and k = 2.5

ρ(2) d∗ d∗
1 t G(1) G(2) G(3) G(4) G(5) G(6) G(7)

0.50 2.83 0.55 0.36 1.00 41.67 41.97 42.25 1.00 5.15 9.03

0.50 2.83 0.55 0.36 1.00 41.67 41.97 42.25 1.00 5.15 9.03

0.50 2.83 0.55 0.36 1.00 41.67 41.97 42.25 1.00 5.15 9.03
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Table 5: Gain in precision, G(1), G(2), G(3), G(4), G(5), G(6) and

G(7) of different estimators over T̂ ∗∗ for different values of W2, k

and q.

W2

ρ = 0.7,ρ0 = 0.2,ρ(2) = 0.5,ρ0(2) = 0.4,C0 = 0.2,C0(2) = 0.6,C1 = 2,C1(2) = 1,q = 0.7 and k = 2.5

W2 d∗ d∗
1 t G(1) G(2) G(3) G(4) G(5) G(6) G(7)

0.30 4.76 0.31 0.18 1.00 70.07 70.96 70.08 1.00 15.51 1.17

0.50 5.22 0.47 0.28 1.00 76.87 77.48 76.88 1.00 11.14 1.29

0.80 5.92 0.72 0.42 1.00 87.06 87.50 87.09 1.00 8.31 1.46

k

ρ = 0.8,ρ0 = 0.3,ρ(2) = 0.4,ρ0(2) = 0.6,C0 = 0.2,C0(2) = 0.6,C1 = 2,C1(2) = 1,W2 = 0.8, and q = 0

k d∗ d∗
1 t G(1) G(2) G(3) G(4) G(5) G(6) G(7)

1.50 4.67 0.27 0.19 1.00 65.00 66.59 65.02 1.00 17.52 1.15

2.00 5.28 0.48 0.33 1.00 73.36 74.33 73.39 1.00 11.26 1.30

2.50 5.88 0.68 0.48 1.00 81.72 82.45 81.76 1.00 8.77 1.45

q

ρ = 0.8,ρ0 = 0.4,ρ(2) = 0.5,ρ0(2) = 0.7,C0 = 0.2,C0(2) = 0.6,C1 = 2,C1(2) = 1,W2 = 0.8, and k = 2.5

q d∗ d∗
1 t G(1) G(2) G(3) G(4) G(5) G(6) G(7)

0.30 5.92 0.72 0.57 1.00 82.32 83.00 82.36 1.00 8.30 1.46

0.50 5.92 0.72 0.57 1.00 82.33 83.16 82.38 1.00 8.32 1.46

0.70 5.92 0.72 0.57 1.00 82.32 83.01 82.36 1.00 8.30 1.46

6 Conclusion

From theoretical study, we may conclude that the
proposed product type estimator contributes significantly
to deal with different realistic situation of non-response
and measurement errors, while estimating the population
product on current (second) occasion in two-occasion
successive sampling. The properties of the proposed
estimators have been studied and efficiency conditions
also developed. Numerical study also supports the
theoretical results for different combination of values of
the parameters. Hence, the proposed product type
estimators may be recommended for their practical
application.
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