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Abstract: We define the Bernoulli polynomials withcggparameter in terms afWhitney numbers of the second kind. Some algebraic
properties and combinatorial identities of these polyradsnare given. Also, we obtain several relations betweerCémgchy and
Bernoulli polynomials with & parameter in terms afWhitney numbers of both kinds.
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1 Introduction Let g be a real number wittg # 0, [2] defined the
poly-Bernoulli polynomials with a g parameter by
The Bernoulli polynomialsBn(z) are defined by the

i i 2 tn e?d 2 /(1-eMH\"1
generating functiord] ZBE‘%(Z)T: q - (( )) @
. n Lt S n 1-e & q n
Bn(2) = = ——. 1)
nZo "l e-1 Remark 1. If z = 0, then Byy(0) = By} are the

poly-Bernoulli numbers with a q parametet][

If g =1, then Lﬂhki(z) = Bﬁk)(z) are the poly-Bernoulli
polynomials p]. ’

If g=1 z=0, then 33(0) = BY are the
poly-Bernoulli numbers, defined in§].

Settingk = 1 in (4), and letBl(2) = Br&l&(z) denote the
\[’Z?EVES(W k) are the Stirling numbers of the second kind Bernoulli polynomials withg parameter, we obtain

For more identities and explicit formulas for Bernoulli o " e 2 /(1-e® "1
numbers in terms of Stirling numbers of the first and Zo ”(Z)H T l1_eat Z < q ) n’ (5)
second kind, see7[10,11], in addition to this some "= =t
identities involving Bernoulli polynomials andWhitney | z= 0, thenBJ(0) = Bf are the Bernoulli numbers with

Whenz= 0, B, = B,(0) are called the Bernoulli numbers.
Graham et al.§, P. 560] represente}, also as

noo K

Bn = k;(_l) K+ 1 S(na k)a (2)

numbers are given irlp, 9]. q parameter. Note thaf! is replaced bg~# (see P,1,5]).
For all integersh,r > 0, By(r) can be written explicitly Recently, Duran et al.g] introduced the Hermite
in terms ofr-Stirling numbers of the second kir&l(n,k)  based poly-Bernoulli polynomials with g parameter
[12] " (1)K with BS{%(;) as a special case. _ _
Bn(r) = S(n+rk+r). (3) In th|s paper, we are interested in Bgrnoglll
S k+1 polynomials with agq parameter. Therefore, we begin with

Cenkci et al. | introduced the poly-Bernoulli the following definitions of some tools which will be
useful for sequel of this paper.

. . k
polynomials with a g parameter BSM)](Z) as a For non-negative integersandk with 0 < k < n, let
generalization of the poly-Bernoulli polynomiﬁk)(z). w(n,k) = wg(n,k) and W(n,k) = Wg,(n,k) denote the
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r-Whitney numbers of the first and second kind, Theorem 1.We define the Bernoulli polynomials with a q

respectively, defined intfp] by parameter in terms of \(h, k) by
C k q . k_K
09n =3 win.K) (@) (6) B = 3 (-1 g Wk, (15)
n ProofUsing @), we get
(gx+1)"=3 d*W(n,k) (X)k. (7) . k "
K=0
- n’ k) _
The exponential generating functionwfn, k) is given by n=0 k:0 k nt
Wil _ & (eqt—1>k @ =2 k+1nZkW(”"‘> i
n; il K q ' ® P k! eﬂ(eqt—1>k
The parameters > 0 andq > 0 are usually taken to be - k+1 K q
integers, but both may also be considered as qet & [/1—et ktl 4
indeterminates]g]. = - %( )
Komatsu [L4] defined the Cauchy polynomials with a 1-e\& q k+1
q parameter of the first and second kind, denotedy), get & /1-em\k1
¢i(2), respectively =1 ot k:1( q ) P
1 00 tn
d@= [ x-Zandx  ar0. (@ — 3 B .
0 n=0 ’

1 Comparing the coefficients of both sides, we g&b)(
&l(2) :/0 (—x+2Zq)ndx  q#0. (10)  (notice thae is replaced by in [2]).

Recently, Shihal7] gave explicit formulae focii(r) and On the other hand,

&a(r) in terms ofr-Whitney numbers of the first kind

@ th gt & /1-et\K1
qer) — — e
40— 3 wink) #0 (11) nZoB”(r) i 1-et Z( q ) k
Ca(r) = n q7 0,
) = 3 W k+1 B N GV K N
1—edt q
« d 1 dt — 14t
d—r) =S (—D*w(n k) —— 0. (12 -4 g
&(=n) k;)( Jwink (=5 a7 (12) a1 .
The relations betweeoi(r), ¢i(r) andW(n,k) are (see The first few polynomials are
[17) Bo(r) =1,
A 1 BIr)=r—1
W(n,k)cl(r) = — 13 1 2’
k; (K edn) =7 13) Bi(r)=r2—r—3q+3,
) ) BI(r) =r>—3r2+(2—3q)r— 39 +2q- 3,
W(n,k) }(—r) = ) (14) By(r) =r*—2r3+ (4—3q)r>— 2(q? — 49+ 3)r
= n+1 1P+ Y2 -9q+ 2

The aim of this paper is to establish an explicit formula Corollary LIf r = 0, BY0) = BY are the Bernoulli

for computingBg(z) in terms ofr-Whitney numbers of the ; ;
second kindV(n,k). Several relations betwedj(z) and numbers with g parameter, usiiige), we get

q . . .
cn(z) are obtained in terms afWhitney numbers of both © 4N — 14 et
kinds. ZOBﬁH = eqtq 1 (l a ) : 17)
e !
. Wgo(n, k) = g"kS(n,k), then Bl can be expressed in terms
2 Themain results of S(n,k) as
The main result may be formulated as the following q_ C 1k Kk
theorem. B kzo( b k+1 Sn.k). (18)
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Ifq=1, BL(r) = Bn(r) and W (n, k) are reduced to §n+
r,k+r) then, we get the explicit formu(8), and

ad t" tet

3B =g (19)

If g =1and r= 0, then B(0) = B, and W o(n,k) are
reduced to $n, k) then, we get the explicit formu(®).

It is known that ther-Whitney numbers satisfy the
following orthogonality relation15]:

Ika(n,nw

wheredy, is the Kronecker delta.

(1,k) = Ii(W(n,I)W(I,k) =0on,  (20)

Corollary 2.The relation between (m,k) and Bi(r) is
given by

k'Wnk

Wk, j)cf(r).  (26)

BPIXE
= k;go KIW(n, k)W

Proof\We shall prove the first and the third identities. Other
identities are proven similarly. B (), and using 11), we
have

(k) €(=r). (27)

w(n, k) wik, ) BI(r)

n k

- Z WK J;(—l)kw(kJ)B‘?(r)
no1

a k+

S w(n,K) = ci(r)

By (13), and using 15), we obtain

Y CUWnE =5 @D vk |
i= 3 (-1 W oWk ) ein
k=0]j=
Proof. \ ‘
" =Y (1K W(nk) 2 Wik el
(~1)"w(n, })BJ(r) o =
j: Kk 1
N y = kZo(—l) k'W(n,k) PEh BA(r).
=3 > UG WK -
== +1 Itis known that (seed])
n k! n
_ n+k ; ; n s .
—k;( 1) mng(n,DW(J,k) W r 1s(n, k) = Ek(j>r“ Was(j, k). (28)
= = pe
n
=9 (- 1)n+k& n= nt . Therefore, we get the following properties, which are
K=0 k+1 n+1 similar to those for classical Bernoulli polynomials and
_ numbers.
The number®V(n,k) are determined by (se&f). Theorem 4.For n > 0, we have
W(n,k) = LS (—1)*) (k) (r+jo)" (22 Bi(r+s) = i(”) r=IBl(s). (29)
oK 20 j S\ J
. n .
then, we obtain BA(r) = (T) rn—JB?. (30)
Theorem 2.For n > 0, we have 1=
Proof.
D=3 iy (1) (Feir e K
= U1 AN - . k .
kZO g (k+1) JZD ] BA(r +9) = k;(—l) qu,r+s(nak)
Theorem 3.For n > 0, we have AL Koy
=0 =5 5 o () st
& £ k+1\j s
% w(k,j)BJ(r).  (24) n ,J |
k| N n n—j Kk k! .
-2 - JZ)(J')r 3 (1 Wasli
n k 1 n n i g
(1) = (nKwik ) BI).  (25) =5 () iens.
) k;j;k =\ J
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Settings = 0 in (29), we get the second relatioBQ)

Corollary 3.Setting g= 1 in (29) and (30), we obtain the
following properties of B(r) [18]

5 () e
()en

Bn(r+s) =

Bn(r)
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