
J. Ana. Num. Theor.6, No. 2, 47-50 (2018) 47

Journal of Analysis & Number Theory
An International Journal

http://dx.doi.org/10.18576/jant/060202

An Explicit Formula for Bernoulli Polynomials with a q
Parameter in Terms of r-Whitney Numbers
F. A. Shiha∗

Department of Mathematics Faculty of Science Mansoura University, 35516 Mansoura, Egypt.

Received: 2 May 2018, Revised: 22 Jun. 2018, Accepted: 26 Jun. 2018
Published online: 1 Jul. 2018

Abstract: We define the Bernoulli polynomials with aq parameter in terms ofr-Whitney numbers of the second kind. Some algebraic
properties and combinatorial identities of these polynomials are given. Also, we obtain several relations between theCauchy and
Bernoulli polynomials with aq parameter in terms ofr-Whitney numbers of both kinds.
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1 Introduction

The Bernoulli polynomialsBn(z) are defined by the
generating function [4]

∞

∑
n=0

Bn(z)
tn

n!
=

t ezt

et −1
. (1)

Whenz= 0, Bn = Bn(0) are called the Bernoulli numbers.
Graham et al. [8, P. 560] representedBn also as

Bn =
n

∑
k=0

(−1)k k!
k+1

S(n,k), (2)

whereS(n,k) are the Stirling numbers of the second kind
[4].

For more identities and explicit formulas for Bernoulli
numbers in terms of Stirling numbers of the first and
second kind, see [7,10,11], in addition to this some
identities involving Bernoulli polynomials andr-Whitney
numbers are given in [15,9].

For all integersn, r ≥ 0,Bn(r) can be written explicitly
in terms ofr-Stirling numbers of the second kindSr(n,k)
[12]

Bn(r) =
n

∑
k=0

(−1)k k!
k+1

Sr(n+ r,k+ r). (3)

Cenkci et al. [2] introduced the poly-Bernoulli

polynomials with a q parameter B(k)
n,q(z) as a

generalization of the poly-Bernoulli polynomialsB(k)
n (z).

Let q be a real number withq 6= 0, [2] defined the
poly-Bernoulli polynomials with a q parameter by

∞

∑
n=0

B(k)
n,q(z)

tn

n!
=

qe−zt

1−e−qt

∞

∑
n=1

(

(1−e−qt)

q

)n 1
nk
. (4)

Remark 1. If z = 0, then B(k)n,q(0) = B(k)
n,q are the

poly-Bernoulli numbers with a q parameter [2] .

If q = 1, then B(k)n,1(z) = B(k)
n (z) are the poly-Bernoulli

polynomials [5].

If q = 1, z = 0, then B(k)n,1(0) = B(k)
n are the

poly-Bernoulli numbers, defined in [13].

Settingk= 1 in (4), and letBq
n(z) = B(1)

n,q(z) denote the
Bernoulli polynomials withq parameter, we obtain

∞

∑
n=0

Bq
n(z)

tn

n!
=

qe−zt

1−e−qt

∞

∑
n=1

(

(1−e−qt)

q

)n 1
n
. (5)

If z= 0, thenBq
n(0) = Bq

n are the Bernoulli numbers with
q parameter. Note thatezt is replaced bye−zt (see [2,1,5]).

Recently, Duran et al. [6] introduced the Hermite
based poly-Bernoulli polynomials with aq parameter

with B(k)
n,q(z) as a special case.

In this paper, we are interested in Bernoulli
polynomials with aq parameter. Therefore, we begin with
the following definitions of some tools which will be
useful for sequel of this paper.

For non-negative integersn andk with 0 ≤ k ≤ n, let
w(n,k) = wq,r(n,k) and W(n,k) = Wq,r(n,k) denote the
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r-Whitney numbers of the first and second kind,
respectively, defined in [15] by

qn(x)n =
n

∑
k=0

w(n,k) (qx+ r)k
, (6)

(qx+ r)n =
n

∑
k=0

qkW(n,k) (x)k. (7)

The exponential generating function ofW(n,k) is given by
[15]

∑
n≥k

W(n,k)
tn

n!
=

ert

k!

(

eqt −1
q

)k

. (8)

The parametersr ≥ 0 andq > 0 are usually taken to be
integers, but both may also be considered as
indeterminates [16].

Komatsu [14] defined the Cauchy polynomials with a
q parameter of the first and second kind, denoted bycq

n(z),
ĉq

n(z), respectively

cq
n(z) =

∫ 1

0
(x− z|q)ndx q 6= 0, (9)

ĉq
n(z) =

∫ 1

0
(−x+ z|q)ndx q 6= 0. (10)

Recently, Shiha [17] gave explicit formulae forcq
n(r) and

ĉq
n(r) in terms ofr-Whitney numbers of the first kind

cq
n(r) =

n

∑
k=0

w(n,k)
1

k+1
q 6= 0, (11)

ĉq
n(−r) =

n

∑
k=0

(−1)k w(n,k)
1

k+1
q 6= 0. (12)

The relations betweencq
n(r), ĉq

n(r) andW(n,k) are (see
[17])

n

∑
k=0

W(n,k)cq
k(r) =

1
n+1

(13)

n

∑
k=0

W(n,k) ĉq
k(−r) =

(−1)n

n+1
(14)

The aim of this paper is to establish an explicit formula
for computingBq

n(z) in terms ofr-Whitney numbers of the
second kindW(n,k). Several relations betweenBq

n(z) and
cq

n(z) are obtained in terms ofr-Whitney numbers of both
kinds.

2 The main results

The main result may be formulated as the following
theorem.

Theorem 1.We define the Bernoulli polynomials with a q
parameter in terms of W(n,k) by

Bq
n(r) =

n

∑
k=0

(−1)k k!
k+1

W(n,k). (15)

Proof.Using (8), we get

∞

∑
n=0

n

∑
k=0

(−1)k k!
k+1

W(n,k)
tn

n!

=
∞
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k=0

(−1)k k!
k+1

∞

∑
n=k

W(n,k)
tn

n!

=
∞
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k=0

(−1)k k!
k+1

ert

k!

(

eqt −1
q

)k

=
q ert

1−eqt

∞

∑
k=0

(

1−eqt

q

)k+1 1
k+1

=
q ert

1−eqt

∞

∑
k=1

(

1−eqt

q

)k 1
k

=
∞

∑
n=0

Bq
n(r)

tn

n!
.

Comparing the coefficients of both sides, we get (15)
(notice thatert is replaced bye−rt in [2]).

On the other hand,

∞

∑
n=0

Bq
n(r)

tn

n!
=

q ert

1−eqt

∞

∑
k=1

(

1−eqt

q

)k 1
k

=
q ert

1−eqt

(

− ln(1− (
1−eqt

q
))

)

=
q ert

eqt −1

(

ln
q−1+eqt

q

)

.

(16)

The first few polynomials are
Bq

0(r) = 1,
Bq

1(r) = r − 1
2,

Bq
2(r) = r2− r − 1

2q+ 2
3,

Bq
3(r) = r3− 3

2r2+(2− 3
2q)r − 1

2q2+2q− 3
2,

Bq
4(r) = r4−2r3+(4−3q)r2−2(q2−4q+3)r

− 1
2q3+ 14

3 q2−9q+ 24
5 .

Corollary 1.If r = 0, Bq
n(0) = Bq

n are the Bernoulli
numbers with q parameter, using(16), we get

∞

∑
n=0

Bq
n

tn

n!
=

q
eqt −1

(

ln
q−1+eqt

q

)

, (17)

Wq,0(n,k) = qn−k S(n,k), then Bq
n can be expressed in terms

of S(n,k) as

Bq
n =

n

∑
k=0

(−1)k k!
k+1

qn−k S(n,k). (18)
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If q= 1, B1
n(r)=Bn(r) andW1,r(n,k) are reduced to Sr(n+

r,k+ r) then, we get the explicit formula(3), and

∞

∑
n=0

Bn(r)
tn

n!
=

t ert

et −1
. (19)

If q = 1 and r = 0, then B1
n(0) = Bn and W1,0(n,k) are

reduced to S(n,k) then, we get the explicit formula(2).

It is known that ther-Whitney numbers satisfy the
following orthogonality relation [15]:

n

∑
l=k

w(n, l)W(l ,k) =
n

∑
l=k

W(n, l)w(l ,k) = δkn, (20)

whereδkn is the Kronecker delta.

Corollary 2.The relation between w(n,k) and Bq
n(r) is

given by

n

∑
j=0

(−1)nw(n, j)Bq
j (r) =

n!
n+1

. (21)

Proof.

n

∑
j=0

(−1)nw(n, j)Bq
j (r)

=
n

∑
j=0

j

∑
k=0

(−1)n+k k!
k+1

w(n, j)W( j,k)

=
n

∑
k=0

(−1)n+k k!
k+1

n

∑
j=k

w(n, j)W( j,k)

=
n

∑
k=0

(−1)n+k k!
k+1

δkn =
n!

n+1
.

The numbersW(n,k) are determined by (see [15]).

W(n,k) =
1

qk k!

k

∑
j=0

(−1)k− j
(

k
j

)

(r + jq)n
, (22)

then, we obtain

Theorem 2.For n≥ 0 , we have

Bq
n(r) =

n

∑
k=0

1
qk (k+1)

k

∑
j=0

(−1) j
(

k
j

)

(r + jq)n (23)

Theorem 3.For n≥ 0, we have

cq
n(r) =

n

∑
k=0

k

∑
j=0

(−1)k

k!
w(n,k)w(k, j)Bq

j (r). (24)

ĉq
n(−r) =

n

∑
k=0

k

∑
j=0

1
k!

w(n,k)w(k, j)Bq
j (r). (25)

Bq
n(r) =

n

∑
k=0

k

∑
j=0

(−1)k k! W(n,k)W(k, j)cq
j (r). (26)

Bq
n(r) =

n

∑
k=0

k

∑
j=0

k! W(n,k)W(k, j) ĉq
j (−r). (27)

Proof.We shall prove the first and the third identities. Other
identities are proven similarly. By (21), and using (11), we
have

n

∑
k=0

k

∑
j=0

(−1)k

k!
w(n,k)w(k, j)Bq

j (r)

=
n

∑
k=0

1
k!

w(n,k)
k

∑
j=0

(−1)k w(k, j)Bq
j (r)

=
n

∑
k=0

1
k+1

w(n,k) = cq
n(r).

By (13), and using (15), we obtain

n

∑
k=0

k

∑
j=0

(−1)k k!W(n,k)W(k, j)cq
j (r)

=
n

∑
k=0

(−1)k k! W(n,k)
k

∑
j=0

W(k, j)cq
j (r)

=
n

∑
k=0

(−1)k k! W(n,k)
1

k+1
= Bq

n(r).

It is known that (see [3])

Wq,r+s(n,k) =
n

∑
j=k

(

n
j

)

rn− j Wq,s( j,k). (28)

Therefore, we get the following properties, which are
similar to those for classical Bernoulli polynomials and
numbers.

Theorem 4.For n≥ 0, we have

Bq
n(r + s) =

n

∑
j=0

(

n
j

)

rn− jBq
j (s). (29)

Bq
n(r) =

n

∑
j=0

(

n
j

)

rn− jBq
j . (30)

Proof.

Bq
n(r + s) =

n

∑
k=0

(−1)k k!
k+1

Wq,r+s(n,k)

=
n

∑
k=0

n

∑
j=k

(−1)k k!
k+1

(

n
j

)

rn− j Wq,s( j,k)

=
n

∑
j=0

(

n
j

)

rn− j
j

∑
k=0

(−1)k k!
k+1

Wq,s( j,k)

=
n

∑
j=0

(

n
j

)

rn− j Bq
j (s).

c© 2018 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


50 F. A. Shiha: Bernoulli polynomials with aq parameter in...

Settings= 0 in (29), we get the second relation (30)

Corollary 3.Setting q= 1 in (29) and (30), we obtain the
following properties of Bn(r) [18]

Bn(r + s) =
n

∑
j=0

(

n
j

)

rn− jB j(s),

Bn(r) =
n

∑
j=0

(

n
j

)

rn− j B j .
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[12] B.-N. Guo, I. Mezö, and Feng Qi, An explicit formula for
Bernoulli polynomials in terms ofr-Stirling numbers of the
second kind,Rocky Mountain J. Math., 46 (6) (2016), 1919–
1923.

[13] M. Kaneko, Poly-Bernoulli numbers,J. Théor. Nombres
Bordeaux., 9 (1997), 199–206.

[14] T. Komatsu, Poly-Cauchy numbers with aq parameter,
Ramanujan J., 31 (2013), 353–371.
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