
Appl. Math. Inf. Sci.8, No. 1L, 319-326 (2014) 319

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/081L40

A Method of Learning Latent Variables Dimensionality
for Bayesian Networks
Zan Zhang∗, Hao Wang and Hongliang Yao

School of Computer and Information, Hefei University of Technology, Hefei 230009, P. R. China

Received: 16 May. 2013, Revised: 10 Sep. 2013, Accepted: 11 Sep. 2013
Published online: 1 Apr. 2014

Abstract: Latent variables often play an important role in improving the quality of the learned Bayesian networks and understanding
the nature of interactions in the model. The dimensionality of latent variables has significant effect on the representation quality and
complexity of the model. The maximum possible dimensionality of a latent variable is a Cartesian product of the state space of its
Markov blanket variables. In order to obtain the dimensionality of the latentvariable, we need to calculate the network score for every
possible dimensionality of the latent variable, and the calculations of this task are substantial. Besides, we do not know the data and
condition probability table of the latent variable which makes the task difficult. In this paper, we propose a novel method to learn the
dimensionality of the latent variable when the network structure is known. Firstly, we use the latent variable and its Markov blanket
variables to extract a local network from original network. Then, we score the local network instead of the original network which
reduces the running time of the task. Secondly, we utilize a state-clustering method to score the network for each dimensionality of
the latent variable, where a simulated annealing strategy is introduced to avoid local optimum. Finally, based on the above stages,
we choose the dimensionality of the latent variable which can make the network get the best score. This new method has excellent
learning performance and can deal with complex networks. Extensiveexperiments validate the effectiveness of our method against
other algorithms.

Keywords: Bayesian Networks, Latent Variable, Dimensionality Learning

1 Introduction

A serious problem in learning Bayesian Networks (short
for BNs) is the presence of latent variables that are never
observed, yet interact with observed variables [1]. The
existence of latent variables is common, such as when we
detected latent variables in fix structure (one assessed by
expert) and in cases where we want to introduce new
variables to network for improving the model. In order to
discover the dimensionality of latent variable, we need to
calculate the score of network for each possible
dimensionality of the latent variable, and the calculation
amount of this task is huge. We do not know the training
data and parameters of the latent variable which makes
the task difficult. The first method for learning the
dimensionality of the latent variable is EM-based scores
method [1]. Later, Elidan and Friedman propose an
approach that utilizes a score-based agglomerative
state-clustering, called Agglomeration algorithm [2].
Traditional methods still have their own drawbacks.

(1) The time complexity of traditional methods is too
high.

The EM-based scores method applies the EM
algorithm [3,4] to learn parameters for the network
containing the latent variable with each possible
dimensionality. This method should perform several EM
runs from different random start points. So the time
complexity of the EM-based scores method is too high.
Agglomeration algorithm has the cubic running time [2].

(2) Traditional methods often trap in a local optimum.
Since the EM algorithm often traps in a local

optimum, thus, the EM-based scores method often traps
in a local optimum. Agglomeration algorithm is a
hill-climbing method [2]. Agglomeration algorithm only
cares about the highest score in one iteration, thus, it often
traps in a local optimum like other hill-climbing methods.

In this paper, we propose a novel algorithm for learning
the latent variable dimensionality based on state-clustering
and simulated annealing (short for SSA algorithm). Our
contribution is the learning performance and running time

∗ Corresponding author e-mail:zz bns@163.com

c© 2014 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/081L40


320 Z. Zhang et al: A Method of Learning Latent Variables Dimensionality...

of our method are much better than the other methods. Our
method can deal with the complex network.

Our method consists of two phases, namely, the
extract local network phase and the merge states phase.
Based on the Markov Independencies [5,6] and
decomposition of Bayesian scoring (short for BDe)
metric [7], when we use BDe metric to score the network,
variables which independent with the latent variable will
not influence the networks score while the latent variable
takes different dimensionality. In the extract local network
phase, firstly, we abandon variables which condition
independent with latent variable. We use the latent
variable and its Markov blanket variables to extract a
local network. We only need the training data of variables
in local network instead of the original training data.
Since we calculate the score of local network instead of
original network, the score process can be accelerated and
will not affect the learning results. Secondly, we
determine the maximal possible dimensionality of latent
variable. In the merge states phase, our method starts with
the maximal possible dimensionality of latent variable.
We maintain a hard assignment to the latent variable in
the training data at each iteration. Thus, we can score the
data by the complete data scoring functions that are
orders of magnitude more efficient than standard
EM-based scores method. The procedure progresses by
choosing the two states whose merger will lead to the
improvement in the score, where an optimization strategy
based on a Metropolis rule of simulated annealing [8,9] is
employed to avoid local optimum and enhance the merge
effectiveness and efficiency. These steps are repeated until
all the states are merged into one state. Based on the two
phases, we discover the dimensionality of the latent
variable. Extensive experiments show that the SSA
algorithm outperforms the other methods.

The paper is organized as follows. In Section 2, we
present the related work. In Section 3, we describe our
preliminary. Section 4 we describe our new algorithm in
detail. Section 5 reports our experimental results. Finally,
we conclude the paper in Section 6.

2 Related Work

We are given training dataD of samples from
X={x1,...,xn}, and a network structureG over X and a
latent variableT. We need to discover the dimensionality
of T.

Firstly, EM-scoring method assumes the maximal
dimensionality ofT. Secondly, this method applies the
EM algorithm to learn parameters for the networks
containingT for each possible dimensionality. Thirdly, it
approximates the score of the network combined with
parameters for each possible dimensionality. Finally, it
chooses the dimensionality ofT which leads to the best
score. The central problem of this approach is its
exhaustiveness.

Elidan propose the Agglomeration algorithm. Firstly,
this algorithm initializes the algorithm with a variableT
that has many states. Agglomeration algorithm maintains
a hard assignment toT in the training data. The
assignment is the state that holds in the instance.
Secondly, Agglomeration algorithm calculates the score
of the network for each possible dimensionality ofT. At
each stage, the algorithm chooses the pair of states which
leads to the largest increase (or smallest decrease) to
merge. These steps are repeated untilT has a single state.
The time complexity of Agglomeration algorithm is cubic
and the Agglomeration algorithm is a hill-climbing
method.

3 Preliminary

3.1 Bayesian Networks

Consider a finite setX = {X1, ...,Xn} of discrete random
variables where each variableXi may takes states from a
finite set, denoted byDim(Xi). A Bayesian network is a
Directed Acyclic Graph (short for DAG)G = (X ,A) ,
Where each arcai j /∈ A describes a direct dependence
relationship between two variablesDim(T ) andX j . Each
node is annotated with a conditional probability
distribution (short for CPD) that representsP(Xi|Pa(Xi)),
where Pa(Xi) denotes the parents ofXi in G. It can be
proved that a Bayesian network(X ,A) uniquely encodes
the joint probability distribution of the domain variables
X = {X1,...,Xn} :

P(X1, ...,Xn) =
n

∏
i=1

P(Xi|Pa(Xi)) (1)

3.2 Markov Independencies

Definition 1 Each variableXi is independent of its non-
descendants, given its parents inG.

One implication of the Markov independencies is that a
variableXi interacts directly only with its Markov Blanket
which includes the Xs parents, children, and spouses.

3.3 Bayesian Scoring Metric

Bayesian scoring metric is a well-known measure for
learning BNs from data. This scoring metric uses a
balance between the likelihood gain of the learned model
and the complexity of the network structure
representation [2].

The initial expression ofBDe score is:

BDe(G|D) =
n

∑
i=1

qi

∑
j=1

[

log
Γ (αi j)

Γ (αi j +mi j)

+
ri

∑
k=1

log
Γ (αi jk +mi jk)

Γ (αi jk)

]

(2)

c© 2014 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.8, No. 1L, 319-326 (2014) /www.naturalspublishing.com/Journals.asp 321

The bestBDe score is the biggest one which is related
to the optimal BNs structure.D is a given training set,G
is a possible network structure,ri is the number of
possible values of theXi , qi is the number of possible
configurations(instantiations) for the variables inPa(Xi).
αi j andαi jk are hyper-parameters of the prior distribution
of parameterization,αi j = ∑ri

k=1 αi jk. mi j andmi jk are data
sufficient statistics.mi j = ∑ri

k=1 mi jk , mi jk is the number
of cases inD whereXi has itsk′th value andPa(Xi) is
instantiated to itsj′th value.

4 SSA Algorithm

SSA algorithm consists of two phases, namely, the extract
local network phase and the merge states phase. We
describe the details below.

4.1 Extract Local Network

We calculate the network score for every possible
dimensionality of T . Since the BDe score is local
decomposable, we dont need to score the original
network. We can extract a local network instead of
original network. TheBDe score can be rewritten as the
sum

ScoreBDe(G : D) = ∑
i

FamScoreBDe(Xi,Pa(i) : D) (3)

Definition 2 [Heckerman et al.,1995a] LetG be a
network structure andP(θ |G) be a parameter prior
satisfying parameter independence and parameter
modularity. Using full table CPDs and a Dirichlet prior
with hyper-parametersαXi|Pa(i) then:

FamScoreBDe(Xi,Pa(i) : D) =

∑
pa(i)

[

log
Γ (αpa(i))

Γ (αpa(i)+S[pa(i)])
+

∑
xi

log
Γ (αxi|pa(i)+S[xi, pa(i)])

Γ (αxi|pa(i))

]

(4)

Where Γ is the Gamma function and
αpa(i) = ∑xi

αxi|pa(i) andS[pa(i)] = ∑xi
S[xi, pa(i)].

Theorem 1Let G be a network over the discrete variables
χ ′ = {X1, ...,Xn} and the latent variableT .Let D be a set
of M instances, where all the variables inχ are observed.
Let G′ be a network over the discrete variables
χ ′ = {MB(T )} and T . Let D′ be a set ofM instances,
where all the variables inχ ′ are observed. Leti and j be
two states ofT . After a merge ofi and j, the valuei and j
are replaced with a new state denote byi · j .

If ∆S = ScoreBDe(Gi· j : D)−ScoreBDe(Gi, j : D),
∆S′ = ScoreBDe(G′i· j : D′)−ScoreBDe(G′i, j : D′)
T hen ∆S = ∆S′

a b

Fig. 1: The process of extracting a local network

That is, comparing the difference between theBDe
score after and before the merge of statesi and j of T in
G , only need to compare the difference inG′ with D′.

Proof. ∆S = ScoreBDe(Gi· j : D)−ScoreBDe(Gi, j : D) =

∑c ∑pa(c)

[

log Γ (α(pa(c),T=i· j))
Γ (S+[pa(c),T=i· j]) - log Γ (α(pa(c),T=i))

Γ (S+[pa(c),T=i]) -

log Γ (α(pa(c),T= j))
Γ (S+[pa(c),T= j])+ ∑c log Γ (S+[c,pa(c),T=i· j])

α(c,pa(c),T=i· j)) -

∑c log Γ (S+[c,pa(c),T=i])
α(c,pa(c),T=i)) - ∑c log Γ (S+[c,pa(c),T= j])

α(c,pa(c),T= j))

]

+

∑pa(T )

[

log
Γ (S+[ti· j ,pa(T )])
Γ (α(ti· j,pa(T )))− log Γ (S+[ti,pa(T )])

Γ (α(ti,pa(T ))) −

log
Γ (S+[t j ,pa(T )])
Γ (α(t j ,pa(T )))

]

where al pha(ti· j = al pha(ti + al pha(t j and
S+[x] = S[x] + α(x) . The first summation is over allC
that are children ofT and corresponds to the families of
the children of and their parents and the second
summation corresponds to the family ofT and its parents.
Thus, we get the Theorem 1.

Figure 1 shows an example of extracting a local
network, whereG is Asia network andG′ is a local
network ofG . Assume the variable 2 is a latent variable.
Only variable 2 andMB(2) can affect the change of
scores. We extract a local network with variable 2,
variable 1, variable 6 and variable 7. Now we dont need
the training dataD anymore, we just need the dataD′ of
those variables in local network fromD.

After we extracted the local network, at each iteration
we maintain a hard assignment toT in the D′ . We can
represent this assignment as a mappingδT from 1, ...,M ,
to the setDim(T ). δT (m) is the state that T holds in the
instance.

We need to determine the maximum possible
dimensionality ofT . Recall that the Markov blanket ofT
separates it from all other variables. This implies that two
instances in whichMB(T ) have the same states, are
identical fromT ′s perspective. Thus, the largest number
of states of latent variable that are relevant for a given
data sets is the number of distinct assignment toMB(T )
in the data [2]. In the example of Figure 2, Markov
blanket of variable 13 in Alarm network is variable 2,
variable 12, variable 27 and variable 30. Their

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


322 Z. Zhang et al: A Method of Learning Latent Variables Dimensionality...

dimensionalities are 3, 2, 3 and 3. So the maximum
possible dimensionality of variable 13 is
Val(13) ≤ 3∗ 2∗ 3∗ 3 = 54, specific number determined
by D′ . We find only 13 assignments (out of 54 possible).
We then augmentD′ with these assignments toT . That is,
for each assignmentc ∈ Dim{MB(T )} , we have atv for
each instance m. We setδT (m) to be the statetv consistent
with the Markov blanket assignment of instancem .

4.2 Merge States Based on Simulated Annealing
Strategy

We merge two states ofT in each step. Leti and j be two
states ofT . After a merge ofi and j, the valuei and j are
replaced with a new state denoted byi · j. We then
reevaluate the network with respect to this assignment,
and so on. These steps are repeated untilT has a single
state. We return the number of statesk that receive the
highest score. To overcome the local optimum and
improve the quality of choosing the(i, j), we introduce a
merging strategy based on a simulated annealing strategy
to enhance merge efficiency in the SSA algorithm. Before
conducting the merge process at each step, SSA algorithm
compares the score of network in the current iteration
with that of last iteration, and then determines whether to
carry out the merging process. The practical Metropolis
rule can be denoted as:

P =

{

1 if ∆S≤ 0
exp(−∆S

tk
) otherwise

(5)

Where ∆S is the score difference of the solution
obtained at two iterations, andtk is the annealing
temperaturetk =

K−k
K t0(K = L−1,K = 1,2, ...,K) . If the

score of the solution at the current iteration is smaller
than that of the last iteration, we give up merging current
(i, j), and choose other couple. On the contrary, when the
score of the solution at the current iteration is better, the
optimizing process is randomly carried out at a certain
probability. Moreover, the annealing temperature will
reduce as the merging runs, and hence the random
merging process will gradually decrease. Whentk → 0 ,
this strategy only performs merging for the cases of
stagnating solutions. If we meet the worst situation: we
cant find any couple states to merge to raise the score of
network. We merge the couple which can lead to the
highest scoring network. Figure 2 shows an example of
merging states process.

4.3 SSA Algorithm

With the theoretical analysis above, we propose the new
approach named SSA algorithm.

1. Initialization:
Initialize: T ,G ,D ,t0

 

13 11 9 7 5 3 1
-5400

-5300

-5200

-5100

-5000

-4900

Number of States 

B
D

e
 S

c
o
re

 o
f 
s
o
lu

tio
n

SSA

Fig. 2: Trace of the merging states process in a simple synthetic
example. We sampled 500 instances from the Alarm network,
and then hid the observations of the variable 13 in the data. The
real dimensionality of variable 13 is 2. The result shown is for
recovering the dimensionality of variable 13.

2. Extract local network phase:
Given networkG and latent variableT
//By Definition 1
GetMB(T ) from G
Extract local networkG′ with T andMB(T )
Keep the training data ofMB(T ) in D′

WMB←{1, ...,K}, an ordering of unique assignment
to MB(T ) in D′

for m← 1 to M do
δT [m] ← WMB[MBT (M)]//Complete data of T by
assignment
end
3. Merge states phase:
for k← 1 to K do
(i, j)←Merge(D′,T,δT )
if ∆S = Sk−Sk−1 > 0 andrandom > exp(−∆S/tk)
Confirm merge(i, j)
endif
if ∆S = Sk−Sk−1≤ 0 or random≤ exp(−∆S/tk) then
Give up merge(i, j), choose other couple states.
endif
for eachδT [m] = i or j do
δT [m] = i · j
end foreach
end
Return the number of states which received the highest
score

4.4 Algorithm Analysis

Traditional methods have their drawbacks. Since the
EM-based scores method applies EM algorithm
repeatedly, it makes time complexity of this method too
high and often traps in a local optimum. The
Agglomeration is a hill-climbing method, also often traps
in a local optimum. Agglomeration algorithm has the
cubic running time. SSA algorithm extracts a local
network to remove the redundant calculations, even in the
worst situation the running time of SSA algorithm is less

c© 2014 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.8, No. 1L, 319-326 (2014) /www.naturalspublishing.com/Journals.asp 323

Table 1: Data set used in experiments
Data set(D) Original network(G) Size of D Nodes of G

Asia500 Asia 500 8
Asia1000 Asia 1000 8
Asia1500 Asia 1500 8
Asia2000 Asia 2000 8
Asia2500 Asia 2500 8
Asia3000 Asia 3000 8
Alarm500 Alarm 500 37
Alarm2000 Alarm 2000 37

Table 2: Variables used in our experiments from Asia
Latent Variable Real Dimensionality

Variable1 2
Variable2 2
Variable3 2
Variable5 2
Variable6 2

than Agglomeration. SSA algorithm applies a simulated
annealing strategy to control the process of merge states.
Simulated annealing has been proven to be an efficient
approach to avoid trap in a local optimum. So the learning
results of SSA algorithm are better than the traditional
methods.

5 Experimental Results

5.1 Experiment Setup

To assess the performance of the SSA algorithm, we use a
common evaluation method, which is to test the algorithm
on data sets generated from known networks using
probabilistic logic samples. We test SSA algorithm on 8
different data sets, and compare the result with that of the
EM-based scores method and Agglomeration on the same
data sets. All of the data sets are generated from
well-known benchmarks of BNs including the Asia
network and the Alarm network [10]. Table 1 shows a
summary of data sets used in our experiments. We use the
method proposed by Elidan et al. [2] to choose variables
for experiments. We choose 5 variables from Asia and 24
variables from Alarm. (We didnt consider variables that
are either leaf or had few neighbors.) We consider the
estimated dimensionality had one state more or less than
the true dimensionality is near-perfect results. Table 2 and
Table 3 shoes a summary of variables for experiments.
The EM-based scores method is independently executed
10 times for each data set, and the running time is an
average of 10 trails. The experimental platform was a PC
with Pentium 4, 2.8 GHz CPU, 2G memory, and
Windows XP. The algorithm was implemented by
MATLAB. By large number of experiments, we set
t0 = 3000.

Table 3: Variables used in our experiments from Alarm
Latent Variable Real Dim Latent Variable Real Dim

Variable1 2 Variable15 4
Variable2 3 Variable16 3
Variable3 2 Variable19 3
Variable4 2 Variable21 4
Variable5 2 Variable23 4
Variable7 2 Variable26 4
Variable8 2 Variable27 3
Variable 9 2 Variable28 3
Variable10 2 Variable30 3
Variable12 2 Variable31 2
Variable13 2 Variable32 3
Variable14 3 Variable35 3

 

Fig. 3: Process of merging states by SSA and SSA-1

5.2 Contributions of Extract Local Network

We employ SSA-1 algorithm (dont extract a local
network) and SSA algorithm to learn the dimensionality
of variable10 in Alarm on Alarm500 data set. Its real
dimensionality is 2. We hide the data of the variable10.
The experimental results are shown in Figure 3 and the
running time is shown in Table 4. In the example of only
20 states (out of 54 possible) were observed in the data.
From Figure 3 and Table 4, we can see the learning
results of SSA-1 and SSA are correct, but SSA-1 needs
35.765001 seconds while SSA only needs 3.104910
seconds. We can draw the conclusion that the extract local
network phase can effective reduce the running time of
learning the latent variable dimensionality. The time
complexity of SSA algorithm will not increase with the
complex of network, because we only scoring the local
network of latent variables.

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


324 Z. Zhang et al: A Method of Learning Latent Variables Dimensionality...

Table 4: Running time of SSA-1 and SSA
Running time of SSA-1(s) Running time of SSA(s)

35.765001 3.104910

Table 5: Comparison of results on Asia network

Dataset Statistic
Algorithm

EM-based Agglomeration SSA

Asia500

Correct 1 4 5
Missing 0 0 0
Extra 2 1 0

Incorrect 2 0 0

Asia1000

Correct 0 4 4
Missing 0 0 0
Extra 3 0 1

Incorrect 2 1 0

Asia1500

Correct 1 4 4
Missing 0 0 0
Extra 2 1 1

Incorrect 2 0 0

Asia2000

Correct 0 5 5
Missing 0 0 0
Extra 3 0 0

Incorrect 2 0 0

Asia2500

Correct 0 5 5
Missing 0 0 0
Extra 2 0 0

Incorrect 3 0 0

Asia3000

Correct 0 3 4
Missing 0 0 0
Extra 3 1 0

Incorrect 2 1 1

5.3 Comparison the Predictions of
Dimensionality

Table 5 report the detailed results of the SSA algorithm
against EM-based scores method and Agglomeration
algorithm on the 6 datasets of Asia network. SSA
algorithm gets better results than EM-based scores
method on all datasets. SSA algorithm gets better results
than Agglomeration algorithm on Asia500, Asia1000 and
Asia3000. On the other three datasets, SSA algorithm and
Agglomeration algorithm are all get perfect prediction of
dimensionality. The learning results of SSA algorithm are
better than the other methods.

Comparison of learning results with SSA algorithm
and traditional methods on the 2 data sets of Alarm
network is shown in Table 6. On the Alarm500 data set,
SSA algorithm recovered the correct dimensionality for 8
variable and get near-perfect prediction of dimensionality
for 8 variables. EM-based scores method recovered the
correct dimensionality for 1 variable and get near-perfect
prediction of dimensionality for 4 variables.
Agglomeration recovered the correct dimensionality for 5
variables and get near-perfect prediction of
dimensionality for 10 variables. On the Alarm2000 data

Table 6: Comparison of results on Alarm network

Dataset Statistic
Algorithm

EM-based Agglomeration SSA

Alarm500

Correct 1 5 8
Missing 2 3 5
Extra 2 7 3

Incorrect 19 9 8

Alarm2000

Correct 0 4 4
Missing 2 2 7
Extra 2 6 4

Incorrect 20 12 9

set, we can see that SSA algorithm recovered the correct
dimensionality for 4 variables and get near-perfect
prediction of dimensionality for 11 variables. EM-based
scores method only get near-perfect prediction of
dimensionality for 4 variables. Agglomeration recovered
the correct dimensionality for 4 variable and get
near-perfect prediction of dimensionality for 6 variables.
SSA algorithm is better than the other methods. Alarm
network is a complex standard BNs with 37 variables.
The experiment results show that the SSA algorithm can
lead to excellent performances on the complex network.

5.4 Comparison of the Running Time

Figure 4 to Figure 9 report the average running time on
Asia network of SSA algorithm against traditional
methods. SSA algorithm is faster than the other methods
on all the 6 datasets. Comparison of running time over
Alarm network of SSA algorithm against traditional
methods are shown in Figure 10 and Figure 11. We can
see that SSA algorithm is faster than Agglomeration
algorithm. Some variables like variable 16, variable 28
and variable 32 which Markov blankets are much
complex. The running time of Agglomeration on these
variables are much more than the other variables. But the
running time of SSA algorithm on every variable is very
little. From figure 10, we can see that the running time of
SSA algorithm is less than EM-based scores method on
all variables except variable23, variable31 and variable32.
From figure 11, we can see that the running time of SSA
algorithm is less than EM-based scores method on 16
variables.

6 Conclusion

Learning the dimensionality of latent variables is a
challenging issue. In this paper, we analysis the
decomposable of score metric and extract a local network
based on Markov blanket of latent variable. Then an
optimization strategy based on a Metropolis rule of
simulated annealing is employed to improve the process
of merging states. This new method can not only get
better learning performances, but also can deal with the

c© 2014 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.8, No. 1L, 319-326 (2014) /www.naturalspublishing.com/Journals.asp 325

 

1 2 3 5 6
0

20

40

60

80

100

120

Variables

R
u
n
n
in

g
 t

im
e
(s

e
c
o
n
d
s
)

EM-based scores method

Agglomeration

SSA

Fig. 4: Comparison of running time on Asia500

 

1 2 3 5 6
0

50

100

150

200

250

Variables

R
u

n
n
in

g
 t

im
e

(s
e

c
o

n
d

s
)

EM-based scores method

Agglomeration

SSA

Fig. 5: Comparison of running time on Asia1000

 

1 2 3 5 6
0

100

200

300

Variables

R
u

n
n

in
g

 t
im

e
(s

e
c

o
n
d

s
)

EM-based scores method

Agglomeration

SSA

Fig. 6: Comparison of running time on Asia1500

 

1 2 3 5 6
0

100

200

300

400

500

Variables

R
u

n
n

in
g

 t
im

e
(s

e
c

o
n
d

s
)

EM-based scores method

Agglomeration

SSA

Fig. 7: Comparison of running time on Asia2000

 

1 2 3 5 6
0

100

200

300

400

500

Variables

R
u
n

n
in

g
 t

im
e

(s
e
c

o
n

d
s
)

EM-based scores method

Agglomeration

SSA

Fig. 8: Comparison of running time on Asia2500

 

1 2 3 5 6
0

200

400

600

Variables

R
u
n

n
in

 t
im

e
(s

e
c
o

n
d

s
)

EM-based scores method

Agglomeration

SSA

Fig. 9: Comparison of running time on Asia3000

 

1 2 3 4 5 7 8 9 10 12 13 14 15 16 19 21 23 26 27 28 30 31 32 35
0

2000

4000

6000

8000

10000

12000

14000

16000

Variables

R
u
n
n

in
g
 t

im
e(

se
co

n
d
s)

EM-based scores method

Agglomeration

SSA

Fig. 10: Comparison of running time on Alarm500

complex networks. Experimental results demonstrate that
SSA algorithm can lead to better performances of
learning the latent variables dimensionality.

Acknowledgement

This work is supported by the National Natural Science
Foundation of China 61070131, 61175051 and 60975034.

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


326 Z. Zhang et al: A Method of Learning Latent Variables Dimensionality...

 

1 2 3 4 5 7 8 9 10 12 13 14 15 16 19 21 23 26 27 28 30 31 32 35
0

2

4

6

8

10

12
x 10

4

Variables

R
u

n
n
in

g
 t

im
e(

se
co

n
d

s)

EM-based scores method

Agglomeration

SSA

Fig. 11: Comparison of running time on Alarm2000

References

[1] P. Cheeseman, J. Kelly, M. Self, J. Stutz, W. Taylor, and
D. Freeman, AutoClass: a Bayesian classification system,
in the Proceedings of the Fifth International Conference on
Machine Learning,27, 54-64 (1988).

[2] Gal Elidan, Nir Friedman, Learning the Dimensionality of
Hidden Variables in the Proceedings of the Seventeenth
conference on Uncertainty in artificial intelligence,144-151
(2001).

[3] A. P. Dempster, N. M. Laird, and D. B. Rubin,
Maximum likelihood from incomplete data via the EM
algorithm, Journal of the Royal Statistical Society. Series B
(Methodological),39, 1-39 (1977).

[4] S. L. Lauritzen, The EM algorithm for graphical association
models with missing data, Computational Statistics and
Data Analysis,19, 191-201 (1995).

[5] Constantin F. Aliferis, Alexander R. Statnikov, Ioannis
Tsamardinos, Subramani Mani, Xenofon D.Koutsoukos,
Local Causal and Markov Blanket Induction for Causal
Discovery and Feature Selection for Classification Part I:
Algorithms and Empirical Evaluation, Journal of Machine
Learning Research,11, 171-234 (2010).

[6] Fu, S.-K. and M.C. Desmarais, Tradeoff Analysis of
Different Markov Blanket Local Learning Approaches,
Advances in Knowledge Discovery and Data Mining,5012,
562-571 (2008).

[7] D. Heckerman, D. Geiger, and D. M. Chickering, Learning
Bayesian networks: The combination of knowledge and
statistical data, Machine Learning,20, 197-243 (1995).

[8] D. Fouskakis, Bayesian variable selection in generalized
linear models using a combination of stochastic
optimization methods, European Journal of Operational
Research,220, 414-422 (2012)

[9] Vincent Granville, Mirko Kvanek, and Jean-Paul Rasson,
Simulated annealing: A proof of convergence. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
16, 652-656 (1994).

[10] www.ai.nit.edu/murphyk/Software/BNST/BNst.html.

Zan Zhang is a MS
student in school of Computer
and Information, Hefei
University of Technology.
He received the BS degree in
the department of Economic
management, Northeast
Dianli University in 2009. His
research interests are in the
areas of machine learning and

data mining.

Hao Wang Hao Wang
received the MS degree in
Computer science from Hefei
University of Technology in
1989, and the PhD degree in
Computer science from Hefei
University of Technology
in 1997. He is currently a
professor in Hefei University
of Technology. His main

research interests artificial intelligence.

Hongliang Yao
received the MS degree
in Mathematics from
Anhui University in 1997
and the PhD degree in
Computer science from
the school of Computer and
Information, Hefei University
of Technology in 2007.
He is currently an associate

professor in Hefei University of Technology. His research
interests are in the areas of artificial intelligence and
knowledge engineering.

c© 2014 NSP
Natural Sciences Publishing Cor.

www.ai.nit.edu/murphyk/Software/BNST/BNst.html

	Introduction
	Related Work
	Preliminary
	SSA Algorithm
	Experimental Results
	Conclusion

