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Abstract: This paper proposes a new procedure for generating a displaced butterfly subdivision surface from multiple images. First,
point geometry of the target object is recovered by combining LDC(Layered Depth Cube) surfel sampling scheme with the concept of
visual hull based on the input images. Then the subdivision surface is generated approximating to the recovered point cloud. We use a
variant displaced subdivision scheme, where scalar displacement, in the direction of a local normal, is computed via the MLS(Moving
Least Squares) approximation. The resulting subdivision surface is amesh with subdivision connectivity providing a high-quality and
efficient approximation to the given images. And it is able not only to represent a natural level of detail structure of the surface, but it
is also to be memory-efficient by taking advantage of smoothness properties. Experimental results show the quality of our algorithm.
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1 Introduction

Recently, complex 3D models are easily acquired from
3D scanning devices. Despite the rapid advances of 3D
scanning devices, there are so many objects those
geometry cannot be acquired because they are too big or
disappeared in the past. In this paper, we use the concept
of the visual hull to allow us to generate the target surface
geometry from images. A lot of image-based modeling
approaches have tried to capture the geometry of such
objects. Most of them reconstruct point cloud data.

Volumetric carving algorithms [14,22] recover the
voxels on the target shape from multiple images. A target
shape with voxel geometry is created by iteratively
eliminating invalid voxels from the initial bounding
volume. Eliminating a voxel is based on its
color-consistency, which enables the resulting digital
solid to follow the original surface clearly. Plane
sweeping technique is introduced to free the carving
process from vision constraints such as occlusion.

After the point geometry recovery process, we need
some tessellation methods to construct its surface
geometry for its rendering, animation, and another uses.
The computation of surfaces parametric surfaces or

polygonal meshes - from the point data is referred to as
reconstruction.

The surface reconstruction from a point cloud has
been a major interest in computer graphics and geometric
modeling for several decades and there are so many
researches which give dense irregular polygonal surfaces
as output. One of the algorithms in the first generation is
the marching cubes algorithm [19] which is commonly
used for extracting iso-surfaces from volume data.
Although it has some defects, it has been applied to many
other reconstruction algorithms. Hoppe et al. are pioneers
who proposed an algorithm to reconstruct directly a
subdivision surface from unorganized points [9]. Since
they used an energy optimization procedure, the quality
of their results is very high but it takes too long to
compute. For incremental updating, a volumetric
approach [6] was proposed. It calculates weighted
function and signed distance function incrementally, and
then assigns them to voxels. Besides, there are many
approaches based on Voronoi diagrams [2], radial basis
function [6], meshless parameterization [5], and so on.
Some recent works are concerned with the reconstruction
of a surface from under-sampled or missing data using
global optimization techniques [10,24].
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Fig. 1: A brief overview of our method

In order to create continuous surfaces from irregularly
spaced point samples, splat-based approaches have been
also suggested. QSplat [21] replaces points by ellipses or
rectangles in image space. A hierarchical bounding
sphere structure facilitates time-critical rendering. Surface
splatting [20] applies EWA(Elliptical Weighted Average)
texture filtering in object space and has achieved the
highest image quality so far, including anti-aliasing
capabilities.

Grossman and Dally [8] sampled point data sets from
geometric models and then rendered them. They
addressed the issues of sampling rate and gaps in the
point-rendered images. Alexa et al. have proposed a new
method [1] to compute and render point-set surfaces
using a MLS(Moving Least Squares) approximation. A
new explicit definition of point-set surfaces [3] has also
been introduced to represent various point primitives such
as splats and surfels.

Since subdivision is a very useful representation for
level of detail description for editing and animation, many
approaches have been proposed to re-mesh an irregular
triangulation obtained in the reconstruction, in order to
convert an arbitrary triangulation into a semi-regular one,
namely, having subdivision connectivity. The approach of
Eck et al. [7] partitions a given mesh by growing Voronoi
tiles in order to construct a base mesh, parameterizes each
tile using harmonic maps, and then subdivides the base
mesh simultaneously, re-sampling the positions of odd
vertices using the parameterization. In a shrink-wrapping
approach for re-meshing [13], a semi-regular mesh wraps
the original genus zero surface and shrinks. When
shrinking, two operations are performed: attracting forces
pull vertices in the direction of the given surface and

relaxing forces push vertices apart in order to minimize
the local distortion energy of the mesh.

The displaced subdivision surface(DSS) [16] is the
new surface representation used to describe a detailed
surface model as a scalar-valued displacement over a
smooth domain surface. It offers a number of benefits,
including geometry compression, editing, animation,
scalability, and adaptive rendering. In particular, the
encoding of the fine details as a scalar function makes the
representation extremely compact. While the above
approaches convert the irregular representation into a
semi-regular one after the reconstruction process, Jeong
and Kim [12] tried to reconstruct a DSS directly from a
point cloud. Their approach fails to reconstruct concave
objects and works only for genus zero models.

We reconstruct a subdivision surface from
unorganized points on the visual hull surface of the target
object. The visual hull surface is approximated based on
the images of the target object. The points on the visual
hull surface are sampled by applying LDC surfel
sampling scheme on the input images. Then the points are
used to construct subdivision surface. The subdivision
surface is well-known to be a natural level-of-detail and
memory efficient representation of the polygonal surface.
Especially displaced butterfly subdivision surfaces
(DBSS) have more efficiency of memory than general
DSS that samples the displacement from the approximate
domain surface subdivided by a Loop scheme. Because
we use the interpolatory subdivision method like a
modified butterfly scheme, we dont need to sample the
displacement of all vertices but just those of odd vertices
for each level. Figure 1 shows our algorithm overview.
The file size of a polygonal mesh, the level two of DBSS
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is about 1,129KB but we can generate it at any time using
a base mesh(71KB) and its displacement(460KB).

One of our challenges is to sample the displacement
between a subdivision surface and point. If point clouds
have some holes, they should be filled and the
displacement should be sampled. We can solve these
problems by using an MLS surface which is good at
approximating a point set. While DSS samples the
displacement between a domain surface and an original
polygonal surface, DBSS does it between a butterfly
subdivision surface and an MLS approximating surface of
point clouds (see Figure2). Particularly we will improve
the weight function of an MLS approximation to fill holes
and deal with high-curvature regions.

(a) (b)

Fig. 2: Sampling scalar displacement along the direction
of normal vector : (a) to a polygonal surface, and (b) to an
MLS surface.

In this paper, we propose general procedure to
approximate (noisy) point cloud data of models of any
genus by a subdivision surface. To handle scattered points
with noise, we use the recent method of moving
least-squares(MLS) for surfaces [17]. The final
reconstructed approximation is a displaced subdivision
surface, convenient for many possible applications. The
scalar displacement offsets along vertex normal onto a
smooth subdivision surface to represent a detailed
surface. It offers a compact representation and it has many
other advantages for tasks such as editing, animation, etc.

The contribution of this work is in choosing the right
procedure that takes us safely from the object-captured
images to the final displaced subdivision surface. We can
handle models of any genus, and achieve a high quality
approximation when possible, and an efficient level of
detail recovery. Note that we applied MLS approximation
to the given point cloud in both the triangulation and the
subdivision steps. Let us summarize the main procedures
of the algorithm and their important features.

–The point recovery stepsamples points on the visual
hull surface of the target object.

–The culling stephandles the genus problem.
–The shrink-wrap step performs MLS approximation
to the data to make triangles and improve them.

–Adaptive coarsening of the triangleskeeps tolerance
and genus to construct the base mesh.

–Subdividing using local least-squares polynomial
approximation applies ideas from MLS for surfaces
to have higher approximation quality.

–Improved weight function in the MLS stepshandles
outliers and features of high curvature.

2 Point geometry sampling based on visual
hull

We will now explain in detail how to sample points from
multiple images. We create points assumed to be on the
visual hull surfaces by combining LDC surfel sampling
scheme (see Figure3).

Fig. 3: An illustration of surfel sampling from a visual
hull

To create points from multiple images, several
processing steps are performed as seen in Figure4. First,
we create an LDC structure which consists of 6
LDI(Layered Depth Image) planes with user-specified
sampling resolution m. Then we sweep each LDI plane in
the positive and negative directions of x, y, and z axes. No
ray casting is executed which was used in the previous
surfel sampling approach [20]. As each LDI plane moves,
some cameras are activated to test the validity of each
LDI pixel. All the LDI pixels are tested to find whether
they show consistent colors in the images corresponding
to the activated cameras. The surface point is created at
the position of color-consistent pixel. This process is
repeated until no more surface point is reconstructed from
the sweeping of 6 LDI planes. After all the space has been
swept, the sampling process is completed.

2.1 Camera activation

Before testing the color-consistency of each LDI pixel,
we must determine which camera can clearly see the LDI
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Fig. 4: Point sampling overview

pixels on the LDI plane of current sweep position. By
combining LDC sampling with the plane sweeping
method [14], we maintain an ordinal visibility that
dramatically solves the self-occlusion problem occurred
in imaging process.

We move the sweep planes, called LDI planes in this
paper, in the positive and negative directions of x, y, and z
axes. In the previous method, the sweep planes were
incremented along each coordinate direction by the voxel
grid size. Instead of that way, we move the LDI planes
with user-specified sampling intervalds (see Figures5
and 6). By controlling ds appropriately, the lack of
precision introduced by the previous space discretization
method [14,22] is largely avoided.

As LDI plane moves, each input camera is activated
when it is behind the LDI plane and the angle between its
viewing direction and sweep direction is within a
thresholdθ . To reduce the influence of blurring in the
imaging process, we set the thresholdθ to 60o and this
value works well. In Figure5(a), only Cameras 1 and 2
are initially activated. As LDI the moves in the sweep
direction, Camera 3 is activated as the LDI plane passes it
(see Figure5(b)). Although Camera 10 is also passed by
LDI plane, it cannot be activated because its viewing
direction is far from the sweep direction.

2.2 Color-consistency constraint

After the camera activation, we sample 3D surface points
at the LDI pixels that are assumed to be on the surfaces of

(a)

(b)

Fig. 5: Camera activation overview

visual hull. As widely known, visual hull represents the
maximal shape and appearance computed from multiple
images. Seitz et al. introduces color-consistency
constraint to compute visual hull accurately and robustly
[22]. They noticed that the same point on the surface
should be the consistent color in any images that capture
it. That is to say, if a certain point has the consistent color
in any visible images, it is probably on the valid surface
of the target object. In this paper, all of LDI pixels are
tested whether they show consistent colors in the images
of the activated cameras. At the color-consistent LDI
pixel positions, surface points are sampled.

Figure6 shows a 2D example of the color-consistency
test. In Figure6(a), LDI pixel 1 is determined not to be on
the surface because it has different colors in the images
taken by Cameras 1 and 2. LDI pixel 2 shows consistent
colors in all cameras that can see it, so a surface point is
created at that position and its color is assigned to be red.
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LDI pixel 3 is determined to be in empty space without
color-consistency test because its projection is in the
background area of Camera 2. From the known property
of visual hull and color-consistency constraint, if a certain
area is projected onto the background of any image, it is
absolutely outside the target object. After moving the LDI
plane through the user-specified distanceds, the same
process is repeated on all LDI pixels. Notice that Camera
3 is not included in testing the color-consistency of LDI
pixel 4, because this LDI pixel projects on the occupied
area of that cameras image. This means that LDI pixel 4
is not visible from Camera 3 according to the property of
ordinal visibility. By testing LDI pixel 4 with Cameras 1
and 2, another surface point is created at that position. For
the same reason, camera 2 is not considered in testing
LDI pixel 5.

3 Displaced butterfly subdivision surface
construction

One of the difficulties in reconstruction from a point cloud
is the topology identification. To solve this, first of all we
build a representative mesh by carving empty cubes from
outside in the bounding volume grid of appropriate size,
and shrink-wrap the outer surface of non-empty cubes onto
the point cloud. And then we simplify the representative
mesh to construct a base triangular mesh. If coarse blocks
are used for generating a base mesh without simplification
step, there will be a possibility of missing the genus of
point data. The cost function of simplification estimates
the error between an original set of points and a triangular
mesh for a base mesh to preserve the appearance of point
clouds. At last we subdivide the base mesh and at the same
time sample the displacement value for each odd vertex in
the direction of its normal based on MLS approximation.

3.1 Notation

P is the set of all the points is the point cloud. A
triangulationT consists of a set of verticesV(T ), a set
of edgesE(T ), and a set of trianglesT(T ). For each
e∈ E(T ) andv∈V(T ), we denote byv∈ e the relation
that v is a boundary vertex of the edgee. For each
t ∈ T(T ) andv∈ V(T ), we denote byv∈ t the relation
thatv is a vertex of the trianglet.

For eache∈ E(T ), Qe is the quadrilateral formed by
the two triangles sharinge. For v ∈ V(T ) we denote by
Cv the cell ofv in T , namelyCv = {t ∈ T(T ) : v ∈ t}.
For e∈ E(T ) we denote byCe the cell ofe in T , namely
Ce = {Cv : v∈ e} (Figure7(a)).

For eachv ∈ V(T ), the vectornv = n(v,T ) is the
average of the normals to all{t ∈ T(T ) : v∈ t}. To each
v ∈ V(T ), we attached a subsetPv of points fromP

which are close tov.
In our algorithm the surface from which the point

cloud is sampled is locally approximated by a quadratic

(a)

(b)

Fig. 6: 2D illustration of color-consistency test with the
LDI plane sweeping in the -z direction: (a) whenLDI−z at
z = z0, (b) whenLDI−z at z =z1.

MLS polynomial (Figure7(b)). The quadratic polynomial
at a vertexv relative to a reference planeHv throughv
with normalnv and to a setPv of k-nearest neighboring
points ofv, (k is the user parameter between 10 and 20.) is
the quadratic polynomialqv minimizing

∑
p∈Pv

‖qv(ΠHv(p))− fv‖
2e

−
‖p−v‖2

h2
v (1)

among all quadratic polynomials. Herehv =
√

πR2

|Pv|
, where

R is the radius of the smallest bounding sphere including
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(a) (b)

Fig. 7: The quadrilateralQe and the cellCe of an edgee
and the MLS projection.

the points ofPv, ΠHv is the orthogonal projection to the
planeHv, and fv = (p−ΠHv(p)) ·nv.

3.2 Construction of a representative mesh

To construct a representative mesh from a point cloud,
first we split the bounding box which includes the point
cloud into cubes. The size of the cubes should depend on
the sampled surface. By carving the empty cubes from
outside, we can extract the shape of the surface to be
approximated. At the beginning of this procedure, we
remove the outmost empty cubes. We repeat this steps
until there are no more the empty outmost cubes. Then we
triangulate the boundary faces of the remaining block of
cubes, by adding a diagonal to each to face, and obtain
the triangulationT0.

To get an initial triangulation of the sampled surface
we shrink-wrapT0 to the point cloud. We apply the
shrink-wrapping approach [13] rather than the marching
cubes algorithm [19], because a reconstructed surface by
marching cubes algorithm requires a post-processing like
hole-filling and removal of small triangles [15]. The
shrink-wrapping approach has two basic operations:
projection followed by regularization. The projection
operator moves a vertex to the corresponding the MLS
surface and the regularization operator moves a vertex in
direction tangent to the surface to separate vertices apart.
To improve the regularity of the resulting triangulation,
with the projected vrtices and the same connectivity,
denoted by T1, we apply to T1 the regularization
operator. These operators are given by

Pro j(v) = ΠHv(v)+qv(ΠHv(v))nv, v∈V(T0) (2)

Reg(v) = tv+qv(tv)nv, v∈V(T1) (3)

wheretv = 1
|Cv|

ΠHv(∑u∈Cv u). The resulting triangulation
T2 is a good representative mesh of the geometry and
topology of the surface.

The neighborhoodPv ∈ {Pu : u∈V(Ti)}, i = 1,2,3
consists of the closestk points from the point cloud to the

vertexv with k a user parameter. In our simulationk was 64
or 128. The simulations withk= 32 were unsatisfactory.

3.3 Construction of a base mesh

We construct a triangular base mesh by simplifying the
representative mesh, using edge collapse with a cost
function which estimates the error incurred by the edge
collapse. The simplification algorithm consists of two
parts – computation of cost function ofe ∈ E(T ) and
collapsing edges.

Computation of the cost function

For each edge, we compute its cost function by virtually
collapsing it, and estimating the error between a local
approximation to the surface at the point of collapse and
the cell of that point in the collapsed mesh. This is done
by following steps:

–STEP 1 – We compute the butterfly pointBe
corresponding toe relative toT .

–STEP 2– We virtually collapse the edgee to the point
Be and then denote byT ′

e the resulting triangulation in
the cellCe.

–STEP 3 – We attach virtually toBe the points from
{Pv : v∈ Qe} which are closest toBe than to the four
vertices ofQe. We denote this set of points byPBe.

–STEP 4– We determine a reference planeHe for Be, as
the plane touchingBe with normalne= n(Be,T

′
e ). We

denote byΠe(p) the orthogonal projection of a pointp
on He, represented by a local coordinate system ofHe
such thatΠe(Be) = (0,0).

–STEP 5– We compute the quadratic MLS relative to
Be andHe, based on the points inPBe and denote it by
qe.

–STEP 6– We compute the pointPe = (0,0,qe(0,0))
(with respect to the coordinate system relative toH)
and virtually collapse the edgee to Pe. The resulting
virtual triangulation is denoted byT ′′

e .
–STEP 7– The cost function of the edgee in E(T ) is
the value,

F(e,T ) = max{‖qe(Πe(p))− p‖2 : p∈ N (Pe,T
′′

e )}
(4)

with N (Pe,T
′′

e ) = {midpoint ofε : ε ∈
E(T ′′

e )}∪{barycenter oft : t ∈ T(T ′′
e )}.

Simplification step

We choose e∗ ∈ E(T ) such that
F(e∗,T ) = mine∈E(T )F(e,T ). We collapsee∗ to the
point pe∗ = (0,0,qe∗(0,0)). Then we update the
triangulation by replacing the triangulation inCe∗(T ) by
T ′′

e∗ and the neighborhoods of the vertices after the
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(a) before (b) after

Fig. 8: Virtual edge collapse; the set of pointsPBe are
approximated by an MLS surface. The cost function is
defined by the maximum height of the points of the set
N (Pe,T

′′
e ) from the reference planeHe.

collapse. We attach each point inPv, v∈ e∗ to the closest
vertex to it amongv∈V(T ′′

e∗ ). Finally we update the cost
function relative to the newly formed triangulation. This
update is only local, since the collapse ofe∗ only affects
the cost function of the edges of triangles with edge in
T ′′

e∗ .

3.4 Displaced butterfly subdivision surface

After subdividing the polygonal mesh with the modified
butterfly scheme [26], we sample the displacements by
local approximation based on quadratic MLS. For each
edgee∈ E(T ), we compute the butterfly pointBe. We
denote byT ′ the refined triangulation after subdivision.
We definePBe = {Pv : v∈ Qe}. We determine a reference
plane He for Be, as the plane touchingBe with normal
ne = n(Be,T

′). We compute the quadratic MLS
polynomialqe relative toBe andHe, based onPBe. The
displacement valuede is

de = ‖(0,0,qe(0,0))−Be‖. (5)

After sampling the displacementsde of all edges, we
update the neighboring points from the point cloud. We
attach to the displaced pointBe+ nede the neighborhood
PBe. For eachv∈ Qe we remove fromPv the points that
are closer toqe(Be) than tov.

4 Results and discussion

We used 36 input images with a resolution of 5122 for the
point cloud recovery of each model, which were captured
at evenly distributed camera positions. We captured the
input images using evenly distributed virtual cameras to
evaluate the robustness and performance of our method.

As shown in the red circled areas in9(b) and 9(c),
some poorly shaped features are corrected after the

simplification and subdivision steps are performed. This
is because they are restructured into the inner area of the
point cloud during the simplification step, while their
displacement is sampled outward.

(a) (b)

(c) (d)

Fig. 9: Pig model result. (a) Recovered point
cloud(105,733 points) (b) Shrink-wrapped polygonal
model(5,557 vertices and 11,110 faces) (c) Simplified
base mesh(2,002 vertices and 4,000 faces) (d) Final
DBSS(8,002 vertices and 16,000 faces)

Figures9 and10show the reconstruction results when
using our algorithm. From a point cloud (a) we created a
polygonal mesh structure (b) by shrink-wrapping and we
constructed a base mesh (c) by simplifying a
shrink-wrapped mesh using a cost function based on the
modified butterfly subdivision scheme and MLS
approximation. Finally, we produced a displaced butterfly
subdivision surface (d) using the modified butterfly
subdivision method and by sampling the scalar-valued
offset between a subdivision surface and MLS surface.
The processing time required to reconstruct the DBSS
from point data was as little as 10 seconds. We can
perform parallel processing for rapid reconstruction even
if a given point set is massive, because our method uses
local approximation.

Our method is automatic, except for the description of
the cube blocks used for carving empty cubes. The
reconstruction result will have holes if the size specified
is smaller than any holes. It is possible that the
displacement values will be increased or incorrect if the
size is increased, because the edges of the representative
mesh are distant from the point clouds. However, we can
sometimes skip the simplification step if users select
cubes of a suitable size. Thus, the representative mesh
that is shrink-wrapped from coarse cube blocks becomes
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(a) (b)

(c) (d)

Fig. 10: Dragon model result. (a) Recovered point
cloud(126,912 points) (b) Shrink-wrapped polygonal
model(7,409 vertices and 14,814 faces) (c) Simplified
base mesh(2,002 vertices and 4,000 faces) (d) Final
DBSS(8,002 vertices and 16,000 faces)

a direct base mesh for subdivision with simple object
shapes such as a sphere or a cylinder.

5 Conclusions and future work

In this paper, we proposed a novel method for creating a
DBSS that approximates points sampled from the visual
hull based on MLS. Our LDI plane sweeping simplifies the
visibility computation to maintain ordinal visibility during
the surface point sampling step.

We use the color-consistency constraint of carving
theory to obtain points closer to the true surfaces of a
target object. Our DBSS exploits the property of MLS
approximation during the generation of a base mesh while
sampling displacement values from a subdivision surface.
To enhance the memory efficiency, we use a butterfly
subdivision scheme rather than an approximation scheme
to sample the offsets of odd vertices only.

This reduces the data volume because it only requires
a scalar value to express each vertex, in addition to the

storage costs of the coarse base mesh. Our experimental
results show that this method works well with various
complex objects.

In future work, we hope to develop adaptive
subdivision and sampling capacities. Feature-sensitive
sampling of sharp edges is also required.
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