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Abstract: In this work, we investigate the dynamical behavior of a fractional octietera model. All the feasible equilibria for the
system are obtained and the conditions for the existence of interior equitilarie@ determined. Local stability analysis of the cholera
model is studied by using the fractional Routh-Hurwitz stability conditions.r@sults indicate the potential of fractional-order cholera
models to cope with modern epidemics.
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1 Introduction children and adults and can kill within hours. About 75%
of people infected with Vibrio cholerae do not develop
Cholera is an acute intestinal infection caused byany symptoms, although the bacteria are present in their
ingestion of food or water contaminated with the faeces for 7-14 days after infection and are shed back into
bacterium Vibrio cholerae. It has a short incubation the environment, potentially infecting other people.
period, from less than one day to five days, and produces
an enterotoxin that causes a copious, painless, watery Many mathematical models have been proposed to
diarrhoea that can quickly lead to severe dehydration andnvestigate the complex epidemic and endemic behavior
death if treatment is not promptly given. Vomiting also of cholera. The earliest mathematical model was proposed
occurs in most patients. Cholera is an ancient disease théity Capasso and Paveri-Fontarid][to study a cholera
continues to cause epidemic and pandemic infectiorepidemic occurred in the Mediterranean in 1973. Codeco
despite ongoing efforts to limit its spreadlkH7]). [12] in 2001 extended the work inl[l] and explicitly
Historically, six out of the seven cholera pandemics haveaccounted for the role of the aquatic reservoir in cholera
swept the globe since 181@,P]. Most recently, the dynamics. Using similar non-linear incidence in Codeos
seventh pandemic started from Indonesia in 1961, spreachodel, Hartley et al. 13] incorporated a hyper-infective
into Europe, South Pacific and Japan in the late 1970sstage of V. cholerae in 2006. This model emphasizes the
reached South America in 1990s, and has continuedtage of explosive infectivity of V. cholerae, based on the
(though much diminished) to the present. The last fewlaboratory measurements that freshly shed V. cholerae
years have witnessed many cholera outbreaks irfrom human intestines outcompeted other V. cholerae by
developing countries, including Liberia (2002), Mali as much as 700-fold for the first few hours in the
(2003), Senegal and Chad (2004), West Africa (2005),environment 1,5]. Recently, Mukandavire et al.1f]
Angola and Sudan (2006), India (2007), Iraq and Congoproposed a model to estimate the reproduction number for
(2008), Zimbabwe (2008-2009), Vietham (2009), the 2008-2009 cholera outbreak in Zimbabwe. Their
Nigeria, Central Africa, Pakistan and Haiti (2010), Sierra model includes both environment-to-human and
Leone (2012). Every year there are an estimated 3 to fiuman-to-human transmission pathways. In 2010, Tien
million cholera cases and 100 000 to 120 000 deaths duand Earn 15 published a water-borne disease model
to cholera 9,10]. Particularly, cholera represents a which also included the dual transmission pathways, with
significant public health burden to developing countriesbilinear incidence rates employed for both the
and cholera continues receiving worldwide attention.environment-to-human and human-to-human infection
Cholera is an extremely virulent disease. It affects bothroutes. Jensen et afl§] proposed a mathematical model
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to study how lytic bacteriophage specific for V. cholerae the fractional Routh—Hurwitz criterion. Our results show
affects cholera outbreaks. 147], the authors proposed a the worth of fractional-order cholera models to represent
new and unified deterministic model that incorporates amodern epidemics.
general incidence rate and a general formulation of the The paper is organized as follows. First of all, we
pathogen concentration to analyse the dynamics oflescribe our model. Section 3 contains some preliminary
cholera. This work unifies many existing cholera modelsconcepts. The stability for equilibria of the system is
proposed by different authors. Inl§], the authors discussed in Section 4. In Section 5, the given model is
proposed global stability analysis for several studied numerically and the graphical results are
deterministic cholera epidemic models. These modelspresented in Section 6.
incorporating both human population and pathogen V.
cholerae concentration, constitute four-dimensional
non-linear autonomous systems where the classicap The M oddl
Poincar-Bendixson theory is not applicable.

Fractional-order differentiation is regarded as theWe consider the fractional-order Codeco model involving
generalization of classical integer-order differentintto  Caputo derivative given bylp):
real or complex orders. There has been much interest in
developing the theoretical analysis and numerical / jag =S
methods for fractional differential equations as fraclon | di@ — n(H - 9) —agTs,
calculus is found to be a valuable tool in various fields of % = aKlfB —rl, 1)
science and engineering. Indeed, we can find numerou ‘2;:76? =B(nb—mb)+el, nb<mb,
applications in polymer rheology, regular variation in
thermodynamics, biophysics, blood flow phenomena, S(8)=%, 1(0)=10>0, B(d)=Bo>0,

aerodynamics, electro-dynamics of complex medium,here the symbols appearing in this model are listed in
viscoelasticity, Bode analysis of feedback amplifiers, Tapie 1. The first equation oflf describes the dynamics
capacitor theory, electrical circuits, electro-analgtic ¢ susceptibles in a community of constant size H.
chemistry, biology, control theory, fitting of experimenta gysceptible individuals are renewed at a rat®enewal
data, etc. ({9-[21]). For some recent work on fractional may occur as result of birth, immigration and/or loss of
differential equations and inclusions, seBAH{34]) and  4cquired immunity (cholera apparently does not confer
the references therein. _ , life-long immunity). Susceptible people becomes infected
Recently, several investigators have studied they: 5 ratea.B. where a is the rate of contact with

. ; : : K+B’
qualitative properties and numerical solutions of B .
fractional-order biological models, for instance, s8§|. untreated water anghg is the probability of a person to

It has been mainly due to the reason that fractional—ordePﬁ;C:Oﬁzglrirr:tiE;O;aC'rl]'zec;;gailacmggcgEgter:qaeg?ls)aetggs on
equations are naturally related to systems with memor : :
which exists in most biological systems. Also they are :

closely related to fractals which are abundant in ;"’rﬂ? 1. Symbols used thgceriprtr?g]del

biological systems. Yan and Kou3§| investigated State Variables

stability properties of fractional-order differential s ”‘;Trgi;ffo?f:fift’gg'es
equations and applied their results to analyze the stabilit B concentration of toxigenic V. cholerae in water (cellg/ml
of the equilibria for the model of HIV-1 infection. Pafﬁgﬂetﬂs wotal human bonulation

Ir'1. [37], the 'e.xistence and un'iqueness' of solutions, n Human birth and dﬂaﬁ’h rates (day-1)
stability of equilibria and numerical solutions for the @ ratetoftexpos#{;etl?Tontammatfd\tllvwatter.(tligy-sl&y

- . concentration of V. cholerae In water that yie!
fractional-order predator-prey model and rabies model O thance of catching cholera (cells/mly
were investigated. In 38|, stability properties for a A rate atwfh\i/ch rrlaelople recover from cholera (day-l()ﬂh

. H H n growth rate of V. cholerae in the aquatic environment y
fract_lonal-order model of nonlocal epldemlcs were mb loss rate of V. cholerae in the aquatic environment (day-1
studied and the results were found to be relevant to e contribution of each infected person to the population of

V. cholerae in the aquatic environment (cell/ml day-1 pes&p

foot-and-mouth disease, SARS and avian flu. In addition,
Ding and Ye have also introduced some kinds of models
for HIV infection and discussed the stability of equilibria
for the corresponding systen3940Q].

The objective of this paper is to investigate a 3 Preliminaries
fractional-order cholera model by means of an efficient
numerical method, based on an idea of transforming théfThe Riemann-Liouville fractional integral operator of
given model to a system of ordinary differential equationsordera > 0, of functionf € L1(R*) is defined as
of integer order. All the feasible equilibria for the system 1 t
are discussed. The conditions ensuring the existence df f(t) = —— / (t—9s)%1f(s)ds,
interior equilibrium are also given. Local stability I(a)Jo
analysis of the cholera model is carried out by applyingwherer (-) is the Euler gamma function.
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The Riemann-Liouville and Caputo fractional Ry > 1then §) has a nontrivial equilibriunk; = (ST,B),
derivative of ordera >0,n—1<a <n, neN fora  where
given continuous functior are defined by rK(mb—nb)+neH  H(a+Ro)

e(n+a) ~ Ro(a+n)’

wnl!
|

1 dyn ft
DIf(t)= ——(— (t—s)" 9 1f(s)ds,
t F(n—a)(dt> /a n(aeH —rK(mb—nb)  nK(mb—nb)(Ry—1)

er(n+a) e(n+a)

w|
|

)

1 t o fl(g)
D f (t) = / .
to (t) I—(n_a) a (t_s)oH—l—ndS —
— (mb—nb)B nK(mb—nb)?(Ry—1)
In case of Caputo derivative, the functiére AC"1. The ' e - 2(n+a)
initial value problem related to the above defnition is

To investigate the local behavior of systei) &bout each
DOX(t) = f(t,X(t)) of the equilibrium points, the Jacobian matrix J of the
' ’ (2)  equilibrium pointE = (S,1,B) is computed as

X(t)lt=o+ = X0,
—n— _aB_ 0 — aX
where 0< a < 1 andD® = DJ. B (K+B)°
Now, we recall some stability theorems on fractional- JE) = ks T (K+B)?
order systems. 0 e —(nb-mb

Theorem 1 ([41]). The following autonomous system:
(41 g 4 Now we consider the asymptotically stability of systeih (

dox at the equilibrium poinEy. The equilibrium pointEy is
giw =~ X0 =x, (3)  asymptotically stable iRy < 1.
The Jacobian matrix oflf at equilibrium pointgg is
with 0 < a <1, x e R"andA € R™", is asymptotically no _a
stable if and only ifjargA)| > 47 is satisfied for all 3 - alk
eigenvalues of matriA. Also, this system is stable if and (BEo)=1{0 -r &
only if |argA)| > 9 is satisfied for all eigenvalues of 0 e (nb-mb

matrix A with those critical eigenvalues satisfying with the characteristic equation
arg(A)| = 2 and having geometric multiplicity of one. 43 2 o
ll’hg( g)e|ome2tric multiplicity of an eigenvalug of the P(A) =A"+D1A%4boA +bs =0, ©)
matrix A is the dimension of the subspace of vectofer ~ Where
whichAv=Av. b1 =mb—nb+n+r,

Theorem 2 ([42]). Consider the following
commensurate fractional-order system:

by = (mb—nb)(nr) +nr — 2

dox K

i@ — f(x), x(0) = xo, 4)
with 0 < a < 1 andx € R". The equilibrium points of = N(mb = nb 1) +r(mb —nb)(1 - Ro),
system 4{) are calculated by solving the equation:
f(x) = 0. These points are locally asymptotically stable if

all eigenvalues\; of the Jacobian matri = % evaluated
at the equilibrium points satisfyarg(A;)| > %.

bs = —eaTH +nr(mb — nb)

=rn(mb—nb)(1- Ry),

4 Stability of equilibrium bibs — bs = n(mb—nb+n-+r)(mb—nb+r)

In this section, we analyze model)(by finding its
equilibria and studying their stability. Steady stateshaf t + (mb—nb+r)r(mb—nb)(1—Ry).

model satisfy the following equations: Therefore, the eigenvalues corresponding to the

equilibriumEg are
d?s da| d?B
aw = 0w = 0, = = 0. B M=-n

(5) has a trivial equilibrium Ey = (H,0,0). Let f(mb—anrr)i\/(mbfnb+r)2+4e%'* 7)
Ry = m be the basic reproduction number. If A2z = 3 .

© 2014 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

2198

M. Javidi, B. Ahmad: A Study of a Fractional-Order Cholera Model

Clearly, if Ry < 1, thenAq,A2,A3 < 0.
Let D(P) denote the discriminant of a polynomR(A ) =
A?’—I- bl)\z +boA +bs. Then

D(P) = 18b;bybz + (b1by)2 — 4bsb3 — 4b3 — 2763,

The equilibrium pointE; is asymptotically stable if
one of the following conditions holds for polynomigl
andD(P):

(i)D(P) > 0,by > 0,b3 > 0 andb;by > bs.
(ii)D(P) < 0,by > 0,b, > 0,bs > 0 anda < 3.
The Jacobian matrix oflj at equilibrium pointg; is

n— aB 0 _r(mb-nh K
K+B e (K+B)
J(El) aEi r(mb-nb) K_
K+B e  (K+B)
0 e —(nb-mb
with the characteristic equation
P()\):)\3+b1)\2+b2)\ +b3 =0, (8)
where
aB
blznbfnb+n+r+K7+§,
B aB aB rK(mb— nb)
bzfr(n+—K+B) (mb— nb)(r+n+K+B) KiB
B oy M(mb—nb)K aB r(mb—nb)KaB
bz = (r(mb— nb) KTE )(n+K+§)+ KiB

Observe thab; > 0. Manipulatingb, andbs, we have

b2:n(mb—nb)+rK(nb7nb) [r(n+mb—nb)+a(mb—nb+r)|B
K+B ’

b _ Co+C1B+GCB’

°T T (K+B)p2

where

Co = rn?K?+r2nK? + K (mb— nb)r?n,
Cy = rnKa+ nKr? +-rn?K 4 Kr (n+r +mb — nb) (n+ mb — nb)
+Ka(mb—nb-r)(n+r-+mb—nb) + r2n(mb — nb),

Cz = (r+mb—nb)[r(n+mb—nb) +a(mb—nb-+r)] +

(a+n)[nr +a(mb—nb+r)].

Itis clear thatCy,Cy,C, > 0. Thereforehy, bz > 0.

5 Numerical method

Here, we shall use a numerical method introduced
Atanackovic and Stankovic 4B,44] to solve the
fractional-order nonlinear systenti)( In [43], it was
shown that the fractional derivative of ordeo
(0 < o < 1) for a functionf (t) may be expressed as

DI (t) = rrigy { T 1+ 35, TEa)
9)
[5G () + T2 rlaproay (& + 2D
where
Vo(f)(t) = —(p—1) orP2f(T)dT, p=2,3,---, (10)
GVp(f) = —(p— P 2f(t), p=2.3,-- (11)

We approximateD? f(t) by using M terms in sums
appearing in9) as follows

M T (p—1+a)
p=1 T (a—-1)p'

)1}

1

DUf() ~ it

e+ ]
12)

ft)

o

Vo(f)(t)

th—1+a

a—
ta

(fo +

—[%a ()+Zp 2%

We can rewrite 12) as

ne

DY F(t) =~ Q(ar,t,M) (1) + @(a,t, M) F (1) + S h oAt p) s, (13)

where

r(p—1+a)
1+ZD 1T (a-1)p"

r2—oaja-t

Q(a,t,M) =

Y

1-a
tr(2—a)’

MNp—1+a)
r2—o)(a-21p!’

R(a,t)= Ala,t,p)=—

M A(a.t,p)

)=R(a,t)+ o
pZZ

We set

O1(t) = S(t),Om+1(t) =

tCl

1(t),

Oam1(t) = B(t), Bp(t) =Vp(S)(t),
Opim(t) =Vp(I)(t), Oamyp(t)

forp=2,3,---.
We can rewrite systernd) in the following form

=Vp(B)(t),

Q(a,t.M)O} (1) + D(a,t B (1) + SN, Alat, p) Y

01(1)Oom1(t)

=nH-06(t) - aK+92M>1() ’

Omp(t)

thIra

Q(a,t,M)6, 1(t) + ®(a,t,M)BOy1(t )+zp LA(aLt, p) e

b
y — a%1%m+1(t)
K+Oam+1(t)

(14)
—rGw41(t),

Oomp(t)
tp—1+a

Q(a,t,M)Bhy 1 () + @(a,t,M)@am1(t) + Ty, A, t, p)

= (nb—mb)Bom+1+ €BOMm+1(t),
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where

Finally (14) and (L5) can be rewritten as

o1(t) = m( (H=06u(t)) -

| 55(0) |

Op(t) = —(p—1tP264(t), p=2.3,- M,

1 O1(t)Oam1(t)

O1(t) = Q(a,t,M) @y +Oam1(t)

—rOma(t))

Owm+p(t)

— O(a.t,M)O () zzAw PR

Ol p(t) = —(P— P 20u4a(t), p=2,3,-++ M

Oomsa(t) = m((”b— mb)Oon 41+ €OMm41(t))

7¢(a7t7M)@2M+l(t z A a7t7p)@2pM?|:E¢(1)

Oé’\/H»p(t) = _(p_ 1)tp72@2M+1(t)7 p= 2> 37 - ,M

1 O1(t)Oom+1(t)
K+ Oom1(t)

with the following initial conditions

91(5) = S)a
p—1 .1
Op(9) = —7Atp S, p=2,3,---, M,
Om+1(3) = lo,
_ 17
OM+P(5):7pT1Atp_1|07 p:2a37”'7M5 ( )
©2m+1(0) = By,

-1
@2M+p(6) = p?AtpilBOa p= 2737' o 7M'

In the next section, we solve the syste6)( with the
initial conditions (@7) by using the well known
Runge—Kutta method of order fourth.

6 Numerical Simulation and discussion

To facilitate the interpretation of our mathematical résul

developed for the modell) so far, we proceed to

investigate it by numerical simulations. We solve the

system {) numerically by using the method proposed in

the previous section. In all numerical runs, the solution

has been approximated at

6 =At=0.01, M =5 n =mb—nb. We illustrate our

numerical results by considering a variety of examples.
Example 1.

We consider the following set of parameters:

H = 1000N = 0.00La = 0.1,K = 100Qr = 0.4,n =

0.4,e=1.

The stability of equilibriaEy can be seen in Figs. 1-2,

with the initial conditions  [S,lo,Bo] =

[986,10,4],[974, 20, 6], [965 30,5],[932 60, 8] and

simulation timeT = 1200 for a = 0.95 anda = 0.99

respectively. It is easy to compute tht= 0.6250< 1.
Example 2.

Let us choose a set of parameters:

H = 100N = 0.00La = 05K = 100r = 04,n =

0.02e=1,

and the initial conditions
[So,10,Bo] == [81,15,4],[69,25,6],[60,35,5],[32 60, 8]

with simulation timeT = 1800 fora = 0.6 < % and
a = 05 < 3. The stability of equilibria

E1 = (1.79640.245512.2754) can be observed in Figs.

3-4. One can easily find thaRy = 625 > 1,b; =

0.4757 > 0,bp = 0.0243 > 0,b; = 4.3821e — 004 >

0,b;b, —bz =0.0111> 0,D(P) = —2.16162— 005.
Example 3.

In this case, we consider the following set of parameters:
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Fig. 1. Stability of the equilibriaEy. Consider the following
choice of parametric valuebt = 1000N = 0.00La=0.1,K =
100Qr =0.4,n =0.4,e=1. Fora = 0.95 andRy = 0.6250< 1.

1000

1000

60F

50F

a0F

30F

200

60
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201

1000
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30

20F

800

1000

1000

Fig. 2. Stability of the equilibriaEy. Consider the following
choice of parametric valuebt = 1000N = 0.00La=0.1,K =
100Qr =0.4,n =0.4,e=1. Fora =0.99 andRy = 0.6250< 1.
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Fig. 3: Stability of the equilibriaE;. Consider the following
choice of parametric valuesl = 100N = 0.00La= 0.5K =
100r =0.4,n =0.02e= 1. Fora = 0.6 andRy = 62.5.

Fig. 4: Stability of the equilibriaE;. Consider the following
choice of parametric valuesi = 100N = 0.00La = 0.5,K =
100r =0.4,n =0.02e= 1. Fora = 0.5 andRy = 62.5.
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H = 1000N = 0.00La = 0.7,K = 100Qr = 0.4,n =
0.02e=1

with the initial conditions  [S,lp,Bo] =

[986,155 25|, [705 235,60], [475435,50], [860,60,80]
and simulation timel = 1000 fora = 0.95,0.9,0.8 and

a = 07 The stability of equilibria @
E; = (1283882.4679123395)) is shown in Figs. 5-8.

With the given data, we find thaRy = 87.5 > 1,b; =
0.4979 > 0,b, = 0.0336 > 0,bs = 6.159% — 004 >

0,b1b; —bz = 0.0161> 0,D(P) = 9.4334 — 006.

1500

Example 4.
Consider the following values of parameters:
N =0.002a=0.2,K = H,r =0.05n = 0.13 e = 20,
and initial conditions: [S,lo,Bo] = [H — 180,155,225
with simulation time: T = 250 for o = 0.9 and
H = 100Q3000500Q 7000. It is easy to compute that ®
Rop = 6153846 > 1. The numerical solution oflf is
shown by Fig. 9.

500

7 Conclusions

In this paper, we have studied several features of a
fractional-order cholera model. These features can be
summarized as follows(i) We present criteria for the

existence of infected-free equilibria and concentratibn o
toxigenic V. cholerae in water equilibridii) Stability of
the equilibria for the systeml) has been discussed in
terms of the reproduction numbeRy = %.

Precisely, we have established the following facts: if
Ro < 1, then the equilibriunEg of system {) is locally
asymptotically stable for all & o < 1; the equilibrium

E; of system {) is locally asymptotically stable Ry > 0. o meme e 4o we o w0 n w0
Also the stability analysis for the systerdj (s carried out

by applying the fractional Routh-Hurwitz methodii)

The fractional-order modelj is converted to a system of
ordinary differential equations of integer-order and isrth
solved numerically by using the fourth order Runge-Kutta
method. The graphical solutions are presented for several
choices of the parameters and conditions involved in the
model.
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Fig. 6: Stability of the equilibriaE;. Consider the following
choice of parametric valuebt = 1000N = 0.00La=0.7,K =
100Qr =0.4,n =0.02,e=1. Fora = 0.9 andRy = 87.5.

Fig. 7. Stability of the equilibria;. Consider the following
choice of parametric valuebt = 1000 N = 0.00La=0.7,K =
100Qr =0.4,n =0.02,e=1. Fora = 0.8 andRy = 87.5.
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100+

Fig. 8 Stability of the equilibriaE;. Consider the following
choice of parametric valuekt = 1000N = 0.00La=0.7,K =
100Qr =0.4,n =0.02,e=1. Fora = 0.7 andRy = 87.5.

10

Fig. 9: Numerical solution of ). Consider the following
choice of parametric valuesN = 0.002a = 02K = H,r =
0.05,n = 0.13,e = 20 Fora = 0.9,Ry = 6153846 andH =
1000 3000 500Q 7000.
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