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Abstract: In this work, we investigate the dynamical behavior of a fractional ordercholera model. All the feasible equilibria for the
system are obtained and the conditions for the existence of interior equilibrium are determined. Local stability analysis of the cholera
model is studied by using the fractional Routh-Hurwitz stability conditions. Our results indicate the potential of fractional-order cholera
models to cope with modern epidemics.
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1 Introduction

Cholera is an acute intestinal infection caused by
ingestion of food or water contaminated with the
bacterium Vibrio cholerae. It has a short incubation
period, from less than one day to five days, and produces
an enterotoxin that causes a copious, painless, watery
diarrhoea that can quickly lead to severe dehydration and
death if treatment is not promptly given. Vomiting also
occurs in most patients. Cholera is an ancient disease that
continues to cause epidemic and pandemic infection
despite ongoing efforts to limit its spread ([1]–[7]).
Historically, six out of the seven cholera pandemics have
swept the globe since 1816 [8,9]. Most recently, the
seventh pandemic started from Indonesia in 1961, spread
into Europe, South Pacific and Japan in the late 1970s,
reached South America in 1990s, and has continued
(though much diminished) to the present. The last few
years have witnessed many cholera outbreaks in
developing countries, including Liberia (2002), Mali
(2003), Senegal and Chad (2004), West Africa (2005),
Angola and Sudan (2006), India (2007), Iraq and Congo
(2008), Zimbabwe (2008–2009), Vietnam (2009),
Nigeria, Central Africa, Pakistan and Haiti (2010), Sierra
Leone (2012). Every year there are an estimated 3 to 5
million cholera cases and 100 000 to 120 000 deaths due
to cholera [9,10]. Particularly, cholera represents a
significant public health burden to developing countries
and cholera continues receiving worldwide attention.
Cholera is an extremely virulent disease. It affects both

children and adults and can kill within hours. About 75%
of people infected with Vibrio cholerae do not develop
any symptoms, although the bacteria are present in their
faeces for 7-14 days after infection and are shed back into
the environment, potentially infecting other people.

Many mathematical models have been proposed to
investigate the complex epidemic and endemic behavior
of cholera. The earliest mathematical model was proposed
by Capasso and Paveri-Fontana [11] to study a cholera
epidemic occurred in the Mediterranean in 1973. Codeco
[12] in 2001 extended the work in [11] and explicitly
accounted for the role of the aquatic reservoir in cholera
dynamics. Using similar non-linear incidence in Codeos
model, Hartley et al. [13] incorporated a hyper-infective
stage of V. cholerae in 2006. This model emphasizes the
stage of explosive infectivity of V. cholerae, based on the
laboratory measurements that freshly shed V. cholerae
from human intestines outcompeted other V. cholerae by
as much as 700-fold for the first few hours in the
environment [1,5]. Recently, Mukandavire et al. [14]
proposed a model to estimate the reproduction number for
the 2008-2009 cholera outbreak in Zimbabwe. Their
model includes both environment-to-human and
human-to-human transmission pathways. In 2010, Tien
and Earn [15] published a water-borne disease model
which also included the dual transmission pathways, with
bilinear incidence rates employed for both the
environment-to-human and human-to-human infection
routes. Jensen et al. [16] proposed a mathematical model

∗ Corresponding author e-mail:mo javidi@yahoo.com, bashirahmadqau@yahoo.com

c© 2014 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/080513


2196 M. Javidi, B. Ahmad: A Study of a Fractional-Order Cholera Model

to study how lytic bacteriophage specific for V. cholerae
affects cholera outbreaks. In [17], the authors proposed a
new and unified deterministic model that incorporates a
general incidence rate and a general formulation of the
pathogen concentration to analyse the dynamics of
cholera. This work unifies many existing cholera models
proposed by different authors. In [18], the authors
proposed global stability analysis for several
deterministic cholera epidemic models. These models,
incorporating both human population and pathogen V.
cholerae concentration, constitute four-dimensional
non-linear autonomous systems where the classical
Poincar-Bendixson theory is not applicable.

Fractional-order differentiation is regarded as the
generalization of classical integer-order differentiation to
real or complex orders. There has been much interest in
developing the theoretical analysis and numerical
methods for fractional differential equations as fractional
calculus is found to be a valuable tool in various fields of
science and engineering. Indeed, we can find numerous
applications in polymer rheology, regular variation in
thermodynamics, biophysics, blood flow phenomena,
aerodynamics, electro-dynamics of complex medium,
viscoelasticity, Bode analysis of feedback amplifiers,
capacitor theory, electrical circuits, electro-analytical
chemistry, biology, control theory, fitting of experimental
data, etc. ([19]–[21]). For some recent work on fractional
differential equations and inclusions, see ([22]–[34]) and
the references therein.

Recently, several investigators have studied the
qualitative properties and numerical solutions of
fractional-order biological models, for instance, see [35].
It has been mainly due to the reason that fractional-order
equations are naturally related to systems with memory
which exists in most biological systems. Also they are
closely related to fractals which are abundant in
biological systems. Yan and Kou [36] investigated
stability properties of fractional-order differential
equations and applied their results to analyze the stability
of the equilibria for the model of HIV-1 infection.

In [37], the existence and uniqueness of solutions,
stability of equilibria and numerical solutions for the
fractional-order predator-prey model and rabies model
were investigated. In [38], stability properties for a
fractional-order model of nonlocal epidemics were
studied and the results were found to be relevant to
foot-and-mouth disease, SARS and avian flu. In addition,
Ding and Ye have also introduced some kinds of models
for HIV infection and discussed the stability of equilibria
for the corresponding systems [39,40].

The objective of this paper is to investigate a
fractional-order cholera model by means of an efficient
numerical method, based on an idea of transforming the
given model to a system of ordinary differential equations
of integer order. All the feasible equilibria for the system
are discussed. The conditions ensuring the existence of
interior equilibrium are also given. Local stability
analysis of the cholera model is carried out by applying

the fractional Routh–Hurwitz criterion. Our results show
the worth of fractional-order cholera models to represent
modern epidemics.

The paper is organized as follows. First of all, we
describe our model. Section 3 contains some preliminary
concepts. The stability for equilibria of the system is
discussed in Section 4. In Section 5, the given model is
studied numerically and the graphical results are
presented in Section 6.

2 The Model

We consider the fractional-order Codeco model involving
Caputo derivative given by [12]:











dα S
dtα = n(H −S)−a SB

K+B ,
dα I
dtα = a SB

K+B − rI,
dα B
dtα = B(nb−mb)+ eI, nb < mb,

(1)

S(δ ) = S0, I(δ ) = I0 > 0, B(δ ) = B0 > 0,

where the symbols appearing in this model are listed in
Table 1. The first equation of (1) describes the dynamics
of susceptibles in a community of constant size H.
Susceptible individuals are renewed at a raten. Renewal
may occur as result of birth, immigration and/or loss of
acquired immunity (cholera apparently does not confer
life-long immunity). Susceptible people becomes infected
at a ratea B

K+B , where a is the rate of contact with
untreated water andB

K+B is the probability of a person to
catch cholera. Probability of catching cholera depends on
the concentration ofV. cholerae in the consumed water.

Table 1. Symbols used in the model
Symbol Description

State Variables
S number of susceptibles
I number of infected
B concentration of toxigenic V. cholerae in water (cells/ml)

Parameters
H total human population
n Human birth and death rates (day-1)
a rate of exposure to contaminated water (day-1)
K concentration of V. cholerae in water that yields 50%

chance of catching cholera (cells/ml)
r rate at which people recover from cholera (day-1)

nb growth rate of V. cholerae in the aquatic environment (day-1)
mb loss rate of V. cholerae in the aquatic environment (day-1)
e contribution of each infected person to the population of

V. cholerae in the aquatic environment (cell/ml day-1 person-1)

3 Preliminaries

The Riemann-Liouville fractional integral operator of
orderα > 0, of function f ∈ L1(R+) is defined as

Iα
0 f (t) =

1
Γ (α)

∫ t

0
(t − s)α−1 f (s)ds,

whereΓ (·) is the Euler gamma function.
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The Riemann-Liouville and Caputo fractional
derivative of orderα > 0, n − 1 < α < n, n ∈ N for a
given continuous functionf are defined by

Dα
t f (t) =

1
Γ (n−α)

( d
dt

)n ∫ t

a
(t − s)n−α−1 f (s)ds,

Dα
t0 f (t) =

1
Γ (n−α)

∫ t

a

f (n)(s)
(t − s)α+1−n ds.

In case of Caputo derivative, the functionf ∈ ACn−1. The
initial value problem related to the above defnition is

{

Dα x(t) = f (t,x(t)),
x(t)|t=0+ = x0,

(2)

where 0< α < 1 andDα = Dα
0 .

Now, we recall some stability theorems on fractional-
order systems.

Theorem 1 ([41]). The following autonomous system:

dα x
dtα = Ax, x(0) = x0, (3)

with 0 < α ≤ 1, x ∈ R
n andA ∈ R

n×n, is asymptotically
stable if and only if|arg(λ )| > απ

2 is satisfied for all
eigenvalues of matrixA. Also, this system is stable if and
only if |arg(λ )| ≥ απ

2 is satisfied for all eigenvalues of
matrix A with those critical eigenvalues satisfying
|arg(λ )| = απ

2 and having geometric multiplicity of one.
The geometric multiplicity of an eigenvalueλ of the
matrix A is the dimension of the subspace of vectorsv for
which Av = λv.

Theorem 2 ([42]). Consider the following
commensurate fractional-order system:

dα x
dtα = f (x), x(0) = x0, (4)

with 0 < α ≤ 1 andx ∈ R
n. The equilibrium points of

system (4) are calculated by solving the equation:
f (x) = 0. These points are locally asymptotically stable if
all eigenvaluesλi of the Jacobian matrixJ = ∂ f

∂x evaluated
at the equilibrium points satisfy:|arg(λi)|>

απ
2 .

4 Stability of equilibrium

In this section, we analyze model (1) by finding its
equilibria and studying their stability. Steady states of the
model satisfy the following equations:

dα S
dtα = 0, dα I

dtα = 0, dα B
dtα = 0. (5)

(5) has a trivial equilibrium E0 = (H,0,0). Let
R0 = aeH

rK(mb−nb) be the basic reproduction number. If

R0 > 1 then (5) has a nontrivial equilibriumE1 = (S, I,B),
where

S =
rK(mb−nb)+neH

e(n+a)
=

H(a+R0)

R0(a+n)
,

B =
n(aeH − rK(mb−nb)

er(n+a)
=

nK(mb−nb)(R0−1)
e(n+a)

,

I =
(mb−nb)B

e
=

nK(mb−nb)2(R0−1)
e2(n+a)

.

To investigate the local behavior of system (1) about each
of the equilibrium points, the Jacobian matrix J of the
equilibrium pointE = (S, I,B) is computed as

J(E) =







−n− aB
K+B 0 − aSK

(K+B)2
aB

K+B −r aSK
(K+B)2

0 e −(nb-mb)







Now we consider the asymptotically stability of system (1)
at the equilibrium pointE0. The equilibrium pointE0 is
asymptotically stable ifR0 < 1.
The Jacobian matrix of (1) at equilibrium pointE0 is

J(E0) =





−n 0 − aH
K

0 −r aH
K

0 e (nb-mb)





with the characteristic equation

P(λ ) = λ 3+b1λ 2+b2λ +b3 = 0, (6)

where

b1 = mb−nb+n+ r,

b2 = (mb−nb)(n+ r)+nr−
eaH

K

= n(mb−nb+ r)+ r(mb−nb)(1−R0),

b3 =−
eaH

K
+nr(mb−nb)

= rn(mb−nb)(1−R0),

b1b2−b3 = n(mb−nb+n+ r)(mb−nb+ r)

+(mb−nb+ r)r(mb−nb)(1−R0).

Therefore, the eigenvalues corresponding to the
equilibriumE0 are

λ1 =−n,

λ2,3 =
−(mb−nb+ r)±

√

(mb−nb+ r)2+4eaH
K

2
.

(7)

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


2198 M. Javidi, B. Ahmad: A Study of a Fractional-Order Cholera Model

Clearly, if R0 < 1, thenλ1,λ2,λ3 < 0.
Let D(P) denote the discriminant of a polynomialP(λ ) =
λ 3+b1λ 2+b2λ +b3. Then

D(P) = 18b1b2b3+(b1b2)
2−4b3b3

1−4b3
2−27b3

3.

The equilibrium pointE1 is asymptotically stable if
one of the following conditions holds for polynomialP
andD(P):
(i)D(P)> 0,b1 > 0,b3 > 0 andb1b2 > b3.

(ii)D(P)< 0,b1 ≥ 0,b2 ≥ 0,b3 > 0 andα <
2
3.

The Jacobian matrix of (1) at equilibrium pointE1 is

J(E1) =







−n− aB
K+B

0 − r(mb-nb)
e

K
(K+B)

aB
K+B

−r r(mb-nb)
e

K
(K+B)

0 e −(nb-mb)







with the characteristic equation

P(λ ) = λ 3+b1λ 2+b2λ +b3 = 0, (8)

where

b1 = mb−nb+n+ r+
aB

K +B
,

b2 = r(n+
aB

K +B
)+(mb−nb)(r+n+

aB

K +B
)−

rK(mb−nb)

K +B
,

b3 = (r(mb−nb)−
r(mb−nb)K

K +B
)(n+

aB

K +B
)+

r(mb−nb)KaB

K +B
.

Observe thatb1 > 0. Manipulatingb2 andb3, we have

b2 = n(mb−nb)+
rK(mb−nb)+ [r(n+mb−nb)+a(mb−nb+ r)]B

K +B
,

b3 =
C0+C1B+C2B

2

(K +B)2
.

where

C0 = rn2K2+ r2nK2+K(mb−nb)r2n,

C1 = rnKa+nKr2+ rn2K +Kr(n+ r+mb−nb)(n+mb−nb)

+Ka(mb−nb+ r)(n+ r+mb−nb)+ r2n(mb−nb),

C2 = (r+mb−nb)[r(n+mb−nb)+a(mb−nb+ r)]+(a+n)[nr+a(mb−nb+ r)].

It is clear thatC0,C1,C2 > 0. Thereforeb2,b3 > 0.

5 Numerical method

Here, we shall use a numerical method introduced by
Atanackovic and Stankovic [43,44] to solve the
fractional-order nonlinear system (1). In [43], it was
shown that the fractional derivative of orderα
(0< α ≤ 1) for a functionf (t) may be expressed as

Dα f (t) = 1
Γ (2−α){

f (1)(t)
tα−1 [1+∑∞

p=1
Γ (p−1+α)
Γ (α−1)p! ]

−[α−1
tα f (t)+∑∞

p=2
Γ (p−1+α)

Γ (α−1)(p−1)! (
f (t)
tα +

Vp( f )(t)
t p−1+α )]},

(9)

where

Vp( f )(t) =−(p−1)
∫ t

0 τ p−2 f (τ)dτ , p = 2,3, · · · , (10)

d
dt Vp( f ) =−(p−1)t p−2 f (t), p = 2,3, · · · . (11)

We approximateDα f (t) by using M terms in sums
appearing in (9) as follows

Dα f (t)≃ 1
Γ (2−α){

f (1)(t)
tα−1 [1+∑M

p=1
Γ (p−1+α)
Γ (α−1)p! ]

−[α−1
tα f (t)+∑M

p=2
Γ (p−1+α)

Γ (α−1)(p−1)! (
f (t)
tα +

Vp( f )(t)
t p−1+α )]}.

(12)

We can rewrite (12) as

Dα f (t)≃ Ω(α, t,M) f (1)(t)+Φ(α, t,M) f (t)+∑M
p=2 A(α, t, p)Vp( f )(t)

t p−1+α , (13)

where

Ω(α, t,M) =
1+∑M

p=1
Γ (p−1+α)
Γ (α−1)p!

Γ (2−α)tα−1 ,

R(α, t)=
1−α

tαΓ (2−α)
,A(α, t, p)=−

Γ (p−1+α)

Γ (2−α)Γ (α −1)p!
,

Φ(α, t,M) = R(α, t)+
M

∑
p=2

A(α, t, p)
tα .

We set

Θ1(t) = S(t),ΘM+1(t) = I(t),

Θ2M+1(t) = B(t),Θp(t) =Vp(S)(t),

Θp+M(t) =Vp(I)(t),Θ2M+p(t) =Vp(B)(t),

for p = 2,3, · · · .
We can rewrite system (1) in the following form

Ω(α, t,M)Θ ′
1(t)+Φ(α, t,M)Θ1(t)+∑M

p=2 A(α, t, p) Θp(t)
t p−1+α

= n(H −Θ1(t))−aΘ1(t)Θ2M+1(t)
K+Θ2M+1(t)

,

Ω(α, t,M)Θ ′
M+1(t)+Φ(α, t,M)ΘM+1(t)+∑M

p=2 A(α, t, p)
ΘM+p(t)
t p−1+α

= aΘ1(t)Θ2M+1(t)
K+Θ2M+1(t)

− rΘM+1(t),

Ω(α, t,M)Θ ′
2M+1(t)+Φ(α, t,M)Θ2M+1(t)+∑M

p=2 A(α, t, p)
Θ2M+p(t)

t p−1+α

= (nb−mb)Θ2M+1+ eΘM+1(t),

(14)
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where

Θp(t) =−(p−1)
∫ t

0
τ p−2Θ1(τ)dτ ,

ΘM+p(t) =−(p−1)
∫ t

0
τ p−2ΘM+1(τ)dτ ,

Θ2M+p(t) =−(p−1)
∫ t

0
τ p−2Θ2M+1(τ)dτ ,

p = 2,3, · · · ,M.

(15)

Finally (14) and (15) can be rewritten as

Θ ′
1(t) =

1
Ω(α, t,M)

(n(H −Θ1(t))−a
Θ1(t)Θ2M+1(t)
K +Θ2M+1(t)

)

−Φ(α, t,M)Θ1(t)−
M

∑
p=2

A(α, t, p)
Θp(t)

t p−1+α ),

Θ ′
p(t) =−(p−1)t p−2Θ1(t), p = 2,3, · · · ,M,

Θ ′
M+1(t) =

1
Ω(α, t,M)

(a
Θ1(t)Θ2M+1(t)
K +Θ2M+1(t)

− rΘM+1(t))

−Φ(α, t,M)ΘM+1(t)−
M

∑
p=2

A(α, t, p)
ΘM+p(t)

t p−1+α ),

Θ ′
M+p(t) =−(p−1)t p−2ΘM+1(t), p = 2,3, · · · ,M,

Θ ′
2M+1(t) =

1
Ω(α, t,M)

((nb−mb)Θ2M+1+ eΘM+1(t))

−Φ(α, t,M)Θ2M+1(t)−
M

∑
p=2

A(α, t, p)
Θ2M+p(t)

t p−1+α ),

Θ ′
2M+p(t) =−(p−1)t p−2Θ2M+1(t), p = 2,3, · · · ,M,

(16)

with the following initial conditions

Θ1(δ ) = S0,

Θp (δ ) =−
p−1

2
∆ t p−1S0, p = 2,3, · · · ,M,

ΘM+1(δ ) = I0,

ΘM+p(δ ) =−
p−1

2
∆ t p−1I0, p = 2,3, · · · ,M,

Θ2M+1(δ ) = B0,

Θ2M+p(δ ) =
p−1

2
∆ t p−1B0, p = 2,3, · · · ,M.

(17)

In the next section, we solve the system (16) with the
initial conditions (17) by using the well known
Runge–Kutta method of order fourth.

6 Numerical Simulation and discussion

To facilitate the interpretation of our mathematical results
developed for the model (1) so far, we proceed to
investigate it by numerical simulations. We solve the
system (1) numerically by using the method proposed in
the previous section. In all numerical runs, the solution
has been approximated at
δ = ∆ t = 0.01, M = 5, η = mb− nb. We illustrate our
numerical results by considering a variety of examples.

Example 1.
We consider the following set of parameters:
H = 1000,N = 0.001,a = 0.1,K = 1000,r = 0.4,η =
0.4,e = 1.
The stability of equilibriaE0 can be seen in Figs. 1-2,
with the initial conditions [S0, I0,B0] =
[986,10,4], [974,20,6], [965,30,5], [932,60,8] and
simulation timeT = 1200 for α = 0.95 andα = 0.99
respectively. It is easy to compute thatR0 = 0.6250< 1.

Example 2.
Let us choose a set of parameters:
H = 100,N = 0.001,a = 0.5,K = 100,r = 0.4,η =
0.02,e = 1,
and the initial conditions
[S0, I0,B0] == [81,15,4], [69,25,6], [60,35,5], [32,60,8]
with simulation timeT = 1800 for α = 0.6 <

2
3 and

α = 0.5 <
2
3. The stability of equilibria

E1 = (1.7964,0.2455,12.2754) can be observed in Figs.
3–4. One can easily find thatR0 = 62.5 > 1,b1 =
0.4757 > 0,b2 = 0.0243 > 0,b3 = 4.3821e − 004 >

0,b1b2−b3 = 0.0111> 0,D(P) =−2.1616e−005.
Example 3.

In this case, we consider the following set of parameters:
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Fig. 1: Stability of the equilibriaE0. Consider the following
choice of parametric values:H = 1000,N = 0.001,a = 0.1,K =
1000,r = 0.4,η = 0.4,e = 1. Forα = 0.95 andR0 = 0.6250< 1.
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Fig. 2: Stability of the equilibriaE0. Consider the following
choice of parametric values:H = 1000,N = 0.001,a = 0.1,K =
1000,r = 0.4,η = 0.4,e = 1. Forα = 0.99 andR0 = 0.6250< 1.
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Fig. 3: Stability of the equilibriaE1. Consider the following
choice of parametric values:H = 100,N = 0.001,a = 0.5,K =
100,r = 0.4,η = 0.02,e = 1. For α = 0.6 andR0 = 62.5.
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Fig. 4: Stability of the equilibriaE1. Consider the following
choice of parametric values:H = 100,N = 0.001,a = 0.5,K =
100,r = 0.4,η = 0.02,e = 1. For α = 0.5 andR0 = 62.5.
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H = 1000,N = 0.001,a = 0.7,K = 1000,r = 0.4,η =
0.02,e = 1.
with the initial conditions [S0, I0,B0] =
[986,155,25], [705,235,60], [475,435,50], [860,60,80]
and simulation timeT = 1000 forα = 0.95,0.9,0.8 and
α = 0.7. The stability of equilibria
E1 = (12.8388,2.4679,123.3951) is shown in Figs. 5-8.
With the given data, we find thatR0 = 87.5 > 1,b1 =
0.4979 > 0,b2 = 0.0336 > 0,b3 = 6.1599e − 004 >

0,b1b2−b3 = 0.0161> 0,D(P) = 9.4334e−006.

Example 4.
Consider the following values of parameters:
N = 0.002,a = 0.2,K = H,r = 0.05,η = 0.13,e = 20,
and initial conditions: [S0, I0,B0] = [H − 180,155,25]
with simulation time: T = 250 for α = 0.9 and
H = 1000,3000,5000,7000. It is easy to compute that
R0 = 615.3846> 1. The numerical solution of (1) is
shown by Fig. 9.

7 Conclusions

In this paper, we have studied several features of a
fractional-order cholera model. These features can be
summarized as follows.(i) We present criteria for the
existence of infected-free equilibria and concentration of
toxigenic V. cholerae in water equilibria.(ii) Stability of
the equilibria for the system (1) has been discussed in
terms of the reproduction numberR0 = aeH

rK(mb−nb) .

Precisely, we have established the following facts: if
R0 < 1, then the equilibriumE0 of system (1) is locally
asymptotically stable for all 0< α < 1; the equilibrium
E1 of system (1) is locally asymptotically stable ifR0 > 0.
Also the stability analysis for the system (1) is carried out
by applying the fractional Routh-Hurwitz method.(iii)
The fractional-order model (1) is converted to a system of
ordinary differential equations of integer-order and is then
solved numerically by using the fourth order Runge-Kutta
method. The graphical solutions are presented for several
choices of the parameters and conditions involved in the
model.
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