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Abstract: In this paper, the idea of exponential type p—convex function and its algebraic properties have been investigated. The authors
proved new trapezium type inequality for this new class of functions and derived many refinements of the trapezium type inequality for
functions whose first derivative in absolute value at certain power is exponential type p—convex. Finally, some new bounds for special

means of different positive real numbers are provided as well. The findings show some generalizations of the known results.
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1 Introduction

Theory of convexity played significant role in the
development of theory of inequalities.

Definition 1.
convex, if

[1] A function y : I — R is said to be

V(o +(1—x)6) <xw(6)+(1—x)w(6) (1)

holds for all 61,6, € I and x € [0,1].

Many known results in inequalities theory can be obtained
using the convexity property of the functions, see [2,3,4]
and the references therein.

Hermite—-Hadamard’s inequality (H-H inequality) is one
of the well known investigated results involving convex
functions and it asserts that, if a function y: I C R — R
is convex in [ for 6;,0, € [ and 6, < 6,, then

0+ 6 1 6> 6,)+y(o
‘If< 12 2>§9 - / y/(x)dxgw 1) +y( 2)'
2 — U Je

) 2
(2)
Interested readers can see [5]-[23].

Definition 2. [24] A function y : I C (0,+00) — R is
called h—convex, if

¥ (x61+(1-2)6) Sh(x)w(91)+h(1—x)w(92)(3)
holds for all 61,6, € I and x € [0,1].

If the above-mentioned definition is reversed, then y is
said to be h—concave. Clearly, if we substitute a()) = ¥,
then the h—convex functions give the classical convex
functions, see [25,26].

Definition 3./27, 28] A p—convex function
v : I C (0,+) — R on p—convex set I is defined by

w([xef’+(l —x)ag’]%) < 2w (8)+ (1 2) v (6)

for all 6,0, € I and x € [0,1]. If above inequality is
reversed, then  is said to be p—concave.

Definition 4./29] A nonnegative function y : I — R is said
to be exponential type convex, if

W0+ (1-2)62) < (X — D y(8)+ (7~ 1)y (62)
“)
holds for all 61,6, € I and x € [0,1].
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The family of all exponential type convex functions on / is
represented by EXPC(I).
We recall the following hypergeometric function:
2F1(01,6,:6;0)
_ ! R 66,1 -6
—m/{) 4 (I-x) (I-6x) " dx,
where 63 > 6, > 0,|0] < 1 and B(-,-) is Euler beta
function.
Motivated by above results and literature, we present in
Section 2, the idea of exponential type p—convex function
and its algebraic properties. In Section 3, we prove new
trapezium type inequality for the exponential type
p—convex function y. In Section 4, we obtain some
refinements of the (H-H) inequality for functions whose
first derivative in absolute value at certain power are
exponential type p-convex. In Section 5, some new
bounds for special means are presented. Section 6 is
devoted to conclusion.

2 some algebraic properties of exponential
type p—convex functions

In this section, we to add a new definition i.e. exponential
type p—convex function and its basic algebraic properties.

Definition 5. A nonnegative function y : I — R is said
to be exponential type p—convex, if

w([x91”+(lfx)92”]%)
<=1y + (7 -1)y(e)

holds for all 6,,6, € I and x € [0,1].

Remark. If we put p = 1, we get exponential type
convexity given by Iscan in [29].

Remark. The new class of functions defined in Definition
5 has range [0, +c0).

Proof. Let 0 € I be arbitrary. Using Definition 5 for y =
1, we have

y(0) < (e—1)y(0) = (e—2)y(0) = 0= y(6) = 0.

Lemma 1. The following inequalities (e* — 1) > x and
(e'=% —1) > (1 — ) hold for all x € [0,1].

Proof. The proof is completed.

Proposition 1. Ler I C (0,+0) be a p—convex set. Every
p—convex function on a p—convex set is exponential type
p—convex function.

Proof. Using Definition of p-convex function and
Lemma 1, since x < (e¥ —1) and (1 —y) < (e!" % —1)
forall y € [0, 1], we have

W([%elp‘f' (1 —1)92”] ;> <2y (0)+(1-x)y(62)

<(F D)y (0)+ (e F 1)y (6).

Remark. Taking p = 1 in Proposition 1, then we get
Proposition 2.1 in [29].

Proposition 2. Every exponential type p—convex
function is an h—convex function with h()) = (e* —1).

Proof. Ifweput(e¥ —1)=h(x)and (e! ¥ —1) =h(1—
%) in the Definition 5, then Definition 2 is easily obtained.

Theorem 1. Let y,¢ : [01,6,] — R. If v and ¢ are two
exponential type p—convex functions, then

1.y + ¢ is exponential type p—convex function;
2.For nonnegative real number c, cy is exponential type
p—convex function.

Proof. (1) Let y and ¢ be two exponential type
p—convex functions, then

(y+9) ([wlu(l —%)92”} )

= W<{191p+(175)92p} ) +¢ ({X91p+(175) 92”} )

< (A =1y (8)+ (e 7= 1) y(8) + (e~ 1)9(6)
(e -1)0(6)

= (= 1)[w(81)+ 9 (81)]+ (' % 1) [y (62)+ 0 (6)

= (=) (p+0) (B + (!X =1) (y+0) (6).

(2) Let y be exponential type p—convex, then

(cw) <[xelf’+ 1~y ’l’>

Sc[(e%— Dy (61)+ (e % - l)wwz)]

=(eX— 1)y (6)+ (' ¥ —1)cy (6)
= (= 1) () (61) + (¢! % = 1) (cy) (62).

Remark. Choosing p = 1 in Theorem 1, then we get
Theorem 2.1 in [29].

Theorem 2. Let v : 1 — J be p—convex function and ¢ :
J — R are non-decreasing and exponential type convex
Sfunction. Then the function ¢ oy : I — R is exponential
type p—convex.

Proof. Forall 6;,0, €I, and y € [0, 1], we get

(¢oy) ([191”+(1 _X)Gzp] 71))

— <w<[xelﬂ+<1x>ez"]’l’>>

<o(xy(6)+(1-2)w(6))
< (=10 (w(6)+ (e *—1) 9 (¥ (62))
= (¥ —=1)(poy)(61)+ (' *—1)(9oy)(62).

@© 2021 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 15, No. 3, 253-261 (2021) / www.naturalspublishing.com/Journals.asp

Remark. If we put p =1 in Theorem 2, then we obtain
Theorem 2.2 in [29].

Theorem 3. Ler y; : [0y, 0,] — R be an arbitrary family
of exponential type p—convex functions and let
v(0) = sup; Yi(6). If
O =1{0¢€16,,0]: y(0) < +oo} # 0, then O is an
interval and  is exponential type p—convex function on
0.

Proof. Forall 6,0, € O and x € [0,1], we obtain

w<[191”+(1x)92”];>
= supyi ([xéh“(l —x)GzP] 71))

<sup | (% = 1)y (61) + ("%~ 1) yi(6,)|

1

< (e* —1)sup i (61) + (¢! # — 1) sup y; (65)

(X —1)y(0)+ ("% —1)y(6) < +oo.

Remark. Taking p = 1 in Theorem 3, then we have
Theorem 2.3 in [29].

Theorem 4. [f the function y : [0;,6,] — R is
exponential type p—convex then Y is bounded on [0y, 6,].

Proof. Let L =max{y(6;),y(6)} and x € [6;,6,] be
an arbitrary point. Then there exists € [0, 1] such that x =

7
X617+ (1 1)92”] . Thus, since % < e and e! % < e,

we have

v(x) =y ([191"+ (1 —x)ez"] %>

<(F=1)y(6)+ (e *—1)y(62)

We have shown that y is bounded above from real
number M. Interested reader can also prove the fact that

v is bounded below using the same idea as in Theorem
2.4 1n [29].

Remark. Choosing p = 1 in Theorem 4, then we get
Theorem 2.4 in [29].

3 Hermite—Hadamard inequality for
exponential type p—convex functions

This section aims to derive a new inequality of Hermite—
Hadamard type for the exponential type p—convex function

V.

Theorem 5. Ler v : [0),0,] — R be exponential type p—
convex function. If y € Li([61,62]), then

1 67 +6§77 PRy
2<¢z1>"’<[ 2 } STy
(6)

< (e—=2)[w(61)+ w(62)].

Proof. Using exponential type p—convexity of vy, we
have

w({e{’;eﬁ’ﬁ)

1 1] 1
< v (5le0r + (- 01F 510 - 0o + 671

< (\/5—1)1!’([%91”-1-(1 _X)Gzpr>

+ (Ve — 1)!//({(1 x)91”+x92"] ,,) :

Now integrating the above inequality with respect to x €
[0, 1], we obtain

w({ﬂ}*)
2
< [(\/5— 1)./0‘] w({xel”ﬂl —x)Gz”]%>dx

+(Ve— 1)/01 w([(l 1)91”+x92”} ;> dx}

N 210(\/5—1)/"2 vl
0

9217 — Glp xl=p

’
1

which completes the left side inequality. For the right side
inequality, changing the variable of integration as

1
x= ([l&p +(1—2)6"]" ), and using the definition of

the exponential type p—convex function y, we obtain

p /:z oM

0y —6F Jo, x'-p

1
1 Z
= w<[7591”+(11)92”] )dx

< [H(@ - wion (@ F 1) a
= (e=2)[w(61) +y(8)],

which gives the right side inequality.

Remark. 1If we put p =1 in Theorem 5, then we get
Theorem 3.1 in [29].
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4 Refinements of Hermite-Hadamard (or
trapezium type inequality) type inequality

Let us recall the following crucial Lemma that we will use
in the sequel.

Lemma 2. [30] Let v : [ — R be differentiable function
on I° with 61,6, € [ and 6, < 6,. Ifl[// el [9] , 92], then

y(O)+y(6)  p by ™

2 oy —of Jo, x'=p

er —o?
- ( 2217 1 ) g
/1 1-2y
70 ([%91p+(1—%)92p])]77’

Theorem 6. Let y : [ — R be differentiable function on
I° with 6,,6, € I and 6, < 0,. Ifl[/’ el [9],92] and |l[/’|q
is exponentially type p—convex on [0y, 6,] for ¢ > 1, then

0
VIO V(E) np p/ZW(,x)dx (8)
2 6y — 00 Jo, x'-p
P_gp
< (62 6 ) [BI(P,91,92)]17$><
2p

(B (p. 61, 02)| W/ (61)[7 + B (p, 01, 6:) ¥/ (6)[7] ¢
where

1 1-2
Bl(p791792):/ | X| 1_1L
JO [%9]p+ (1 7%) 9217} P

dx

11— 2y(et— 1
BZ(p791792):/ | X|( )lildl
JO [xel[’+(1 7%)02[7} P

and

1 1—2x|(e! =% —1
B3(p791792):/ | X|( )17l
Jo [%9]p+(17%)92p} »

dy.

Proof. From Lemma 2, power mean inequality,
exponentially type p—convexity of |y’|? and properties of

v ([x67 +(1-2)67]7 ) dx.

modulus; we have

‘W(91)+V’(92) P /92 V/(x)dx‘

2 B eg’felp o, xl=p

[1-2x]

6y —6f 1
g( 22p 1) (/0 {xglwr(l*x}ezp}

1 _
5 (/ I1-27 .
Jo e
{x91”+(1*x)92”}
1 1
, P q q
v x6”+(1-x) 6" dy
1-1
12| dx)

or _ P 1
L
(f

{%91“‘(1 =) 92p}

-1
q
17idx)
»

X

{te-niw @ (- 1) v @) fax )|
= (02” ;01”) [31(17?91792)}17‘1’ X

2
[B2(p. 61, 6:)|y (61)]9 + B3 (p. 61,62)| ¥/ (6,)|] 4,

which completes the proof.

Theorem 7. Let y : I — R be differentiable function on
I1° with 61,0, € I and 6, < 6. Ifl[// el [9] , 92] and |l[/’|q
is exponentially type p—convex on [0y,6:] for ¢ > 1 and
% + é =1, then

“I’(Gl) +y(6) P /962 ‘I’(x)dx‘ ©)

2 oL -0 Jo, Xl

07 — 7 1\
(%5 () -
[34(P7q791,92)|‘l/(91)|q+35(P7q791,92)|‘1/(92)|q]‘1’7

where

1

(¥ 1)
(26,7 + (1 —x)(-)z"}"(l’x"l))

I
B4(p,q,61,6,) =/ dy
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and

1 el=x —1
35(P74791,92):/0 ( ) ]>d%-

[%91”+(1*%)92”}q(]7
Proof. From Lemma 2, Holder’s inequality,

exponentially type p—convexity of |y’|? and properties of
modulus; we have

‘ v(0)+w(6)  p
2 6y —

(L) (/ |l—2x|dx) x
/(;1 I

{Xelp"‘(]_%)ezpr(l%)
‘1// ({x@lhr(lx) 92”} ;)
() l

eX—1) |y 1) |y q
(/O' (¥ = 1) [y (81) |7+ ( xr(ll)p)(ez)qu)

% y(x)
Gp 6 xl—pdx‘

IN

N

1

4 4
dx)

100

1
_ (M) (L) .
2p 1+
[B4(p,q,61,62)|¥(61)|7+Bs(p,q,61,6,) |y (62)|7] 7,

which completes the proof.

Theorem 8. Let vy : I — R be differentiable function on
1° with 61,0, € I and 6; < 6. Ifl[// €L [91,92] and |l[//|q
is exponentially type p—convex on [01,6:] for ¢ > 1 and
% + é =1, then

‘W(el);‘l/(ez)_e pe”/ (13 x‘ (10)

< (%) Bo(p,1,61,0)]F ¢

2
(B7<q>|u/<el>|q+Bs<q>|v/<ez>|q)5,

where

B6(p71591762) =

|
— 5 X F (l
26]”1”' 201

L 1. P
22( s xR (1 p,1,2,17(9—;) ) p>0,

and
1
/ ‘- Dl -2y,
0
1
- D1 -2y
Jo
Proof. From Lemma 2, Holder’s inequality,

exponentially type p—convexity of |y’|? and properties of
modulus; we have

‘w(en);w(ez) - p - /“’2 w(x)dx‘

[ Jo X177

() ([

{x@lhr (1 x)@zp}
X <./0‘]|1—2x|"

v <{%91”+(1 _X)Gzpr>

6y —of 1
( 2[7 [ 6(1’; s U1, 2)]l X

<B7<q>|w’<el>|4+Bs<q>|w’<ez>|4>",

1

T
)
1

q g
dx)

1

which completes the proof.

Theorem 9. Let y : I — R be differentiable function on
I° with 61,0, € I and 6, < 6,. Ifl[// S L1[91,92] and |l]//|
is exponentially type p—convex on [0, 0,), then

2

- (ezf’—ef)x
S\ T

(Bo(p,61,6:) W' (61)|+ Bio(p, 61,6:) ¥ (62)]),

v(O)+y(6) p % y(x)
‘ Gz"felp/e - dx (11)

X

where

1 1-2 X — 1
B9(p791762):/ | X|(e ) ]dX7
Jo [%91p+(1*%)92p}]7;
_ I-x _
Loty

1
Bio(p,61,62) :/ 1
0 [%91p+(] _x)ezp} P

@© 2021 NSP
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Proof. From Lemma 2, exponentially type p—convexity
of |y/|? and properties of modulus; we get

‘ V’(Gl)‘;‘I’(ez) . p - /92 zf](xg dx‘

0
< (92’1_9{7) /"
- 2p Jo

-2y

(foeo-nor]
‘v/ <{191”+(1 —1)92"} 71’) ‘dx

_ (%) (Boly/'(61)| +Bio|y'(62)]),

which completes the proof.

Theorem 10. Ler v : I — R be differentiable function on
I° with 6,,6, € I and 6, < 0,. Ifl[// e L [9],92] and |l[1/|q
is exponentially type p—convex on [0y,6:] for ¢ > 1 and
% + é =1, then

w(61)+ v(e) p /"2 v(x) I
ezpfelp 6, X

(62 ) e—2)]$><

1

[B11(p.1,61,8)]TAT (| (8)[%. |/ (62)[).
where A(-,+)

IN

is the arithmetic mean and

[1—2y)
_1
%91p+(1*%)92p])] v

Proof. From Lemma 2, Holder’s inequality,
exponentially type p—convexity of |y’|? and properties of

-1
Bll(p7lael792):/0 ([ dl

modulus; we have

v(O)+y(6)  p /92 v,
2 6y — 6! Jo,

SI(GFTJGI’) §
' 1-2y
/0 <[x01”+(1x)92”D !

“I/ <[191”+(1x)92”]})> 'dx

or —or\ [ [l 1= 2!
o ')(/o ({xelu(lx)ezpb ,',dx)

v/< x91”+(1x)92”]%> q>%dx

[1—2y/

([xelp (1) 921’} ) o

IN
——

IN
PN VS PN /_\ PN
~°é
N}
hS]
<D
_
N——
7N
O\’_

1

X

7
dx)

1

X

O\_
rm
—
Q
=
|
<
E)
N~—
=
_|_
—
|
=
<
—
P
=
_ 1
QU
=
N—

1

1
[Bll(p7lael792 ] Aq(llV(el |q |W(92 |q)

which completes the proof.

5 Applications

Consider the following special means of two positive real
numbers 61,6, (6, > 0):

1.The arithmetic mean

0,+6
A(61,6:) = IJZF 2
2.The harmonic mean
20,6,
6,,0
(1 2) 91+92

3.The power mean

1
07+ 07\ 4
M, (61,6,) = <%) , q#0.

4.The logarithmic mean

6, — 6,

L(61,0) = ——.
( b 2) ln9271n91

@© 2021 NSP
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5.The p-logarithmic mean

p+1 p+1
62 — 9]

L,,(GI,GQ): (m)p, pEm\{fl,O}

Proposition3. If 0 < 0, < 6, and p € R\{-1,0,1},

then
Lp:I (91 ’ 92)
Fve—T) Mal61.62) <L3(61.62) (13)

<2(e—2)A(61,0,)L)1(61,6).
Proof.Taking y(x) = x for x > 0 in Theorem 5, then
inequality (13) is easily obtained.
Proposition 4.1f0 < 6, < 6, and p > 1, then
mH (67,67)Lb=1(61,6,) <L '(61,67) (14)
<2(e—2) A(6],0))LL"1(61,6,).

Proof.Choosing y(x) = x” for x > 0 in Theorem 5, then
inequality (14) is easily derived.
Proposition 5.If 0 < 6, < 0, g # 0 and p € R\{0,1,2},
then

1 1

mLﬁ:,(GI,eﬁM;‘(el,ez) <LP73(61,60) (15)

<2(e—2)A(6),0,)LL | (6y,6,).

Proof.Taking y(x) = % for x > 0 in Theorem 35, then
inequality (15) is easily captured.

Proposition 6.[f0 < 6; < 6>, g > 1 and p > 1, then

-1
H (o] 00) - O |
Lpfl(ehez)
0y —6r 1
< (252 oot (16)

1
X |:Bz (p,9|,92>9{](p71)+33 (p,0|,92) qu(pil) q.

Proof.Choosing y(x) = x” for x > 0 in Theorem 6, then
inequality (16) is easily derived.

Proposition 7.If 0 < 6; < 65,9 > 1, +; =1landpe
R\{0,1,2}, then

Lh73(61,6,) <(9§—9{’)( 1 )7
L’ 16,,6) |~ \ 2p I+1

a7)

’H' (91,92) —

1
X {34 (Paq,91,92)912q+35 (P,q,el,ez)ezzq} ..

Proof Taking w(x) = 1 for x > 0 in Theorem 7, then
inequality (17) is easily captured.

6 Conclusion

The present paper showed new Hermite—Hadamard (or
trapezium type inequality) type inequality for the new
class of functions, the so—called exponential type
p—convex function Yy and obtained some interesting
refinements. The interested reader can find other new
results using other suitable functions y and new bounds
for special means and error estimates for the trapezoidal
and midpoint formula. To the best of our knowledge these
results are new in the literature. Since convex functions
has large applications in many mathematical areas, we
hope that our new results can be applied in convex
analysis, special functions, quantum analysis, quantum
mechanics, post quantum analysis, etc.
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