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Abstract: Due to its solid mathematical foundations, Formal Concept Analysis (FCA) has become an emergent topic in the area of
data analysis and knowledge discovering. Information is represented in a binary table defining a relation between a set of objects and
a set of attributes—the formal context. The knowledge extracted from the formal context allows to identify useful patterns in data
in different forms. One very useful knowledge representation in FCA are implications among attributes which are validated over the
objects. The most outstanding feature of implications is that they can be managed by means of inference systems. Equivalent sets of
implications can be obtained using different logic-based transformations. The aim of these transformations is to turnthe original set
of implications into an equivalent one fulfilling some desired properties. Among them, the directness and optimality are very popular
targets because getting a direct-optimal basis ensures that the closure of a set of attributes may be computed with lowercost (time and
resources). In this work, we introduce a new method to compute the direct-optimal basis which improves the existing ones. The new
method reduces the input in a first stage and is guided by the idea of limiting the growth of the intermediate sets of implications as a
way to improve the performance. We illustrate the good features of the new method with both a detailed example and by experimental
evaluation.
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1 Introduction

From the mid 1980s, Formal Concept Analysis (FCA) has
become a useful tool for data analysis. One of the reasons
of its success is the power of lattice theory which
underlies FCA. Information is represented by a binary
table defining a relation between a set of objects and a set
of attributes, and a well established set of methods and
techniques allows to extract knowledge by means of
automated tools. The main goal of FCA is to infer
conceptsfrom the data set, i.e. to deduce (in an automated
way) a set of objects that may be precisely characterized
by a set of attributes. Such concepts inherit an order
relation induced by attribute set inclusion, providing a
lattice structure of the concept set.

The concept lattice allows to identify patterns in data,
which is one of the main issues in Knowledge Discovery
in databases. Moreover, FCA has been used in different
areas: Artificial Intelligence, Databases, Software

Engineering, Data Mining, and recently it is becoming to
be a suitable tool in the Semantic Web.

One of the most relevant patterns which can be
extracted from a formal context is an implication,
representing a relation between subsets of attributes.
Implications are strongly connected with the concept
lattice, providing an alternative representation of the
underlying information.

Belohlavek et al. [17] focus on the importance of
implication when stating “A distinguishing feature of
FCA is an inherent integration of three components:
discovery of clusters (so-called formal concepts) in data,
discovery of data dependencies (so-called attribute
implications) in data, and visualization of formal concepts
and attribute implications by a single hierarchical diagram
(so-called concept lattice)”.
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We recall here an example from [10, pp. 30 and 84]
which will be used later as a running example1. Six
attributes are considered representing supranational
organizations: Gr77 (Group of 77), NA (Non-aligned),
LLDC (Least Developed Countries), MASC (Most
Seriously Affected Countries), OPEC (Organization of
Petrol Exporting Countries) and ACP (African, Caribbean
and Pacific Countries).

In FCA, when all the objects satisfying a subset of
attributes also satisfy another subset of attributes, there
exists a dependence between both sets, which is called an
implication. In Table 1, one notices that every country
belonging to the OPEC, also belongs to both, to the NA
organization and to the Gr77. This knowledge is captured
by an attribute implication written in the form:

OPEC→ NA, Gr77

One of the most relevant issues related with attribute
implications is that it may be managed by using an
inference system. It opens the doors to the design of
automated deduction methods to deal with sets of
implications: thus, an interesting research topic is to find
methods which transform a set of implications into
another one, semantically equivalent but more suitable for
further treatment. In this framework, the present paper
focuses on the design of logic-based transformations for
sets of implications which render an equivalent sets but
fulfilling desired properties,directnessandoptimality.

In FCA many of the problems are solved by
intensively computing the closure of a set of attributes.
Although classical closure algorithms have linear
complexity, a reduction in the execution cost is relevant
when a huge number of closures is necessary. Rudolph
states in [20] that “one central task when dealing with
closure operators is to represent them in a succinct way
while still allowing for their efficient computational
usage”.

Particularly, it would be useful to have minimal
representations of implicational theories. Duquenne et al.
[15] stress the need “to put data in canonical forms to
speed up access to information and of extracting
classifications and rules providing some explanation”.

One can find in the literature several interesting
contributions to the problem of the minimal generation of
a closure operator by an implicational system: the first
one was introduced independently by Maier [6] and
Duquenne-Guigues [11], leading to the currently
so-called Duquenne-Guigues canonical basisor stem
basis. Bertet and Monjardet [4] surveyed five of the
results about minimal implicational systems, and proved
that all of them were equivalent, introducing the term
direct-optimal implicational basis. Adaricheva et al. [14]
proposed the so-calledordered direct basisin order to

1 In [10], 130 countries were considered but we have reduced
it to an equivalent 8 object table, in the sense that the resulting
concept lattice is isomorphic to the original one.

improve the efficiency of the direct-optimal implicational
basis.

The notion of direct-optimal implicational basis has
two very interesting properties: its size can be proved to
be the least (optimality), and the closure of any subset of
attributes can be computed in just one traversal of the
implicational set (directness).

Working with arbitrary implicational systems, allows
for considering inputs of smaller size, but the method
given in [3] to compute direct-optimal basis can be
exponentially hard, whereas considering unitary
implicational systems enhances the performance of the
method [5] but the inconvenient is that the inputs can be
much bigger.

In this paper, after summarizing the methods to
compute the direct-optimal basis proposed in [3] for
arbitrary implicational systems, and in [5] for unitary
implicational systems, we propose a new alternative
method which combines the good properties of both
approaches.

The paper is organized as follows, Section2
summarizes the required background for the rest of the
paper. A brief summary of previous methods to compute
the direct-optimal basis are given in Section3. Later,
Section4 deals with the main contribution of the paper:
we propose a new method based on the idea of removing
superfluous attributes to efficiently deal with arbitrary
implications. Experimental evaluation has been
performed by using a Prolog implementation and the
results are outlined in Section5. Some conclusions and
future works are given in Section6.

2 Background

In this section we present a brief introduction of
preliminaries of FCA, the logic for implications, and
implicational systems in three separated subsections.

2.1 Formal Concept Analysis

In Formal Concept Analysis [10], the notion of formal
context is defined to be a tripletK := (G,M, I) whereG is
a set of objects,M is a set of attributes andI is a binary
relation betweenG and M. For g ∈ G and m ∈ M, we
write 〈g,m〉 ∈ I if the objectg has the attributem.

Example 1.Table1 from the previous section depicts the
binary relationI of a formal contextK0 where the set of
objects and the set of attributes are, respectively,
G= {Afghanistan, Algeria, Benin, Botswana, Cameroon,
Gabon, Haiti, Kiribati} and M = {Gr77, NA, LLDC,
MASC, OPEC, ACP}. ⊓⊔

From this triple, two mappings↑: 2G → 2M and
↓: 2M → 2G, named concept-forming operators, are
defined as follows: for anyX ⊆ G andY ⊆ M,

X↑ = {m∈ M | 〈g,m〉 ∈ I for all g∈ X}
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Table 1: Membership of countries in supranational groups.
I Gr77 NA LLDC MASC OPEC ACP

Afghanistan × × × ×
Algeria × × ×
Benin × × × × ×

Botswana × × × ×
Cameroon × × × ×

Gabon × × × ×
Haiti × × × ×

Kiribati × ×

Y↓ = {g∈ G | 〈g,m〉 ∈ I for all m∈Y}

These mappings establish a Galois connection and the
composition of the two concept-forming operators gives
us two closure operators, i.eX↑↓ andY↓↑ are the closures
of X andY, respectively. And, the closed sets of these two
mappings, that is, the fixpoints of the closure operators,
define the so-calledformal concepts. As we shall see,
formal concept is a key point in FCA which formally
describes anidea of the model and it allows us to
characterize a set of objects by means of the attributes
they share, and vice versa.

Example 2.There are 26 concepts associated with the
formal contextK0 introduced in Table1. For instance, the
set of attributes{LLDC, ACP} and the set of objects
{Benin, Botswana, Haiti, Kiribati} are two closed sets
which describe the notion of the least developed countries
in a certain region providing its properties and
characterizing its countries; i.e.:

{Afghanistan, Benin, Botswana, Haiti}↑↓ =
= {Afghanistan, Benin, Botswana, Haiti}

{LLDC, ACP}↓↑ = {LLCD, ACP}

⊓⊔

A formal concept is a pair〈X,Y〉 such thatX ⊆ G,
Y ⊆ M, X↑ = Y andY↓ = X whereX, named theextent,
andY, named theintent, are closed sets of objects and
attributes. The set of formal concepts is known to be a
complete lattice, the concept lattice associated to the
context with the following partial ordering:

〈X1,Y1〉 ≤ 〈X2,Y2〉 if and only if X1 ⊆ X2

(or equivalentlyY1 ⊇Y2)

Example 3.The concept lattice associated with the formal
contextK0 in Table1 is depicted in Figure1. ⊓⊔

In FCA, a concept lattice can be defined dually using
attribute implications, which can be deduced from the
concept lattice or using mining techniques from the
context as well. An attribute implication is an expression
A → B where A and B are subsets of attributes, i.e.
A,B ⊆ M. A context satisfiesA → B if every object that
has all the attributes inA also has all the attributes inB.

Fig. 1: Concept lattice ofK0 formal context.

Definition 1.Let K be a formal context and A,B ⊆ M
subsets of attributes, an implication is an expression as
A→ B and it is said that it holds (is valid) inK whenever
A↓ ⊆ B↓.

Example 4.The implication

OPEC→ Group77,Non-Aligned

holds inK0 because every object that belongs to the OPEC
also belongs to Gr77 and NA supranational organizations
(see Table1). ⊓⊔

As we have mentioned above, although attribute
implications and concept lattices may be considered dual
expressions of the knowledge system, the former has an
outstanding property since they can be managed
syntactically by means of logic. The pioneering
logic-based approach of Armstrong’s Axioms to deal with
dependencies was originally defined for functional
dependencies. Though funcional dependencies and
attribute implications have different interpretations, they
share the same notion of semantic entailment [2].
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2.2 Logic for attribute implications

We begin this section with a formal description of
Armstrong’s Axioms, the first sound and complete
inference system to deal with attribute implications [1].
The language for attribute implications,L , is defined as
follows

Definition 2(Language). Given a non-empty finite
alphabet M (named attribute set), the language is the
following set of implications or formulas

L = {A→ B | A,B⊆ M}

In order to distinguish between language and
metalanguage, inside implications,AB meansA∪B and
A-B denotes the set differenceArB. We will use capital
letters to denote subsets of attributes and lower-case
letters for singleton sets of attributes. Moreover, when no
confusion arises, we omit the brackets, e.g.abc denotes
the set{a,b,c}.

As usual, we introduce now an interpretation of these
formulas and their corresponding models. So, a formal
contextK is amodelof a formulaA→ B if it is valid in K
as per Definition1. A theoryis a set of formulas and, ifΣ
is a theory,Σ |= A → B denotes that every model of all
formulas inΣ is also a model ofA→ B.

Implications can be syntactically managed by means
of the following inference system:

Definition 3(Armstrong’s Axiom System). Given the
languageL , the inference systemSAr has one axiom and
two inference rules:

[Ax]
A⊇ B
A→ B

[Augm]
A→ B

AC→ BC
[Trans]

A→ B, B→C
A→C

We use the standard notation for syntactic derivation.
Given a theoryΣ and a formulaA → B, Σ ⊢ A → B
denotes thatA → B can be derived fromΣ by using the
axiom system.

Simplification Logic,SL
FD

[7], has shown to be an
alternative axiom system to Armstrong’s.SL

FD
is an

executable and useful tool to manipulate implications
guided by the idea of simplifying the set of implications
by efficiently removing redundant attributes.

Definition 4(Simplification Axiom System). SL
FD

considers reflexivity as axiom scheme and the following
inference rules named fragmentation, composition and
simplification respectively.

[Ref]
A→ A

[Frag]
A→ BC
A→ B

[Comp]
A→ B, C→ D

AC→ BD

[Simp]
A→ B, C→ D

C-B→ D-B
,(A⊆C and A∩B 6= /0)

Both axiom systems are sound and complete and,
therefore, equivalent [7].

The rules ofSL
FD

have been used as the engine of a
set of automated reasoning methodd to manipulate
implications developed in [8, 9, 12, 13]. One of the most
important problems related with implications is the
computation of the closure of a set of attributes. Thus,
given a set of implicationsΣ , valid in a formal context,
and a subset of attributesA ∈ 2M, the problem is the
computation of the biggest subsetA+ ∈ 2M such that
A → A+ holds in the formal context. This problem was
tackled in [8] developing a logic-based method by means
of a set of equivalence rules derived from the above
inference rules.

We emphasize thatSL
FD

inference rules can be
considered equivalence rules and are sufficient to
compute all the derivations [12].

Theorem 1( [12]). In SL
FD

, the following equivalencies
hold:

1.Fragmentation Equivalency[FrEq] :

{A→ B} ≡ {A→ B-A}

2.Composition Equivalency[CoEq]:

{A→ B,A→C} ≡ {A→ BC}

3.Simplification Equivalency[SiEq]: If A ∩B = /0 and
A⊆C then

{A→ B,C→ D} ≡ {A→ B,C-B→ D-B}

The reading from left to right of these rules gives the
essence ofSL

FD
. In this direction, these equivalencies

remove redundant information: redundant attributes
([FrEq] , [SIEq] or redundant implications ([CoEq]).
This was the core ofSL

FD
when it was conceived.

We emphasize thatSL
FD

adequately deals with
arbitrary set of implications, particularly with non-unitary
formulas.

A set of implications is said to be anImplicational
System(IS), which is defined as a binary relation between
2M and 2M. An IS in which any implication has a
singleton set of attributes in its right-hand side (A→ b) is
namedUnit Implicational System(UIS). That is, an UIS
is a binary relation between 2M and M. Obviously, by
using [CoEq], any IS can be transformed into an
equivalent UIS and vice versa. Most of the existing
methods in the literature assume that inputs are UIS,
which induces a significant growth of the original set,
worsening its further treatment. However, methods based
on SL

FD
do not require any normalization preprocessing.

The method introduced in this paper is a new example of
this good behavior.

2.3 Implicational Systems

In this section we present particular implicational
systems, satisfying some properties, which are very
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interesting for applications because its shape eases its
automated management. Among the most outstanding
properties presented in [4], the authors emphasize
minimality. An IS Σ is minimal if no implication may be
removed fromΣ without losing equivalence.

Notice that there exist several minimal ISs which may
be equivalent. It is interesting to consider those ones
having the least number of implications: the so-called
minimumIS.

On the other hand, another interesting property can be
based on the total number of attributes in the IS, and this
leads to the notion of optimality, that is, an ISΣ is said
to beoptimal if there does not exist another equivalent IS
with smaller number of attributes.

Thus, in this direction, one of the main trend topics in
FCA is the following: given a formal contextK, to obtain
an ISΣ such that the following conditions are fulfilled:

–all the implications inΣ hold inK (correctness)
–every valid implication inK can be deduced fromΣ
by using a sound and complete inference system
(completeness)

–if any implication is removed fromΣ then the new IS
Σ ′ is not equivalent toΣ (minimality)

An IS Σ with these properties is called abasisof K.
When a propertyP is added to a basisΣ , then the ISΣ is
called aP basis.

Example 5.Let K0 be the formal context presented in
Table1. A basis associated toK0 is the following:

Σ = { OPEC→ Gr77 NA
MASC→ Gr77
NA → Gr77
Gr77 NA MASC OPEC→ LLDC ACP
Gr77 NA LLDC OPEC→ MASC ACP} ⊓⊔

The above basis was provided in [10] and it
corresponds to the so-called Duquenne-Guigues (or stem)
basis [11], strongly based on the notion of pseudo-intent.
As shown in [8], redundant attributes may appear in this
kind of minimal basis and it is possible to define another
equivalent basis with smaller size, although the new basis
loses the property for Duquenne-Guigues basis. Thus, for
different applications, it could be interesting to consider
different properties. For instance, in [9] a basis with
minimal size in the left-hand side of the implications was
proposed.

In this work our target is the notion of directness (see
Section3), strongly related with the closure problem. In
FCA, the computation of the closure of a set of attributes
is an important topic. We emphasize the proposals
in [3, 5, 12] for this well-known problem. Bertet et al. [4]
summarized the works around the notion of direct bases
presented in the literature. In that paper they relate
directness with another interesting property: optimality.
Furthermore they established the uniqueness of the

direct-optimal basis. They also studied this notion of basis
for both, IS and UIS.

In the next section, we summarize the works of [3, 5]
to obtain the direct-optimal basis associated to a formal
context.

3 Methods to compute the Direct Optimal
basis

This section establishes the good properties of a
direct-optimal basis, i.e. the computation of the closure
can be done only in just one iteration and, due to its
minimal size, the number of visited implications is
reduced to the minimum. This situation makes the
problem of building a direct-optimal basis one of the
outstanding problems in FCA. Now, we will formally
introduce these notions:

Definition 5(Direct IS). An ISΣ is said to bedirect if, for
all X ⊆ M:

X+ = X∪{b∈ B|A⊆ X and A→ B∈ Σ}

It is worth noticing that if an ISΣ is direct for a set of
attributesM, the closure is obtained at costO(| Σ |) instead
of O(| Σ | · |M |) ,which is the complexity in the worst case
of classical closure algorithms.

Definition 6(Direct-optimal IS). A direct ISΣ is said to
bedirect-optimalif, for any direct ISΣ ′ equivalent toΣ we
have that‖Σ‖ ≤ ‖Σ ′‖ where

‖Σ‖= ∑
A→B∈Σ

(|A|+ |B|).

In the same way as in other fields, the use of formulas
in a given normal form allows the design of simpler
methods with a better performance than those working
with arbitrary expressions (e.g. the use of Horn clauses in
Logic Programming). In FCA, the normal form usually
chosen to improve the methods to get the direct-optimal
basis is the unitary implication.

As a first step, Bertet et al. proposed a method to build
the direct-optimal basis from an arbitrary IS [3]. Later,
they proposed a second method which works with
UISs [4]. The main advantage in the use of general IS is
the smaller size of the input implication set whereas the
use of UIS allows a better performance of the second
method.

In the rest of this section, we summarize the methods
proposed in [3] (for IS) and in [4] (for UIS) and the main
differences between them will be highlighted.

3.1 Non-Unitary Direct-Optimal basis

Given an arbitrary ISΣ , the way to proceed is the
following: first, a direct ISΣd is built by adding new
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implications toΣ . Then the direct-optimalΣdo is obtained
by removing from Σd those implications that are
redundant whose elimination preserves directness. In the
first step, we apply exhaustively the following rule:

[Overlap]
A→ B,C→ D
A(C-B)→ D

, B∩C 6= /0

The second step is mainly based on the following rule:

[Optimization]
A→ B,C→ D

A→ B-AD
, C⊂ A

Note that optimization rule is close to the above
simplification rule. This rule induces an equivalence
named Optimization Equivalency:

[OpEq] : If C⊂ A then

{A→ B,C→ D} ≡ {C→ D,A→ B-AD}

To compute the unique direct-optimal IS equivalent toΣd,
we apply exhaustively[OpEq]+[CoEq]+[FrEq] . If the
application of [OpEq] renders a trivial implication
A → /0, it is removed from the output. We introduce now
an illustrative example:

Example 6.Let Σ be the IS considered in Example5. The
first step builds the following direct IS with 31
implications:

Σd = { NA → Gr77
OPEC Gr77 NA LLDC→ MASC ACP
MASC→ Gr77
OPEC Gr77 NA MASC→ LLDC ACP
OPEC→ Gr77 NA
OPEC NA LLDC→ MASC ACP
OPEC→ Gr77
OPEC NA MASC→ LLDC ACP
OPEC MASC→ LLDC ACP
OPEC Gr77 NA LLDC→ Gr77
OPEC MASC→ Gr77
OPEC Gr77 NA MASC→ MASC ACP
OPEC LLDC→ MASC ACP
OPEC NA MASC LLDC→ MASC ACP
OPEC NA LLDC→ Gr77
OPEC NA LLDC→ LLDC ACP
OPEC MASC LLDC→ LLDC ACP
OPEC NA MASC LLDC→ Gr77
OPEC NA MASC→ Gr77
OPEC Gr77 NA MASC→ Gr77
OPEC LLDC→ Gr77
OPEC Gr77 NA MASC LLDC→ LLDC ACP
OPEC MASC LLDC→ MASC ACP
OPEC Gr77 NA MASC LLDC→ MASC ACP
OPEC MASC→ MASC ACP
OPEC NA MASC LLDC→ LLDC ACP
OPEC MASC LLDC→ Gr77
OPEC Gr77 NA LLDC→ LLDC ACP
OPEC LLDC→ LLDC ACP
OPEC Gr77 NA MASC LLDC→ LLDC ACP
OPEC NA MASC→ MASC ACP}

After this, the second step renders the direct-optimal
basis with 5 implications:

Σ = { OPEC→ NA Gr77
NA → Gr77
MASC→ Gr77
LLDC OPEC→ MASC ACP
MASC OPEC→ ACP LLDC}

⊓⊔

3.2 Unit Direct-Optimal basis

We recall here the method proposed in [5] to obtain the
direct-optimal basis equivalent to a given Unit
Implicational System .

Firstly, the method computes a direct UISΣd by
exhaustively applying the following rules, which are
particularizations of [Overlap] and
[Optimization] to UIS:

[UnitOverlap]
A→ b,Cb→ d

AC→ d
,

whered 6= b andd 6∈ A

[UnitOptimization]
C→ b
A→ b

, C⊂ A

The second rule above is indeed used tonarrow the
implications, using the following equivalence:

[NarrEq] : If C⊂ A then{A→ b,C→ b} ≡ {C→ b}

Notice that the use of UIS turns the method into an
easier one. We illustrate the method in the following
example:

Example 7.The UIS equivalent to the IS given in example5
is:

Σ = { OPEC→ Gr77
OPEC→ NA
NA → Gr77
MASC→ Gr77
Gr77 NA MASC OPEC→ LLDC
Gr77 NA MASC OPEC→ ACP
Gr77 NA LLDC OPEC→ MASC
Gr77 NA LLDC OPEC→ ACP}

Firstly, from this set with 5 unitary implications, the
following direct UIS with 26 implications is generated
(using the[UnitOverlap] rule):

c© 2015 NSP
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Σd = { OPEC→ Gr77
OPEC→ NA
NA → Gr77
MASC→ Gr77
OPEC Gr77 NA MASC→ LLDC
OPEC Gr77 NA MASC→ ACP
OPEC Gr77 NA LLDC→ MASC
OPEC Gr77 NA LLDC→ ACP
OPEC NA LLDC→ ACP
OPEC NA MASC LLDC→ ACP
OPEC Gr77 LLDC→ ACP
OPEC NA LLDC→ MASC
OPEC Gr77 LLDC→ MASC
OPEC NA MASC→ ACP
OPEC Gr77 MASC→ ACP
OPEC NA MASC→ LLDC
OPEC Gr77 MASC→ LLDC
OPEC MASC LLDC→ ACP
OPEC NA LLDC→ Gr77
OPEC MASC→ ACP
OPEC MASC→ LLDC
OPEC LLDC→ ACP
OPEC LLDC→ MASC
OPEC LLDC→ Gr77
OPEC NA MASC→ Gr77
OPEC MASC→ Gr77}

Notice that in this case, the intermediate direct basis is
smaller than that presented in Example6 for non-unit IS.

Now, [NaEq] is applied, rendering the unit
direct-optimal basis with 7 unitary implications.

Σdo = { OPEC→ Gr77
OPEC→ NA
NA → Gr77
MASC→ Gr77
OPEC, MASC→ LLDC
OPEC, MASC→ ACP
OPEC, LLDC→ MASC
OPEC, LLDC→ ACP} ⊓⊔

An analysis of the previous approaches provides a set
of interesting conclusions which guide the design of the
new method proposed in this paper. Although the use of
UIS causes a non trivial growth of the input set of
implications with respect to IS (from 5 to 8 in the cardinal
and from 19 to 28 in the size, for the case ofK0), the
method based on UIS shows a better performance. One
reason is that the intermediate direct basis built after the
first step is smaller in the UIS method than in the IS one
(26 vs 31 in cardinal and 95 vs 144 in size). This is a key
point in the efficiency of the method because the size of
the implicational set directly influences the performance,
in terms of the number of applications of the rules and
equivalences. Thus, the total number of applications is 57
in the case of IS and 36 in the UIS method. This
significant difference is due to the fact that unitary
implications have a smallerpossibilityto fit the conditions

imposed in the equivalences, which are based on the set
inclusion and intersection operators.

Nevertheless, an interesting direction to improve the
efficiency of these methods can be to reduce the
cardinal/size of the intermediate direct basis, which
influences the cost of the second stage. Thus, our aim is to
design a new method which combines the best of these
two approaches: to work with IS so that we limit the
cardinal and size of the set of implications at any time and
to define new rules which reduce the number of
applications, avoiding a growth in the first step that have
to be narrowed in the second stage with extra
computations.

In Table 2 we summarize the performance of the
methods presented in [3] (for IS) and in [5] (for UIS) over
Example5. This table indicates the cardinal and the size
of the implicational set at each stage of the method and
the number of applications of the rules throughout its
execution.

4 A new method to compute direct optimal
basis.

As stated above, working with UIS causes a growth in the
size of the implication sets. The design of new methods
admitting arbitrary IS would provide a more compact
representation of these sets. Up to now, this way has
shown to be unsuccessful because of its bigger number of
applications of inference rules, which usually produce
redundant attributes in both sides of the new implication.
These superfluous attributes can be safely removed from
the right-hand side avoiding, in this way, extra
applications of the inference rules in the future. Let us see
an example to illustrate this situation:

Example 8.ConsiderK0 from Example5. The second and
fifth implications are respectively:

MASC→ Gr77

Gr77 NA LLDC OPEC→ MASC ACP

These implications satisfy the precondition of the
[Overlap] rule, after its application we obtain:

NA LLDC OPEC MASC→ MASC ACP

Notice that the MASC attribute is redundant and it will
cause new applications of the[Overlap] rule when the
method continues.⊓⊔

Our goal here is to design a new method that applies
the paradigm ofreduction in order to achieve a method
working with (not necessarily unitary) IS which,
moreover, reduces the extra coupling of implications. To
this end, we propose to work with reduced implications,
which do not have redundant attributes in their right-hand
sides: Algorithm 1 has four main stages, each one
consisting of the transformation of a previous IS into an
equivalent one fulfilling some additional property.
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Table 2: Comparison of IS and UIS methods.
Algorithm from [3] to IS

| Σ | || Σ || | Σd | || Σd || Num. Rules Applied | Σdo | || Σdo ||

5 19 31 144 57 5 15

Algorithm from [5] to UIS

| Σ | || Σ || | Σd | || Σd || Num. Rules Applied | Σdo | || Σdo ||

8 28 26 95 36 8 20

Algorithm 1: DirectOptimalBasis
input : An implicational systemΣ on S
output: The direct-optimal ISΣdo onS

1 begin
2 /* Stage 1: Generation ofΣr by reduction ofΣ*/

3 Σr = /0
4 foreach A →Σ B do
5 if B 6⊆ A then addA→ B-A to Σr ;

6 /* Stage 2: Generation ofΣsr by simplification ofΣr */

7 Σsr = Σr
8 repeat
9 foreach A→ B∈ Σsr do

10 foreachC → D ∈ Σsr do
11 if A⊆C then
12 if C⊆ A∪B then
13 replaceA→ B andC → D by

A→ BD in Σsr;
14 else ifD ⊆ B then
15 removeC→ D from Σsr;
16 else replaceC → D by

C-B→ D-B in Σsr;

17 until Σsr becomes a fix point;
18 /* Stage 3: Generation ofΣdsr by completion ofΣsr*/

19 Σdsr = Σsr
20 foreach A→ B∈ Σdsr and C→ D ∈ Σdsr do
21 if B∩C 6= /0 6= Dr (A∪B) then
22 addAC-B→ D-(AB) to Σdsr

23 */Stage 4: Generation ofΣdo by optimization ofΣdsr*/

24 Σdo = /0
25 foreach A→ B∈ Σdsr do
26 foreachC → D ∈ Σdsr do
27 if C = A then B= B∪D;
28 if C A then B= BrD;

29 if B 6= /0 then addA→ B to Σdo;

30 return Σdo

Definition 7(Reduced IS).An ISΣ is reducediff it does
not have any trivial implication and for all A→ B∈ Σ we
have that A∩B= /0.

Notice that this condition (i.e. being reduced) is a natural
one in the original specification of the problem, but the
inspiration of the method proposed in this paper is to
maintain intermediate ISs reduced at any time by means
of the application of inference rules which always
produce reduced implications.

The first stage of Algorithm1 (lines 2 to 5) transforms
an arbitrary IS into an equivalent and reduced one, just by
applying[FrEq] . The following definition introduces the
target IS for the second stage (see lines 6–17).

Definition 8(Simplified IS). An ISΣr is simplified if the
following conditions hold: for all A,B,C,D ⊆ M,

1.A→ B, A→C∈ Σ implies B=C.
2.A→B, C→D∈Σ and A C imply C∩B= /0=D∩B.

Theorem1 provides three equivalencies which allow
to remove redundant information when reading from left
to right. The simplified implicational system is obtained
by applying these equivalences to remove redundant
information. More specifically, any IS can be transformed
into a simplified equivalent one by systematically
applying the simplification and composition equivalences
based onSL

FD
([SiEq]+[CoEq]). If the application of

[SiEq] renders an implicationA → /0, it is removed from
the output. Notice that the fixpoint referenced in the
second stage of Algorithm1 is reached because the IS are
finite and in each loopat leastone attribute is removed;
furthermore, as in Algorithm1 this transformation is
applied to reduced IS, it always renders a simplified
reduced IS.

Theorem 2.Let Σsr be the IS obtained by using lines 6 to
17 of Algorithm1 on a reduced ISΣr . Then Σsr is a
simplified reduced IS equivalent toΣr .

Proof.The loop in lines 8–17 always finishes because the
size ofΣr is finite and, in each step of the bucle, this size
decreases. Theorem1 ensures thatΣsr ≡ Σr . Moreover,
Σsr is simplified (Definition8) because it is a fixpoint for
the loop. Finally, Σsr is reduced because these
equivalence rules preserve this feature.⊓⊔

In the third stage of Algorithm1, Σsr is transformed
into an equivalent direct reduced IS by exhaustively
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applying the following rule2, calledstrong Simplification
rule,

[sSimp]
A→ B,C→ D

AC-B→ D-(AB)
, B∩C 6= /0 6= Dr (A∪B)

summarizing, lines 19–22 compute the smallest ISΣdsr
fulfilling:

1.Σsr ⊆ Σdsr and
2.for all pair of implicationsA → B, C → D ∈ Σdsr

where B ∩ C 6= /0 6= D r (A ∪ B) we have that
AC-B → D-(AB) ∈ Σdsr.

In order to prove thatΣdsr is a direct reduced IS which
is equivalent toΣsr, firstly the following lemma ensures
the soundness of the strong Simplification rule.

Lemma 1.Thestrong Simplification rule,

[sSimp]
A→ B,C→ D

AC-B→ D-(AB)
, B∩C 6= /0 6= Dr (A∪B)

can be derived from Armstrong’s axioms.

Proof.AssumeB∩C 6= /0 6= Dr (A∪ B). The following
sequence proves the soundness of[sSimp]:

1. A→ B . . . . . . . . . . . . . . . . . . . . . . . . . by hypothesis.
2. B→ B∩C . . . . . . . . . . . . . . . . . . . . . . . . . . by[Ax]
3. A→ B∩C . . . . . . . . . . . . . by 1., 2. and[Trans]
4.C-B→C-B . . . . . . . . . . . . . . . . . . . . . . . . . by[Ax]
5. A(C-B)→ (B∩C)(C-B) . . by 3., 4. and[Comp]
= A(C-B)→C

6.C→ D . . . . . . . . . . . . . . . . . . . . . . . . . by hypothesis
7. A(C-B)→ D . . . . . . . . . . . by 5., 6. and[Trans]
8. D → D-(AB) . . . . . . . . . . . . . . . . . . . . . . . . by[Ax]
9. A(C-B)→ D-(AB) . . by 7., 8. and[Trans] ⊓⊔

The following theorem ensures that the ISΣdsr
computed at stage 3 (after line 22) has the desired
properties.

Theorem 3.Given a reduced IS,Σsr, the implicational
systemΣdsr computed by lines 19–22 is a direct reduced
IS which is equivalent toΣsr.

Proof.Because of Lemma1, we already have that
Σdsr ≡ Σsr. Moreover, Σdsr is reduced since[sSimp]
preserves this property. In order to prove the directness,
we will prove that, for all attribute setX, if y ∈ X+rX
then there existsX′ → Y′ ∈ Σdsr such thatX′ ⊆ X and
y∈Y′.

Let Σ f be the set of all implications that can be derived
from Σsr by using the Armstrong’s axioms (the so-called
full implicational system) and letΣi with 0 ≤ i ≤ p such
that

–Σ0 = Σdsr,

2 Notice that it is not necessary to put brackets to define the
order of the operations inAC-B because the corresponding IS
is reduced: ifAC∩B 6= /0 only C∩B 6= /0 holds, so(AC)-B and
A(C-B) are equal.

–for each 1≤ i ≤ p, Σi =Σi−1∪{Xi →Yi} whereXi →Yi
is directly obtained fromΣi−1 by [Ax], [Augm] or
[Trans]

–andΣp = Σ f .

Note thaty∈X+rX if and only if there existsX →Y∈Σp
with y∈YrX.

We will prove inductively that, for all 0≤ i ≤ p, if X →
Y∈Σi with y∈YrX then there existsX′ →Y′ ∈Σdsr such
that X′ ⊆ X andy ∈ Y′. Thebase caseis straightforward
becauseΣ0 = Σdsr.
Inductive step:For i ≥ 1, assume the property is true for
Σi−1, i.e. for all X → Y ∈ Σi−1, for all y ∈ YrX, there
existsX′ →Y′ ∈ Σdr such thatX′ ⊆ X andy∈ Y′. Let us
prove that the property is also true forXi →Yi :

–Case[Ax]: If Xi →Yi is obtained by[Ax] thenYi ⊆
Xi , i.e.YirXi = /0, and the property is trivially satisfied.

–Case[Augm]: in this case, there existsA → B∈ Σi−1
such thatXi = A∪C andYi = B∪C. If y∈YirXi then
y ∈ Br A and, sinceA → B ∈ Σi−1, by induction
hypothesis, there existsA′ → B′ ∈ Σdsr such that
A′ ⊆ A⊆ A∪C= Xi andy∈ B′.

–Case[Trans]: There existA → B,B → C ∈ Σi−1
such that Xi = A,Yi = C and y ∈ Cr A. Let us
consider the two sub-casesy∈ B andy 6∈ B.

–y∈ B impliesy∈ BrA, and sinceA→ B∈ Σi−1:
by induction hypothesis there existsA′ →B′ ∈Σdsr
such thatA′ ⊆ A= Xi andy∈ B′.

–y 6∈ B impliesy∈ CrB, and sinceB→C ∈ Σi−1:
by induction hypothesis there existsB′ →C′ ∈Σdsr
such thatB′ ⊆ B and y ∈ C′. If B′ ⊆ A = Xi the
property trivially holds. Otherwise, ifB′ 6⊆ A, let
us writeB′rA= {yk | 1≤ k ≤ q}. SinceB′ ⊆ B :
yk ∈ BrA, and sinceA→ B∈ Σi−1: by induction
hypothesis there existq implicationsAk → Bk ∈
Σdsr such thatAk ⊆ A andyk ∈ Bk. Therefore:

B′rA⊆
⋃

1≤k≤q

Bk andB′ ⊆ A∪
⋃

1≤k≤q

Bk

The [sSimp] rule is now used to build an
implication whose premise is included intoA and
y belongs to its conclusion. Let us consider the
two sub-casesy∈

⋃
1≤k≤qBk andy 6∈

⋃
1≤k≤qBk.

•If y ∈
⋃

1≤k≤qBk then there existsk ∈ [1,q] such
that y ∈ Bk, so Ak → Bk ∈ Σdsr satisfies the
property.

•If y /∈
⋃

1≤k≤qBk, then the implication we are
searching is the last element of a sequence ofq
implications A′

k → C′
k ∈ Σdsr obtained by

iteratively applying [sSimp] to implications
Ak → Bk ∈ Σdsr.
·Base case:we defineA′

1 →C′
1 ∈ Σdsr as the result

of [sSimp] applied toA1 → B1,B′ → C′ ∈ Σd
(note that y1 ⊆ B1 ∩ B′ so B1 ∩ B′ 6= /0 and
[sSimp] can be applied), soA′

1 = A1 ∪B′rB1
and C′

1 = C′ r (A1 ∪ B1) (note that
y∈C′

1 : y∈C′,y 6∈ A1 ⊆ A,y 6∈ B1).
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·Inductive case:for i < k≤ q, we defineA′
k →C′

k ∈
Σdr as:

1.the result of[sSimp] applied toAk → Bk ∈ Σd
andA′

k−1 → C′
k−1 ∈ Σd if Bk∩A′

k−1 6= /0, soA′
k =

Ak∪A′
k−1rBk andC′

k =C′
k−1r (Bk∪Ak).

2.A′
k−1 → C′

k−1 ∈ Σd otherwise, soA′
k = A′

k−1 and
C′

k =C′
k−1.

To prove thatA′
q ⊆ A, we will prove, again by induction on

k∈ [1,q], that
A′

k−1 ⊆ A∪
⋃

k< j≤q

B j

–Base case:For k = 1, we haveA′
1 = A1 ∪ (B′ rB1)

so A′
1 ⊆ A∪

⋃
1< j≤qBj

directly follows fromB′ ⊆ A∪⋃
1≤k≤qBk

andA1 ⊆ A.
–Inductive case:Fork> 1, the induction hypothesis is

A′
k−1 ⊆ A∪

⋃

k−1< j≤q

B j

moreover the computation ofA′
k depends on the

emptiness ofBk∩A′
k−1.

–If Bk∩A′
k−1 = /0, then

A′
k−1 ⊆ (A∪

⋃

k−1< j≤q

B j rBk

moreoverA′
k = A′

k−1. So we directly obtainA′
k ⊆

A∪
⋃

k< j≤qB j

–If Bk ∩A′
k−1 6= /0, thenA′

k−1rBk ⊆ A∪
⋃

k< j≦B j .
MoreoverA′

k = Ak∪ (A′
k−1rBk) and sinceAk ⊆ A,

qe also obtainA′
k ⊆ A∪

⋃
k< j≤qB j .

We finally obtain

A′
q ⊆ A∪

⋃

q< j≤q

B j ⊆ A

andA′
q →C′ ∈ Σdr satisfies the property (sinceA= Xi and

y∈C′). Thus the property is proved.⊓⊔

This section concludes with results ensuring that the
output of Algorithm 1 is an equivalent direct-optimal
implicational system.

Lemma 2.Let Σdsr be a direct-reduced IS andΣdo be the
IS obtained fromΣdsr by using lines 24–29 in Algorithm1.
ThenΣdo is a direct-reduced simplified IS equivalent to
Σdsr.

Proof.It is easy to check that the transformation given by
lines 24–29 preserves equivalence, directness and being
reduced. Since fragmentation and composition
equivalences have been applied, thenΣdo is also reduced,
and A → B,A → C ∈ Σdo implies B = C (case 1 of the
definition of being simplified).

To prove thatA→ B,C→ D,A⊂C imply C∩B= /0=
D∩B (case 2 of the definition of being simplified), let us
observe that:

1.C∩B = /0: trivial from C ⊂ A and A∩B = /0 by the
reduction property.

2.D∩B = /0: trivial from the optimization equivalence
[OpEq]. If D∩B 6= /0, thenA→ B is replaced byA→
B−AD, thus a contradiction withA→ B∈ Σdo.

3.If A→B,C→D∈Σ with A⊂C andC∩B 6= /0 6=D∩B
then Σ r {C → D} ∪ {C-B → D-B} is also a direct-
reduced IS equivalent toΣ of smaller size. ⊓⊔

The following theorem provided in [3] allows us to
conclude this section with Theorem5 which ensures that
Algorithm 1 returns the only direct-optimal base
equivalent to the original one.

Theorem 4( [3]). A direct ISΣ is direct-optimal iff:

–(extensiveness): for all A→ B∈ Σ , A∩B= /0
–(isotony): for all A→ B,C → D ∈ Σ , if C ⊂ A then
B∩D = /0.

–(premise): for all A→ B,A→ B′ ∈ Σ , B= B′.
–(non-empty conclusion): for all A∈ B∈ Σ , B 6= /0.

Theorem 5.Let Σ be an implicational system on M and
let Σdo be the IS output by Algorithm1. Then,Σdo is the
direct-optimal implicational system equivalent toΣ .

Proof.From Theorems2 and 3 and Lemma2, Σdo is a
direct-reduced simplified IS equivalent toΣ . SinceΣdo is
reduced, extensiveness and non-emptiness of the
conclusion hold. Moreover, since it is simplified, isotony
and premise also hold. Finally, Theorem4 ensures that
Σdo is the direct-optimal base equivalent toΣ . ⊓⊔

5 The direct-optimal method in action

In this section, the execution of the method is shown on
an illustrative example and, then, we present the initial
results of our experimental evaluation in order to obtain
the conclusions on its performance in practice.

Example 9.In this example, the execution of the method is
carried out step by step rendering a direct-optimal basis for
the IS in Example5:

Σ = { OPEC→ Gr77 NA,
MASC→ Gr77
NA → Gr77
Gr77 NA MASC OPEC→ LLDC ACP
Gr77 NA LLDC OPEC→ MASC ACP}

In the first and second stages, Algorithm1 calculates
the following equivalent simplified-reduced ISΣsr:

Σsr = { OPEC→ NA
NA → Gr77
MASC→ Gr77
LLDC OPEC→ MASC
MASC OPEC→ ACP LLDC}
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The third stage renders the following
direct-simplified-reduced ISΣdsr equivalent toΣsr. Note
that this set of implications is smaller (in size) than those
built with the previous methods. The cardinal of the direct
IS is 8 whereas in the previous methods we obtained a
cardinal of 26 and 31 for UIS and IS respectively (see
Table2).

Σdsr = { OPEC→ NA
NA → Gr77
MASC→ Gr77
LLDC OPEC→ MASC
MASC OPEC→ ACP LLDC
OPEC→ Gr77
LLDC OPEC→ Gr77
LLDC OPEC→ ACP}

Although it is not strictly required by the method, by
applying[sSimp] rule, we achieve an extra reduction in
the size of the IS,|| Σdsr ||= 21. Notice that it is smaller
than the size of the direct UIS and IS obtained with
previous methods, which were 95 and 144 respectively.

In the last stage of our method the direct-optimal basis
Σdo is obtained fromΣdsr:

Σdo = { OPEC→ NA Gr77
NA → Gr77
MASC→ Gr77
LLDC OPEC→ MASC ACP
MASC OPEC→ ACP LLDC}

Regarding the number of rules applied, it is worth to
remark that the new method does not need to apply
reduction at the end toclean the basis, because all the
stages preserve reduction and the direct-optimal basis is
already reduced. In the second stage, it applies four times
the [SiEq] equivalence to getΣsr and[sSimp] rule just
once in the third step. In this example, it is not necessary
to apply the last loop because in the previous one we
already obtained the direct-optimal basisΣdo. The total
number of rules which have been applied is 5 whereas in
the previous methods 57 and 36 rules were necessary for
IS and UIS, respectively.⊓⊔

In summary, the new method improves all the
previously published ones and, moreover, the key point is
the following: it begins by reducing the implications and
ensures that reduction is preserved at any time dealing
with smaller IS than any other method based on UIS. It
also narrows the input by using[SiEq], an equivalence
based onSL

FD
, and by adding less implications to

compute the intermediate direct IS by using[sSimp].

In the rest of this section, we focus on the design and
development of an empirical study to get some practical
conclusions on the performance of the algorithm from a
more exhaustive application. The methods of Bertet et
al. [3, 4] and our newly proposed method have been

implemented in SWI-Prolog.3 The input are sets of
implications randomly generated, increasing their size
until the limits of the algorithms are reached.

Table 3 summarizes the results of a number of
operations that makes the algorithm to compute the
direct-optimal basis in these experiments.

For each method, there are three columns showing the
following information: the first one represent the number
of logical inferences per second (lips) often used to
describe the performance of a logical reasoning system;
the second one is the execution time in seconds; and the
third column stores the number of couples of implications
in which a rule is applied.

The name of each example encloses the number of
implications and a serial number for unique identification
; e.g. E109 correspond to the experiment #9, having 10
implications. Table3 shows that experiments with 15
implications saturate machine resources for the previous
methods. In all three parameters, the method proposed in
this paper obtains much better results.

6 Conclusions

In this work we have presented a new method to compute
the direct-optimal basis in a way more efficient than
previous methods published in the literature. The
efficiency of the method is illustrated through a first
experiment in which we compare the three methods.

Currently, we are conducting a more exhaustive
comparison with a random generator of implications and
formal contexts. Moreover, we will implement our
method in Java using the lattice library provided by Bertet
in the GitHub platform, in order to further compare the
three methods.

We are working in new methods to compute the
direct-optimal basis by trying to take extra advantages of
the huge number of algebraic-logical results already
known about implications. As future work, we are
planning to use theSL

FD
paradigm for the study of

automated methods to compute other types of basis, for
instance, Duquenne-Guigues, ordered-direct, etc.
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