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Abstract: Due to its solid mathematical foundations, Formal Conceplgsis (FCA) has become an emergent topic in the area of
data analysis and knowledge discovering. Information pgegented in a binary table defining a relation between afs#ijects and
a set of attributes—the formal context. The knowledge egdd from the formal context allows to identify useful patein data
in different forms. One very useful knowledge represeatain FCA are implications among attributes which are vaédeover the
objects. The most outstanding feature of implications & they can be managed by means of inference systems. Eiigaits of
implications can be obtained using different logic-basedgformations. The aim of these transformations is to tivenoriginal set
of implications into an equivalent one fulfilling some desirproperties. Among them, the directness and optimaléyary popular
targets because getting a direct-optimal basis ensureththalosure of a set of attributes may be computed with laest (time and
resources). In this work, we introduce a new method to comthe direct-optimal basis which improves the existing ofié& new
method reduces the input in a first stage and is guided by gaeatllimiting the growth of the intermediate sets of implicas as a
way to improve the performance. We illustrate the good festof the new method with both a detailed example and by arpatal
evaluation.

Keywords: Formal Concept Analysis, Implications, Basis, Logic

1 Introduction Engineering, Data Mining, and recently it is becoming to
be a suitable tool in the Semantic Web.

From the mid 1980s, Formal Concept Analysis (FCA) has

become a useful tool for data analysis. One of the reasons One of the most relevant patterns which can be
of its success is the power of lattice theory which extracted from a formal context is an implication,
underlies FCA. Information is represented by a binaryrepresenting a relation between subsets of attributes.
table defining a relation between a set of objects and a sainplications are strongly connected with the concept
of attributes, and a well established set of methods andattice, providing an alternative representation of the
techniques allows to extract knowledge by means ofunderlying information.

automated tools. The main goal of FCA is to infer

conceptdrom the data set, i.e. to deduce (in an automated

way) a set of objects that may be precisely characterized Bg|ohlavek et al. 17] focus on the importance of
by a set of attributes. Such concepts inherit an ordeimplication when stating “A distinguishing feature of
relation induced by attribute set inclusion, providing a FCA is an inherent integration of three components:
lattice structure of the concept set. discovery of clusters (so-called formal concepts) in data,

The concept lattice allows to identify patterns in data, discovery of data dependencies (so-called attribute
which is one of the main issues in Knowledge Discoveryimplications) in data, and visualization of formal coneept
in databases. Moreover, FCA has been used in differenand attribute implications by a single hierarchical diagra
areas: Artificial Intelligence, Databases, Software (so-called concept lattice)”.
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We recall here an example from(Q, pp. 30 and 84] improve the efficiency of the direct-optimal implicational
which will be used later as a running exampléix basis.
attributes are considered representing supranational The notion of direct-optimal implicational basis has
organizations: Gr77 (Group of 77), NA (Non-aligned), two very interesting properties: its size can be proved to
LLDC (Least Developed Countries), MASC (Most be the leastqptimality), and the closure of any subset of
Seriously Affected Countries), OPEC (Organization of attributes can be computed in just one traversal of the
Petrol Exporting Countries) and ACP (African, Caribbeanimplicational setdirectnesk
and Pacific Countries). Working with arbitrary implicational systems, allows

In FCA, when all the objects satisfying a subset of for considering inputs of smaller size, but the method
attributes also satisfy another subset of attributes,ethergiven in [3] to compute direct-optimal basis can be
exists a dependence between both sets, which is called a@xponentially hard, whereas considering unitary
implication In Table 1, one notices that every country implicational systems enhances the performance of the
belonging to the OPEC, also belongs to both, to the NAmethod p] but the inconvenient is that the inputs can be
organization and to the Gr77. This knowledge is capturednuch bigger.

by an attribute implication written in the form: In this paper, after summarizing the methods to
compute the direct-optimal basis proposed 8} for
OPEC— NA, Gr77 arbitrary implicational systems, and irb][for unitary

implicational systems, we propose a new alternative

One of the most relevant issues related with attributemethod which combines the good properties of both
implications is that it may be managed by using anapproaches.
inference system. It opens the doors to the design of The paper is organized as follows, Sectich
automated deduction methods to deal with sets ofsummarizes the required background for the rest of the
implications: thus, an interesting research topic is to findpaper. A brief summary of previous methods to compute
methods which transform a set of implications into the direct-optimal basis are given in Secti8n Later,
another one, semantically equivalent but more suitable foiSection4 deals with the main contribution of the paper:
further treatment. In this framework, the present paperwe propose a new method based on the idea of removing
focuses on the design of logic-based transformations fosuperfluous attributes to efficiently deal with arbitrary
sets of implications which render an equivalent sets butmplications. Experimental evaluation has been
fulfilling desired propertiegjirectnessandoptimality. performed by using a Prolog implementation and the

In FCA many of the problems are solved by results are outlined in Sectidhi Some conclusions and
intensively computing the closure of a set of attributes.future works are given in Sectidh
Although classical closure algorithms have linear
complexity, a reduction in the execution cost is relevant
when a huge number of closures is necessary. Rudolp® Background
states in 20] that “one central task when dealing with
closure operators is to represent them in a succinct wa
while still allowing for their efficient computational
usage”.

Particularly, it would be useful to have minimal
representations of implicational theories. Duquenne.et al :
[15 stress the need “to put data in canonical forms toz'l Formal Concept Analysis

speed up access to information and of extractingy Formal Concept Analysis1p], the notion of formal
classifications and rules providing some explanation”.  ~gontext is defined to be a tripl&t := (G, M, 1) whereG is

One can find in the literature several interesting 5 set of objectsM is a set of attributes andis a binary
contributions to the problem of the minimal generation of re|ation betweerG and M. Forg € G andm e M, we

a closure operator by an implicational system: the firstyrite (g,m) € | if the objectg has the attributen.
one was introduced independently by Maidd] [and . . .
Duquenne-Guigues 1Jl], leading to the currently Example 1Table 1 from the previous section depicts the

so-called Duguenne-Guigues canonical basis stem binary relationl of a formal contextko where the set of
basis Bertet and Monjardet4] surveyed five of the objects and_ the set of attr_lbutes are, respectively,
results about minimal implicational systems, and proved® = {Afghanistan, Algeria, Benin, Botswana, Cameroon,
that all of them were equivalent, introducing the term Gabon, Haiti, Kiribatt and M = {Gr77, NA, LLDC,
direct-optimal implicational basisAdaricheva et al. 14] MASC, OPEC, ACR. O

proposed the so-calledrdered direct basisn order to From this triple, two mappings: 26 — 2M and
1:2M — 2C, named concept-forming operators, are

1 In [10], 130 countries were considered but we have reducedjefined as follows: for an¥X C GandY C M,
it to an equivalent 8 object table, in the sense that the tiagul o o

concept lattice is isomorphic to the original one. X'={meM|(g,m) el forallge X}

In this section we present a brief introduction of
%]reliminaries of FCA, the logic for implications, and
implicational systems in three separated subsections.
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Table 1: Membership of countries in supranational groups.

| Gr77 NA LLDC MASC OPEC ACP
Afghanistan X X X X
Algeria X X X
Benin X X X X X
Botswana X X X X
Cameroon X X X X
Gabon X X X X
Haiti X X X X
Kiribati X X

Yt={geG|(g,m clforallmeY}

These mappings establish a Galois connection and the
composition of the two concept-forming operators gives
us two closure operators, '+ andY*! are the closures
of X andY, respectively. And, the closed sets of these two
mappings, that is, the fixpoints of the closure operators,
define the so-calledormal conceptsAs we shall see,
formal concept is a key point in FCA which formally
describes anidea of the model and it allows us to
characterize a set of objects by means of the attributes
they share, and vice versa.

Example ZThere are 26 concepts associated with the
formal contextKg introduced in Tabld. For instance, the
set of attributes{LLDC, ACP} and the set of objects
{Benin, Botswana, Haiti, Kiriba}i are two closed sets
which describe the notion of the least developed countries
in a certain region providing its properties and
characterizing its countries; i.e.:

{Afghanistan, Benin, Botswana, H3itr =
= {Afghanistan, Benin, Botswana, Hditi

Fig. 1: Concept lattice oKy formal context.

{LLDC, ACP}*" = {LLCD, ACP}
O Definition 1.Let K be a formal context and 8 C M
subsets of attributes, an implication is an expression as

A formal concept is a paitX,Y) such thatX € G, A — B and it is said that it holds (is valid) iik whenever
Y C M, X =Y andY' = X whereX, named thextent Al C B'.
andY, named thantent are closed sets of objects and
attributes. The set of formal concepts is known to be a
complete lattice, the concept lattice associated to the OPEC—s Group77,NonAligned
context with the following partial ordering:

Example 4The implication

holds inKg because every object that belongs to the OPEC
(X1,Y1) < (X2,Y) if and only if X; C X; also belongs to Gr77 and NA supranational organizations
(or equivalentlyy; DY) (see Tabld). O
Example 3The concept lattice associated with the formal . f\s we hav; mentlor;edl above, glthough q attgbéjtel
contextKo in Table1 is depicted in Figurd. O imp |cat|.ons and concept lattices may be considered dual
expressions of the knowledge system, the former has an
In FCA, a concept lattice can be defined dually usingoutstanding property since they can be managed
attribute implications which can be deduced from the syntactically by means of logic. The pioneering
concept lattice or using mining techniques from the logic-based approach of Armstrong’s Axioms to deal with
context as well. An attribute implication is an expressiondependencies was originally defined for functional
A — B where A and B are subsets of attributes, i.e. dependencies. Though funcional dependencies and
A /B C M. A context satisfies\ — B if every object that  attribute implications have different interpretationsey
has all the attributes iA also has all the attributes B share the same notion of semantic entailmght [
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2.2 Logic for attribute implications Both axiom systems are sound and complete and,
therefore, equivalen®].
We begin this section with a formal description of  The rules ofSL,, have been used as the engine of a
Armstrong’s Axioms, the first sound and complete set of automated reasoning methodd to manipulate
inference system to deal with attribute implicatiod$. [ implications developed ing[ 9, 12, 13]. One of the most
The language for attribute implications?, is defined as important problems related with implications is the
follows computation of the closure of a set of attributes. Thus,
. . . given a set of implicationg, valid in a formal context,
Definition 2(Language). Given a non-empty finite 3,4 a subset of attributes oM the problem is the
alphabet M (ne}meq at.tribute set), the language is thecomputation of the biggest subsat € 2¥ such that
following set of implications or formulas A — A* holds in the formal context. This problem was
tackled in B] developing a logic-based method by means
< ={A—B[ABCM} of a set of equivalence rules derived from the above

In order to distinguish between language andinferencerules. _
metalanguage, inside implication&B meansAU B and We emphasize thaBL,, inference rules can be
A-B denotes the set differende~ B. We will use capital considered equalenpe rules and are sufficient to
letters to denote subsets of attributes and lower-cas§oMPute all the derivationdg].
letters for singleton sets of attributes. Moreover, when noTheorem 1( [12)). In SL,,, the following equivalencies
confusion arises, we omit the brackets, eagc denotes  hold:
the set{a,b,c}. ; ; .

As usual, we introduce now an interpretation of these 1.Fragmentation Equivalendirea]
formulas and their corresponding models. So, a formal {A— B} ={A— B-A}
contextK is amodelof a formulaA — Bif it is valid in K
as per Definitiorl. A theoryis a set of formulas and, &
is a theory,> = A — B denotes that every model of all {A—B,A—C} ={A—BC}
formulasinZX is also a model oA — B. S ] ]

Implications can be syntactically managed by means 3-Simplification EquivalenciSiEq]: If ANB = 0 and
of the following inference system: ACCthen

Definition 3(Armstrong’s Axiom System). Given the {A—+BC—D}={A—B,C-B—~D-B}
language?, the inference systerfar has one axiomand  The reading from left to right of these rules gives the

two inference rules: essence ofSL,,. In this direction, these equivalencies
A—B,B=C remove redundant information: redundant attributes
T ALC ([FrEq], [SIEq] or redundant implications[CoEq]).

. ) . Thiswas the core dbL,, when it was conceived.

We use the standard notation for syntactic derivation. e emphasize thalSL,, adequately deals with

Given a theoryZ and a formulaA — B, S - A — B grpitrary set of implications, particularly with non-uaiy
denotes tha® — B can be derived fronk by using the  formulas.
axiom system. ) A set of implications is said to be amplicational
Simplification Logic,SL;, [7], has shown to be an  gysten(IS), which is defined as a binary relation between
alternative axiom system to Armstrong'SL, is an oM gnd M. An IS in which any implication has a
executable and useful tool to manipulate implicationssing|etOn set of attributes in its right-hand side-¢ b) is
guided by the idea of simplifying the set of implications namedunit Implicational SystenfUIS). That is, an UIS
by efficiently removing redundant attributes. is a binary relation betweenM2and M. Obviously, by
using [CoEq], any IS can be transformed into an
equivalent UIS and vice versa. Most of the existing
gmethods in the literature assume that inputs are UIS,
which induces a significant growth of the original set,
worsening its further treatment. However, methods based
on SL,, do not require any normalization preprocessing.

2.Composition EquivalendZoEq]:

Ax A2B A T
(A~ a5 ™9 AcSBC

[ Trans]

Definition 4(Simplification =~ Axiom System). Sl
considers reflexivity as axiom scheme and the followin
inference rules named fragmentation, composition an
simplification respectively.

[ Ref]

A=A The method introduced in this paper is a new example of
(Frag] A—BC this good behavior.
% ASB
A—B,C—D . .
[Comp]l — =5 — 2.3 Implicational Systems
. A—=BC=D In this section we present particular implicational
2o 2 (AC o , .
[sim] —c g pg (ASCandABAD) systems, satisfying some properties, which are very
(@© 2015 NSP
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interesting for applications because its shape eases iirect-optimal basis. They also studied this notion of asi
automated management. Among the most outstandinépr both, IS and UIS.

properties presented in4][] the authors emphasize In the next section, we summarize the works &5
minimality. An IS X is minimalif no implication may be to obtain the direct-optimal basis associated to a formal
removed from> without losing equivalence. context.

Notice that there exist several minimal ISs which may
be equivalent. It is interesting to consider those ones
having the least number of implications: the so-called3 Methods to compute the Direct Optimal
minimumlS. basis
On the other hand, another interesting property can be
based on the total number of attributes in the IS, and thisrhis section establishes the good properties of a

leads to the notion of optimality, that is, an BSis said jrect-optimal basis, i.e. the computation of the closure
to beoptimalif there does not exist another equivalent IS 5 pe done only in just one iteration and, due to its

with smaller number of attributes. _ ~ . minimal size, the number of visited implications is
Thus, in this direction, one of the main trend topics in (equced to the minimum. This situation makes the

FCA is the following: given a formal conte®t, to obtain  hroplem of building a direct-optimal basis one of the

an IS such that the following conditions are fulfilled: outstanding problems in FCA. Now, we will formally

—all the implications inz hold inK (correctnes}y introduce these notions:

—every valid implication ink can be deduced frold  pefinition 5(Direct IS). An ISX is said to bedirectif, for
by using a sound and complete inference systemy)| x c M:
(completenegs N
—if any implication is removed front then the new IS Xt =Xu{beBJACXandA—+Be X}
%’ is not equivalent t& (minimality)
It is worth noticing that if an IS is direct for a set of
An IS Z with these properties is calledbasisof K. attributesM, the closure is obtained at ca3f| = |) instead
When a property is added to a basis, thenthe ISXis  of O(| Z | - | M |) ,which is the complexity in the worst case
called aP basis of classical closure algorithms.

Example 3.et Ky be the formal context presented in Definition 6(Direct-optimal IS). A direct ISZ is said to
Tablel. A basis associated 1§y is the following: bedirect-optimalf, for any direct IS>’ equivalent ta> we

have that|>|| < ||Z’|| where
2 ={ OPEC— Gr77 NA

MASC et I=l= "% (A+B).

NA — Gr77 Afmes

Gr77 NA MASC OPEC- LLDC ACP

Gr77 NALLDC OPEC— MASC ACP} O In the same way as in other fields, the use of formulas

in a given normal form allows the design of simpler
methods with a better performance than those working

The above basis was provided inl0] and it  with arbitrary expressions (e.g. the use of Horn clauses in
corresponds to the so-called Duquenne-Guigues (or stenf)ogic Programming). In FCA, the normal form usually
basis [L1], strongly based on the notion of pseudo-intent. chosen to improve the methods to get the direct-optimal
As shown in B], redundant attributes may appear in this basis is the unitary implication.
kind of minimal basis and it is possible to define another ~ As afirst step, Bertet et al. proposed a method to build
equivalent basis with smaller size, although the new basighe direct-optimal basis from an arbitrary IS][ Later,
loses the property for Duquenne-Guigues basis. Thus, fothey proposed a second method which works with
different applications, it could be interesting to conside UISs [4]. The main advantage in the use of general IS is
different properties. For instance, ir9][a basis with  the smaller size of the input implication set whereas the
minimal size in the left-hand side of the implications was use of UIS allows a better performance of the second
proposed. method.

In this work our target is the notion of directness (see  In the rest of this section, we summarize the methods
Section3), strongly related with the closure problem. In proposed in3] (for IS) and in }] (for UIS) and the main
FCA, the computation of the closure of a set of attributesdifferences between them will be highlighted.
is an important topic. We emphasize the proposals
in [3,5,12] for this well-known problem. Bertet et al4]
summarized the works around the notion of direct bases8.1 Non-Unitary Direct-Optimal basis
presented in the literature. In that paper they relate
directness with another interesting property: optimality Given an arbitrary 1S>, the way to proceed is the
Furthermore they established the uniqueness of thdollowing: first, a direct 1S5y is built by adding new
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implications toX. Then the direct-optimaly, is obtained
by removing from >4 those implications that are

After this, the second step renders the direct-optimal

redundant whose elimination preserves directness. In thgasis with 5 implications:

first step, we apply exhaustively the following rule:

A—BC—D

[ Overl ap] ACB) 5D

BNC #£0

The second step is mainly based on the following rule:

A—B,C—D

ASBAD = CCA

[ Optimzation]

Note that optimization rule is close to the above
simplification rule. This rule induces an equivalence

named Optimization Equivalency:
[OpEq]: If C C Athen

{A—B,C—D}={C—D,A— B-AD}

To compute the unique direct-optimal IS equivalenEto
we apply exhaustivelfOpEq]+[CoEq]+[FrEq] . If the
application of [OpEq] renders a trivial implication
A — 0, it is removed from the output. We introduce now
an illustrative example:

Example @.et Z be the IS considered in Exam@eThe
first step builds the following direct IS with 31
implications:

54 ={ NA = Gr77
OPEC Gr77 NA LLDC— MASC ACP
MASC — Gr77
OPEC Gr77 NA MASG— LLDC ACP
OPEC— Gr77 NA
OPEC NA LLDC— MASC ACP
OPEC— GI77
OPEC NA MASC— LLDC ACP
OPEC MASC— LLDC ACP
OPEC Gr77 NA LLDC— Gr77
OPEC MASC— Gr77
OPEC Gr77 NA MASG- MASC ACP
OPEC LLDC— MASC ACP
OPEC NA MASC LLDC— MASC ACP
OPEC NA LLDC— Gr77
OPEC NA LLDC— LLDC ACP
OPEC MASC LLDC— LLDC ACP
OPEC NA MASC LLDC— Gr77
OPEC NA MASC— Gr77
OPEC Gr77 NA MASGC- Gr77
OPEC LLDC— Gr77
OPEC Gr77 NA MASC LLDC— LLDC ACP
OPEC MASC LLDC— MASC ACP
OPEC Gr77 NA MASC LLDC— MASC ACP
OPEC MASC— MASC ACP
OPEC NA MASC LLDC— LLDC ACP
OPEC MASC LLDC— Gr77
OPEC Gr77 NA LLDC— LLDC ACP
OPEC LLDC—s LLDC ACP
OPEC Gr77 NA MASC LLDC— LLDC ACP
OPEC NA MASC— MASC ACP}

> ={ OPEC— NA Gr77
NA — Gr77
MASC — Gr77
LLDC OPEC— MASC ACP
MASC OPEC— ACP LLDC}

3.2 Unit Direct-Optimal basis

We recall here the method proposed & {o obtain the
direct-optimal basis equivalent to a given Unit
Implicational System .

Firstly, the method computes a direct ULg; by
exhaustively applying the following rules, which are

particularizations of [ Overl ap] and
[Optim zation] toUIS:
. A—Db,Ch—d
[ Uni t Overl ap] —ACSd
whered # bandd ¢ A
[Unitoptimzation] <22 cca
A—b’

The second rule above is indeed usedn@rrow the
implications, using the following equivalence:

[NarrEq] : If Cc Athen{A— b,C — b} ={C— b}

Notice that the use of UIS turns the method into an
easier one. We illustrate the method in the following
example:

Example 7The UIS equivalentto the IS given in example
is:

5 ={ OPEC— Gr77
OPEC— NA
NA — Gr77
MASC — GI77
Gr77 NAMASC OPEC— LLDC
Gr77 NA MASC OPEC- ACP
Gr77 NA LLDC OPEC— MASC
Gr77 NA LLDC OPEC—> ACP}

Firstly, from this set with 5 unitary implications, the
following direct UIS with 26 implications is generated
(using the[ Uni t Over | ap] rule):

(@© 2015 NSP
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imposed in the equivalences, which are based on the set

24 ={ OPEC— Gr77 inclusion and intersection operators.

OPEC— NA Nevertheless, an interesting direction to improve the
NA — Gr77 efficiency of these methods can be to reduce the
MASC — Gr77 cardinal/size of the intermediate direct basis, which

OPEC Gr77 NA MASG— LLDC
OPEC Gr77 NA MASGC— ACP
OPEC Gr77 NA LLDC— MASC
OPEC Gr77 NA LLDC— ACP
OPEC NA LLDC— ACP

OPEC NA MASC LLDC— ACP

influences the cost of the second stage. Thus, our aim is to
design a new method which combines the best of these
two approaches: to work with IS so that we limit the
cardinal and size of the set of implications at any time and
to define new rules which reduce the number of
applications, avoiding a growth in the first step that have

OPEC Gr77 LLDC— ACP
OPEC NA LLDC— MASC
OPEC Gr77 LLDC— MASC
OPEC NA MASC— ACP
OPEC Gr77 MASC- ACP
OPEC NA MASC— LLDC
OPEC Gr77 MASC- LLDC
OPEC MASC LLDC— ACP
OPEC NA LLDC— Gr77

to be narrowed in the second stage with extra
computations.

In Table 2 we summarize the performance of the
methods presented iB][(for IS) and in ] (for UIS) over
Example5. This table indicates the cardinal and the size
of the implicational set at each stage of the method and
the number of applications of the rules throughout its
execution.

OPEC MASC— ACP

OPEC MASC— LLDC

OPEC LLDC— ACP 4 A new method to compute direct optimal

OPEC LLDC— MASC basis

OPEC LLDC— Gr77 '

OPEC NA MASC— Gr77 As stated above, working with UIS causes a growth in the
OPEC MASC— Gr77}

size of the implication sets. The design of new methods
admitting arbitrary 1S would provide a more compact
Srepresentation of these sets. Up to now, this way has
shown to be unsuccessful because of its bigger number of
applications of inference rules, which usually produce
redundant attributes in both sides of the new implication.
These superfluous attributes can be safely removed from
OPEC—s NA the .rig_ht-hand si_de avoiding, _in this way, extra
NA s Gr77 applications of the inference rules in the future. Let us see
MASC —s Gr77 an example to illustrate this situation:

OPEC, MASC— LLDC
OPEC, MASC— ACP

OPEC, LLDC— MASC
OPEC, LLDC— ACP} O MASC — Gr77

Notice that in this case, the intermediate direct basis i
smaller than that presented in Exam@i®r non-unit IS.

Now, [NaEq] is applied, rendering the unit
direct-optimal basis with 7 unitary implications.

540 = { OPEC— GI77

Example 8onsiderK from Exampleb. The second and
fifth implications are respectively:

Gr77 NA LLDC OPEC— MASC ACP

An analysis of the previous approaches provides a set Tpege implications satisfy the precondition of the

of interesting conclusions which guide the design of the; Over | ap] rule, after its application we obtain:
new method proposed in this paper. Although the use o

UIS causes a non trivial growth of the input set of
implications with respect to IS (from 5 to 8 in the cardinal
and from 19 to 28 in the size, for the casel§f), the S

method based on UIS shows a better performance. O”%,aeﬁig i\gn?i?]%“ecsatlgons of th&ver | ap] rule when the
reason is that the intermediate direct basis built after the '

first step is smaller in the UIS method than in the IS one  Our goal here is to design a new method that applies
(26 vs 31 in cardinal and 95 vs 144 in size). This is a keythe paradigm ofeductionin order to achieve a method
point in the efficiency of the method because the size ofworking with (not necessarily unitary) IS which,
the implicational set directly influences the performance,moreover, reduces the extra coupling of implications. To
in terms of the number of applications of the rules andthis end, we propose to work with reduced implications,
equivalences. Thus, the total number of applications is 5&vhich do not have redundant attributes in their right-hand
in the case of IS and 36 in the UIS method. This sides: Algorithm 1 has four main stages, each one
significant difference is due to the fact that unitary consisting of the transformation of a previous IS into an
implications have a smallgrossibilityto fit the conditions  equivalent one fulfilling some additional property.

NA LLDC OPEC MASC— MASC ACP
Notice that the MASC attribute is redundant and it will
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Table 2: Comparison of IS and UIS methods.

Algorithm from [3] to IS

[ J[Z0l ]| [Za] [[Zall || Num. Rules Applied|| [240| | Zqo |
5 19 31 144 57 5 15
Algorithm from [5] to UIS

[ J[Z0l ]| [Za] [[Zall || Num. Rules Applied|| [ 24| | Zqo |
8 28 26 95 36 8 20

Algorithm 1: DirectOptimalBasis

input : Animplicational systen® on S
output: The direct-optimal I 4,0nS

1 begin

2 /* Stage 1: Generation df; by reduction ofz*/

3 =0

4 foreachA —s Bdo

5 L if B¢Z AthenaddA — B-Ato 5;;

6 /* Stage 2: Generation dfs,; by simplification ofZ, */

7 Ssr=2r

8 repeat

9 foreachA — B € %5 do
10 foreachC — D € 25 do
11 if AC Cthen
12 if CC AUBthen
13 replaceA — B andC — D by

A— BDin Zg;
14 else ifD C B then
15 removeC — D from Zg;
16 else replaceC — D by
C-B— D-Bin Zg;

17 until s becomes a fix point

18 /* Stage 3: Generation dfys, by completion of2g*/

19 2dsr = Zsr

20 foreachA — B € Zysrand C— D € Zyg do
21 if BNC #0+# D~ (AUB) then

22 L | addAC-B — D-(AB) to Zgs

23 */Stage 4: Generation ¥y, by optimization ofy¢*/
24 Z4o=0

25 foreachA — B € 245 do

26 foreachC — D € >ygr do

27 if C=AthenB=BUD;

28 if C& AthenB=B~\D;

29 if B 0thenaddA — Bto Xyq;

30 return 240

Definition 7(Reduced 1S).An IS X is reducedff it does
not have any trivial implication and for all A» B € > we
have that B = 0.

Notice that this condition (i.e. being reduced) is a natural
one in the original specification of the problem, but the
inspiration of the method proposed in this paper is to
maintain intermediate ISs reduced at any time by means
of the application of inference rules which always
produce reduced implications.

The first stage of Algorithn (lines 2 to 5) transforms
an arbitrary IS into an equivalent and reduced one, just by
applying[FrEq] . The following definition introduces the
target IS for the second stage (see lines 6-17).

Definition 8(Simplified IS). An IS %, is simplifiedif the
following conditions hold: for all AB,C,D C M,

1.A— B,A— Ce X implies B=C.
2A—B,C—»DeXand Az CimplyChB=0=DnNB.

Theoreml provides three equivalencies which allow
to remove redundant information when reading from left
to right. The simplified implicational system is obtained
by applying these equivalences to remove redundant
information. More specifically, any IS can be transformed
into a simplified equivalent one by systematically
applying the simplification and composition equivalences
based onSL,, ([SiEq]+[CoEq]). If the application of
[SIEq] renders an implicatio’ — 0, it is removed from
the output. Notice that the fixpoint referenced in the
second stage of Algorithrhis reached because the IS are
finite and in each loop@t leastone attribute is removed;
furthermore, as in Algorithml this transformation is
applied to reduced IS, it always renders a simplified
reduced IS.

Theorem 2Let 2, be the IS obtained by using lines 6 to
17 of Algorithm1 on a reduced ISX,. ThenZg is a
simplified reduced IS equivalent k.

ProofThe loop in lines 8-17 always finishes because the
size of %, is finite and, in each step of the bucle, this size
decreases. Theorefhensures thats = ;. Moreover,

24 is simplified (Definition8) because it is a fixpoint for
the loop. Finally, %5, is reduced because these
equivalence rules preserve this featurel

In the third stage of Algorithni, > is transformed
into an equivalent direct reduced IS by exhaustively
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applying the following rulé?, calledstrong Simplification
rule,

A—BC—D

AC-B — D-(AB)
summarizing, lines 19-22 compute the smallestt}g;
fulfilling:

1.5 C 2ysr and

2.for all pair of implicationsA — B, C — D € Xyg
where BNC # 0 # D~ (AUB) we have that
AC-B — D-(AB) € Z4g-

In order to prove thakyg, is a direct reduced IS which
is equivalent toZg,, firstly the following lemma ensures
the soundness of the strong Simplification rule.

[ sSi np] ,BNC#£0#£D~ (AUB)

Lemma 1 Thestrong Simplification rule

A—B,C—D
AC-B— D-(AB)’

can be derived from Armstrong’s axioms.

[ sSi np] BNC+£0+#D~ (AUB)

ProofAssumeBNC # 0 # D~ (AUB). The following
sequence proves the soundnesgsi nmp] :

LA—=B. by hypothesis.
2B—=BNC.....iii by Ax]
33A—-BNC............. by 1., 2. anfTr ans]
4CB—=CB ... by Ax]
5.A(C-B) — (BNC)(C-B) .. by 3., 4. and Conp]
=A(C-B)—~C
6.C—D.. by hypothesis
7.ACB)—=D........... by 5., 6. anfiTr ans]
8D—=D-(AB) ..o by Ax]

9.A(C-B) — D-(AB)..by 7.,8.and Trans] [

The following theorem ensures that the &g

computed at stage 3 (after line 22) has the desired

properties.

Theorem 3Given a reduced ISZ,, the implicational
system>ysr computed by lines 19-22 is a direct reduced
IS which is equivalent tag;.

ProofBecause of Lemmal, we already have that
24sr = 2sr. Moreover, 24 is reduced sincd sSi np]

preserves this property. In order to prove the directness,

we will prove that, for all attribute seX, if y € X™ X
then there existX’ — Y’ € 4 such thatX’ C X and
yeY'.

Let >; be the set of all implications that can be derived
from Zs; by using the Armstrong’s axioms (the so-called
full implicational system) and leE; with 0 <i < p such
that

_ZO = stra

2 Notice that it is not necessary to put brackets to define the

order of the operations iAC-B because the corresponding IS

—foreach I<i < p, 5 = 5 _1U{X — Y} whereX; = Y;
is directly obtained fron>;_; by [ Ax], [ Augni or
[ Trans]

—andz, = 2.

Note thaty € X~ X if and only if there existX — Y € =,
withy e Y~ X.

We will prove inductively that, forall & i < p, if X —
Y € 5 withy € Y\ X then there existX’ — Y’ € 245 such
thatX’ C X andy € Y'. Thebase casés straightforward
because€y = 2.
Inductive stepFori > 1, assume the property is true for
i1, e . forallX =Y e 3 4, forally e Y X, there
existsX’ — Y’ € 34, such thatX’ C X andy € Y'. Let us
prove that the property is also true f&r— Y;:

—Case[ AX] : If Xi — Y is obtained by Ax] thenY; C
Xi,i.e.Yi \ X; =0, and the property is trivially satisfied.

—Case[ Augn :in this case, there exists > B € 5 1
such thatX;, = AUC andY; = BUC. If y € Y; \. X; then
y € BN A and, sinceA — B € 5; 1, by induction
hypothesis, there existd' — B’ € 345 such that
A CACAUC=X andycB'.

—Case[ Trans] : There existA - BB - C € 5 1
such thatX; = AYY; =C andy € C~ A Let us
consider the two sub-casgs B andy ¢ B.

-y € Bimpliesy € B\ A, and sincAA — B € 5_1:
by induction hypothesis there exigts— B’ € Sy
such that’ C A= X; andy € B'.

-y ¢ Bimpliesy € C~\ B, and sinceB — C € 5j_;:
by induction hypothesis there exi@s— C' € Ty
such thatB’ C Bandy € C'. If B C A= X the
property trivially holds. Otherwise, iB' Z A, let
us writeB'~ A= {yx | 1 <k < q}. SinceB' CB:
Yk € BN A, and sinceA — B € Z;_1: by induction
hypothesis there exig} implicationsAy — By €
2gsr such thatd, C A andyy € By. Therefore:

B~AC |J BcandB CAU [J By
1<k<q 1<k<q

The [ sSi np] rule is now used to build an
implication whose premise is included infoand

y belongs to its conclusion. Let us consider the
two sub-casep € U1 <x<qBk andy € Ui <i<q Bk

olf y € U<k<qBk then there exist& € [1,q] such
that y € By, so Ax — By € >4g satisfies the
property.

olf v ¢ Ui<k<qBk, then the implication we are
searching is the last element of a sequence of
implications A, — C, € Xjs obtained by
iteratively applying [ sSi np] to implications
A — Bk € Zgsr.

-Base casewe defineA] — C| € Xy as the result
of [ sSi np] applied toA; — B;,B' — C' € 4
(note thaty; € BinNB so BiNB # 0 and
[ sSi np] can be applied), s&; = A1 UB' \ B;

is reduced: ifACNB # 0 only CN B # 0 holds, so(AC)-B and and C; = C' ~ (A1 U By) (note that
A(C-B) are equal. yeCl:yeC .y¢gA CAYy¢ZBy).
(@© 2015 NSP
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-Inductive casefor i < k < g, we defineA} —Cj €
S4r as:
1.the result off sSi np] applied toAx — By € 24
andA,_; - C_, € 34 if BcNA_; # 0, sOA, =
AkUA{(_l ~ Bk andC{< = CI/<—1 N (BkUAk).
2A_, — C_, € 24 otherwise, soA, = A, and
G=C 1
To prove thatA(q C A, we will prove, again by induction on
ke [1,q), that
k<j<q
—Base casefor k = 1, we haveA] = Ay U (B'\ By)
S0A; € AUUs<j<gp; directly follows fromB' € AU
—Inductive case:Fork > 1, the induction hypothesis is

A 1CAU ) B;

k—1<j<q

moreover the computation ofy depends on the
emptiness oByNA, ;.
—f BcNA_; =0, then

A C((AU |J Bj~B
k-1<j<q
moreoverA, = A, ;. So we directly obtaiA, C
AUUk<j<qBi
—If BcNA,_; # 0, thenAl_; \ B C AUUy.j<Bj.
MoreoverA, = A U (A_; ~ Bx) and since, C A,
ge also obtaily, C AUUyj<qB;-

We finally obtain
AyCAU |J BjCA
a<ij<q

andA; — C' € 2 satisfies the property (sinée= X and
y € C'). Thus the property is proved.0

This section concludes with results ensuring that th
output of Algorithm 1 is an equivalent direct-optimal

implicational system.

Lemma 2Let 24 be a direct-reduced IS angy, be the
IS obtained fron®yg, by using lines 24—-29 in Algorithth

ThenZy, is a direct-reduced simplified IS equivalent to

str-

Prooflt is easy to check that the transformation given by
lines 24-29 preserves equivalence, directness and beir}ge
composition

reduced. Since fragmentation and
equivalences have been applied, tixgg is also reduced,
andA — B,A — C € X4, implies B = C (case 1 of the
definition of being simplified).

To prove thath — B,C —D,ACCimplyCNnB=0=

DN B (case 2 of the definition of being simplified), let us

observe that:

€,

1CnNB = 0: trivial from C c AandANB =0 by the
reduction property.

2D N B = 0: trivial from the optimization equivalence
[ OpEq] . If DNB# 0, thenA — Bis replaced byA —
B — AD, thus a contradiction with — B € 2.

3IfA—-BC—DeX>withAcCandCNnB#0+£DNB
then> \ {C — D}U{C-B — D-B} is also a direct-
reduced IS equivalent td of smaller size. O

The following theorem provided in3[ allows us to
conclude this section with Theorebnwhich ensures that
Algorithm 1 returns the only direct-optimal base
equivalent to the original one.

Theorem 4( [3]). A direct ISX is direct-optimal iff:

—(extensiveness): forall ABe ~, ANB=10

—(isotony): for all A— B,C — D € %, if C C A then
BND=0.

—(premise): forall A~ B,A— B €%,B=B.

—(non-empty conclusion): forall AB € >, B# 0.

Theorem 5Let 2 be an implicational system on M and
let 240 be the IS output by Algorithrh. Then,Zy, is the
direct-optimal implicational system equivalentIo

Proof From Theorem< and 3 and Lemma2, >4, is a
direct-reduced simplified IS equivalent 2o SinceXy, is
reduced, extensiveness and non-emptiness of the
conclusion hold. Moreover, since it is simplified, isotony
and premise also hold. Finally, Theoretrensures that
2o IS the direct-optimal base equivalentfo 0O

5 The direct-optimal method in action

In this section, the execution of the method is shown on
an illustrative example and, then, we present the initial
results of our experimental evaluation in order to obtain
the conclusions on its performance in practice.

Example 9n this example, the execution of the method is
carried out step by step rendering a direct-optimal basis fo
the IS in Examplé:

2 ={ OPEC— Gr77 NA,
MASC — Gr77
NA — Gr77
Gr77 NA MASC OPEGC— LLDC ACP
Gr77 NA LLDC OPEC— MASC ACP}

In the first and second stages, Algoritintalculates
following equivalent simplified-reduced B3;:

NA — Gr77

MASC — Gr77

LLDC OPEC— MASC
MASC OPEC— ACP LLDC}
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The third stage renders the following implemented in SWI-Prolod. The input are sets of
direct-simplified-reduced 1S4 equivalent to>s,. Note  implications randomly generated, increasing their size
that this set of implications is smaller (in size) than thoseuntil the limits of the algorithms are reached.
built with the previous methods. The cardinal of the direct ~ Table 3 summarizes the results of a number of
IS is 8 whereas in the previous methods we obtained aperations that makes the algorithm to compute the
cardinal of 26 and 31 for UIS and IS respectively (seedirect-optimal basis in these experiments.

Table?2). For each method, there are three columns showing the
following information: the first one represent the number
Z4sr = { OPEC— NA of logical inferences per second (lips) often used to
NA — Gr77 describe the performance of a logical reasoning system:;
MASC — Gr77

the second one is the execution time in seconds; and the
third column stores the number of couples of implications
in which a rule is applied.

LLDC OPEC— MASC
MASC OPEC— ACP LLDC

SFDECCSPCEZL Gr77 The name of each example encloses the number of
LLDC OPEC—s ACP} implications and a serial number for unique identification

; €.9. E1Q9 correspond to the experiment #9, having 10

Although it is not strictly required by the method, by imPplications. Table3 shows that experiments with 15
applying[ sSi np] rule, we achieve an extra reduction in implications saturate machine resources for the previous
the size of the IS|| Sger [|= 21. Notice that it is smaller Methods. In all three parameters, the method proposed in
than the size of the direct UIS and IS obtained with this paper obtains much better results.
previous methods, which were 95 and 144 respectively.

In the last stage of our method the direct-optimal basis

Sdois obtained fromSys: 6 Conclusions
540 = { OPEC— NA Gr77 In this work we have presented a new method to compute
NA — Gr77 the direct-optimal basis in a way more efficient than
MASC — Gr77 previous methods published in the literature. The
LLDC OPEC— MASC ACP efficiency of the method is illustrated through a first
MASC OPEC— ACP LLDC} experiment in which we compare the three methods.

, o Currently, we are conducting a more exhaustive
Regarding the number of rules applied, it is worth t0 o mparison with a random generator of implications and
remark that the new method does not need to applyormal contexts. Moreover, we will implement our

reduction at the end telean the basis, because all the ethod in Java using the lattice library provided by Bertet
stages preserve reduction and the direct-optimal basis i, the GitHub platform, in order to further compare the
already reduced. In the second stage, it applies four timeg,rce methods.

the[SiEq] equivalence to geZs and[ sSi np] rule just We are working in new methods to compute the
once in the third step. In this example, it is not necessaryyjrect-optimal basis by trying to take extra advantages of
to apply the last loop because in the previous one Wene huge number of algebraic-logical results already
already obtained the direct-optimal bagig,. The total | hown about implications. As future work, we are
number of rules which have been applied is 5 whereas inyanning to use theSL,, paradigm for the study of
the previous methods 57 and 36 rules were necessary foftomated methods to compute other types of basis, for
IS and UIS, respectively. O instance, Duguenne-Guigues, ordered-direct, etc.

In summary, the new method improves all the
previously published ones and, moreover, the key point isA
the following: it begins by reducing the implications and

ensures that reduction is preserved at any time dealing,, .
. artially supported by Grants TIN2011-28084 and TIN12-
with smaller IS than any other method based on UIS. lt39353 -04-010f the Science and Innovation Ministry of

also narrows the input by usin@iEq], an equivalence : } :
based onSL,,, and by adding less implications to Eﬁgan&é:g[f;::r;ded by the European Regional Development

compute the intermediate direct IS by us[ngSi np] .
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