
Appl. Math. Inf. Sci. Lett.3, No. 3, 103-108 (2015) 103

Applied Mathematics & Information Sciences Letters
An International Journal

http://dx.doi.org/10.12785/amisl/030303

On the Maximal Number of Monochrome Nodes in the
Dichromatic Balanced Trees
Daxin Zhu 1, Xiaodong Wang2,∗ and Jun Tian3

1 Faculty of Mathematics & Computer Science, Quanzhou NormalUniversity, 362000 Quanzhou, China
2 Fujian University of Technology, 350108 Fuzhou , China
3 Fujian Medical University, 350004 Fuzhou , China

Received: 31 Mar. 2015, Revised: 25 Jun. 2015, Accepted: 26 Jun. 2015
Published online: 1 Sep. 2015

Abstract: In this paper, we investigate the number of nodes of same color in dichromatic balanced trees. We first present a dynamic
programming algorithm for computing the maximum number of red internal nodes in a dichromatic balanced trees onn keys in
O(n2 logn) time. Then the time complexity is improved toO(n). Finally, we can present anO(n) time algorithm using onlyO(logn)
space based on the special structure of the solution.

Keywords: dichromatic balanced trees, colored internal nodes, dynamic programming, time complexity

1 Introduction

The red-black tree is a data structure which was invented
originally in 1972 by Rudolf Bayer[2] with the name
’symmetric binary B-tree’. It is a special kind of binary
tree, which can be used in computer science for
organizing the comparable data, such as numbers or
strings. In his paper ’A Dichromatic Framework for
Balanced Trees’, Sedgewick and Guibas named the data
structure red-black tree in 1978, [4]. In their paper, the
red/black color convention and the properties of their
trees at length were introduced. A simpler-to-code variant
of the data structure was presented by Andersson [1].
This variant of red-black tree was called AA-trees[7]. An
AA-tree is very similar to the red-black tree presented
previously except that in an AA-tree, its left children may
not be red. Sedgewick introduced a more simpler version
of the red-black like tree he called it the left-leaning
red-black tree[5] in 2008. In the new tree, an unspecified
degree of freedom are eliminated in the implementation.
In this paper, we can see that for any sequence of
operations, the red-black tree can be isometric to either a
2-3 tree or a 2-4 tree,[5].

A red-black tree can be defined as follows. It is a kind
of binary search tree with colors. In a node of the red-black
tree, one extra bit of storage ie reserved for its color, the

color can be either black or red. A red-black tree satisfies
the following properties called the red-black properties[5]:

(1) The color of a node can be either red or black.
(2) The color of root is black.
(3) The color for all leaves are black.
(4) The color of the child nodes for every red node

must be black.
(5) The number of black nodes on every path of the tree

from a given node to its descendant leaves are the same.
The number of black nodes on any simple path from,

but not including, a nodex down to a leaf is called the
black-height of the node, denotedbh(x). By the property
(5),the notion of black-height is well defined, since all
descending simple paths from the node have the same
number of black nodes. The black-height of a red-black
tree is defined to be the black-height of its root.

The property (2) is sometimes omitted in practice.
Since the root can always be changed from red to black,
but not necessarily vice-versa, this property has little
effect on analysis. A binary search tree that satisfies
red-black properties (1), (3), (4), and (5) is sometimes
called a relaxed red-black tree. In this paper we will
discuss the relaxed red-black tree and call a relaxed
red-black tree a red-black tree.

We are interested in the number of red nodes in
red-black trees in this paper. We will investigate the
problem that in a red-black tree onn keys, what is the

∗ Corresponding author e-mail:wangxd@fjut.edu.cn

c© 2015 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amisl/030303
wangxd@fjut.edu.cn


104 D. Zhu et al. : On the Maximal Number of Monochrome Nodes...

largest possible ratio of red internal nodes to black
internal nodes, and what is the smallest possible ratio.

The organization of the paper is as follows. In the
following 3 sections, we describe our presented algorithm
for computing the largest number of red internal nodes in
a red-black tree onn keys. In section 2, we present a
dynamic programming algorithm for the problem. We
then improve the algorithm to a newO(n) time algorithm
in section 3. Based on the structure of the solution we
finally come to anO(n) time recursive algorithm using
only O(logn) space. Some concluding remarks are in
section 4.

2 An O(n2 logn) time algorithm

2.1 Some formulas for easy cases

Let T be a red-black tree onn keys. The largest and the
smallest number of red internal nodes in a red-black tree
on n keys can be denoted asr(n) and s(n) respectively.
The values ofr(n) ands(n) can be easily observed for the
special case ofn = 2k−1 . It is obvious that in this case,
when the node colors are alternately red and black from
the bottom level to the top level ofT , the number of red
internal nodes ofT must be maximal. When all of its
internal nodes are black, the number of red internal nodes
of T must be minimal. Therefore, in the case of
n = 2k−1, we have,

r(n) = r(2k−1) =
⌊(k−1)/2⌋

∑
i=0

2k−2i−1 = 2k−1
⌊(k−1)/2⌋

∑
i=0

1
4i

=
2k−1

3

(

4−
1

4⌊(k−1)/2⌋

)

=
2k+1−2k−1−2⌊(k−1)/2⌋

3

=
2k+1−2(k−1) mod 2

3
=

2k+1−2+ k mod 2
3

=
2(2k−1)+ k mod 2

3
=

2n+ log(n+1) mod 2
3

Then, the number of black nodesb(n) must be,

b(n) = n− r(n)

= n−
2n+ log(n+1) mod 2

3

=
n− log(n+1) mod 2

3
Therefore, the ratio of red internal nodes to black

internal nodes is,

r(n)/b(n) =
2n+ log(n+1) mod 2
n− log(n+1) mod 2

If k mod 2 = 0, then r(n)/b(n) = 2, otherwise
k mod 2= 1, r(n)/b(n) = 2n+1

n−1 .
It follows that for anyk, if n= 2k−1, thenr(n)/b(n)≤

2n+1
n−1 .

Notice that, d
dx

(2x+1
x−1

)

=− 3
(x−1)2

< 0, and lim
n→∞

2n+1
n−1 =

2, the values of2n+1
n−1 decrease monotonically to 2. In the

special case ofk = 3, r(n)/b(n) = 2n+1
n−1 gets its maximal

value of 5/2= 2.5. Therefore, we have,

0≤ r(n)/b(n)≤
2n+1
n−1

≤ 2.5

This formula can also be generalized to generaln.
In the general cases, denote the largest number of red

internal nodes in a red-black tree onn keys beγ(n,0) if
root red andγ(n,1) if root black respectively. Then,
r(n) = max{γ(n,0),γ(n,1)}. We can prove by induction
thatγ(n,0)≤ 2n+1

3 andγ(n,1)≤ 2n
3 . It follows that

r(n)≤max

{

2n+1
3

,
2n
3

}

=
2n+1

3

Therefore, forn≥ 7, we have

0≤
r(n)

n− r(n)
≤

2n+1
3

n− 2n+1
3

=
2n+1
n−1

≤ 2.5

2.2 O(n2 logn) time dynamic programming
solution

In the general cases, we denote the largest number of red
internal nodes in a subtree of sizei and black-heightj to
be a(i, j,0) when its root red anda(i, j,1) when its root
black respectively. Since in a red-black tree onn keys we
have1

2 logn≤ j ≤ 2logn, we have,

γ(n,k) = max
1
2 logn≤ j≤2 logn

a(n, j,k) (1)

Furthermore, for any 1≤ i≤ n, 1
2 logi≤ j≤ 2logi, we

can denote,































α1(i, j) = max
0≤t≤i/2

{a(t, j−1,1)+ a(i− t−1, j−1,1)}

α2(i, j) = max
0≤t≤i/2

{a(t, j,0)+ a(i− t−1, j,0)}

α3(i, j) = max
0≤t≤i/2

{a(t, j−1,1)+ a(i− t−1, j,0)}

α4(i, j) = max
0≤t≤i/2

{a(t, j,0)+ a(i− t−1, j−1,1)}

(2)

Theorem 1For each 1 ≤ i ≤ n, 1
2 logi ≤ j ≤ 2logi, the

values of a(i, j,0) and a(i, j,1) can be computed by the
following dynamic programming formula.

{

a(i, j,0) = 1+α1(i, j)
a(i, j,1) = max{α1(i, j),α2(i, j),α3(i, j),α4(i, j)}

(3)
Proof.

c© 2015 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. Lett.3, No. 3, 103-108 (2015) /www.naturalspublishing.com/Journals.asp 105

For each 1≤ i≤ n, 1
2 logi≤ j ≤ 2logi, let T (i, j,0) be

a red-black tree oni keys and black-heightj with the
largest number of red internal nodes, when its root red.
T (i, j,1) can be defined similarly when its root black. The
red internal nodes ofT (i, j,0) and T (i, j,1) must be
a(i, j,0) anda(i, j,1) respectively.

(1) We first look atT (i, j,0). Since its root is red, its
two sons must be black, and thus the black-height of the
corresponding subtreesL andR must be bothj− 1. For
each 0 ≤ t ≤ i/2, subtrees T (t, j − 1,1) and
T (i− t − 1, j− 1,1) connected to a red node will be a
red-black tree oni keys and black-heightj. Its number of
red internal nodes must be
1+ a(t, j − 1,1) + a(i − t − 1, j − 1,1). In such trees,
T (i, j,0) achieves the maximal number of red internal
nodes. Therefore, we have,

a(i, j,0)≥ max
0≤t≤i/2

{1+a(t, j−1,1)+a(i− t−1, j−1,1)}

(4)
On the other hand, we can assume the sizes of subtrees

L and R are t and i− t − 1, 0≤ t ≤ i/2, WLOG. If we
denote the number of red internal nodes inL andR to be
r(L) andr(R), then we have thatr(L) ≤ a(t, j−1,1) and
r(R)≤ a(i− t−1, j−1,1). Thus we have,

a(i, j,0)≤ 1+ max
0≤t≤i/2

{a(t, j−1,1)+a(i− t−1, j−1,1)}

(5)
Combining (4) and (5), we obtain,

a(i, j,0) = 1+ max
0≤t≤i/2

{a(t, j−1,1)+a(i− t−1, j−1,1)}

(6)
(2) We now look atT (i, j,1). Since its root is black,

there can be 4 cases of its two sons such as red and red,
black and black, black and red or red and black. If the
subtreeL or R has a red root, then the black-height of the
corresponding subtree must bej, otherwise, if its root is
black, then the black-height of the subtree must bej−1.

In the first case, both of the subtreesL andR have a
black root. For each 0≤ t ≤ i/2, subtreesT (t, j−1,1) and
T (i− t − 1, j− 1,1) connected to a black node will be a
red-black tree oni keys and black-heightj. Its number of
red internal nodes must bea(t, j− 1,1)+ a(i− t −1, j−
1,1). In such trees,T (i, j,1) achieves the maximal number
of red internal nodes. Therefore, we have,

a(i, j,1)≥ max
0≤t≤i/2

{a(t, j−1,1)+a(i−t−1, j−1,1)}=α1(i, j)

(7)
For the other three cases, we can conclude similarly

that

a(i, j,1)≥ max
0≤t≤i/2

{a(t, j,0)+ a(i− t−1, j,0)}= α2(i, j)

(8)

a(i, j,1)≥ max
0≤t≤i/2

{a(t, j−1,1)+a(i−t−1, j,0)}=α3(i, j)

(9)

a(i, j,1)≥ max
0≤t≤i/2

{a(t, j,0)+a(i−t−1, j−1,1)}=α4(i, j)

(10)
Therefore, we have,

a(i, j,1)≥max{α1(i, j),α2(i, j),α3(i, j),α4(i, j)} (11)

On the other hand, we can assume the sizes of subtrees
L and R are t and i− t − 1, 0≤ t ≤ i/2, WLOG. In the
first case, if we denote the number of red internal nodes
in L andR to ber(L) andr(R), then we have thatr(L) ≤
a(t, j−1,1) andr(R) ≤ a(i− t−1, j−1,1), and thus we
have,

a(i, j,1)≤ max
0≤t≤i/2

{a(t, j−1,1)+a(i−t−1, j−1,1)}=α1(i, j)

(12)
For the other three cases, we can conclude similarly

that

a(i, j,1)≤ max
0≤t≤i/2

{a(t, j,0)+ a(i− t−1, j,0)}= α2(i, j)

(13)

a(i, j,1)≤ max
0≤t≤i/2

{a(t, j−1,1)+a(i−t−1, j,0)}=α3(i, j)

(14)

a(i, j,1)≤ max
0≤t≤i/2

{a(t, j,0)+a(i−t−1, j−1,1)}=α4(i, j)

(15)
Therefore, we have,

a(i, j,1)≤max{α1(i, j),α2(i, j),α3(i, j),α4(i, j)} (16)

Combining (11) and (16), we obtain,

a(i, j,1) = max{α1(i, j),α2(i, j),α3(i, j),α4(i, j)} (17)

The proof is complete.�
According to Theorem1, our algorithm for computing

a(i, j,k) is a standard 2-dimensional dynamic
programming algorithm. By the recursive formula (2) and
(3), the dynamic programming algorithm for computing
the largest number of red internal nodes in a red-black
tree on n keys can be implemented as the following
Algorithm 1.

It is obvious that the Algorithm 1 requiresO(n2 logn)
time andO(n logn) space.

The algorithm for computings(n), the smallest
number of red nodes in a red-black tree onn keys can be
built similarly.

3 An improved O(n) time recursive algorithm

We have computedr(n) and the corresponding red-black
trees using Algorithm 1. We can list some pictures of the
computed red-black trees with largest number of red

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


106 D. Zhu et al. : On the Maximal Number of Monochrome Nodes...

Algorithm 1 r(n)
Input: Integern, the number of keys in a red-black tree
Output: r(n), the largest number of red nodes in a red-black tree
on n keys
1: for all i, j,k , 0≤ i≤ n,0≤ j ≤ 2logn, and 0≤ k ≤ 1 do
2: a(i, j,k)← 0
3: end for
4: a(1,1,0) ← a(2,1,1) ← a(3,2,0) ← 1;a(3,1,1) ← 2

{boundary condition}
5: for i = 4 to n do
6: for j = 1

2 logi to 2logi do
7: α1← max

0≤t≤i/2
{a(t, j−1,1)+a(i− t −1, j−1,1)}

8: α2← max
0≤t≤i/2

{a(t, j,0)+a(i− t −1, j,0)}

9: α3← max
0≤t≤i/2

{a(t, j−1,1)+a(i− t −1, j,0)}

10: α4← max
0≤t≤i/2

{a(t, j,0)+a(i− t −1, j−1,1)}

11: a(i, j,0)←max{1+α1,a(i, j,0)}
12: a(i, j,1)←max{α1,α2,α3,α4,a(i, j,1)}
13: end for
14: end for
15: return max

0≤k≤1
1
2 logn≤ j≤2logn

{a(n, j,k)}

nodes. From these pictures of the red-black trees with
largest number of red nodes in various size, we can
observe some properties ofr(n) and the corresponding
red-black trees as follows.

(1) The red-black tree onn keys with r(n) red nodes
can be realized in a complete binary search tree, called a
maximal red-black tree.

(2) In a maximal red-black tree, the colors of the nodes
on the left spine are alternatively red, black,· · · , from the
bottom to the top, and thus the black-height of the red-
black tree must be12 logn.

From these observations, we can improve the dynamic
programming formula of Theorem 1 further. The first
improvement can be made by the observation (2). Since
the black-height of the maximal red-black tree oni keys
must be 1+ 1

2 logi, the loop bodies of the Algorithm 1 for
j can be restricted toj = 1

2 logi to 1+ 1
2 logi, and thus the

time complexity of the dynamic programming algorithm
can be reduced immediately toO(n2) as follows.

It is readily seen from observation (1) that every
subtree in a maximal red-black tree must be a complete
binary search tree. If the size of a complete binary search
treeT is n, then the size of its left subtree must be

le f t(n) = 2⌊logn⌋−1−1+min{2⌊logn⌋−1,n−2⌊logn⌋+1}

and the size of its right subtree must be

right(n) = n− le f t(n)−1

Therefore, the maximal range 0≤ t ≤ i/2 of the
Algorithm 2 can be restricted tot = le f t(i), and thus the
time complexity of the dynamic programming algorithm
can be reduced further toO(n) as follows.

Algorithm 2 r(n)
Input: Integern, the number of keys in a red-black tree
Output: r(n), the largest number of red nodes in a red-black tree
on n keys
1: for all i, j,k , 0≤ i≤ n,0≤ j ≤ 2logn, and 0≤ k ≤ 1 do
2: a(i, j,k)← 0
3: end for
4: a(1,1,0) ← a(2,1,1) ← a(3,2,0) ← 1;a(3,1,1) ← 2

{boundary condition}
5: for i = 4 to n do
6: for j = 1

2 logi to 1+ 1
2 logi do

7: α1← max
0≤t≤i/2

{a(t, j−1,1)+a(i− t −1, j−1,1)}

8: α2← max
0≤t≤i/2

{a(t, j,0)+a(i− t −1, j,0)}

9: α3← max
0≤t≤i/2

{a(t, j−1,1)+a(i− t −1, j,0)}

10: α4← max
0≤t≤i/2

{a(t, j,0)+a(i− t −1, j−1,1)}

11: a(i, j,0)←max{1+α1,a(i, j,0)}
12: a(i, j,1)←max{α1,α2,α3,α4,a(i, j,1)}
13: end for
14: end for
15: return max

0≤k≤1
1
2 logn≤ j≤1+ 1

2 logn

{a(n, j,k)}

Algorithm 3 r(n)
Input: Integern, the number of keys in a red-black tree
Output: r(n), the largest number of red nodes in a red-black tree
on n keys
1: for all i, j,k , 0≤ i≤ n,0≤ j ≤ 2logn, and 0≤ k ≤ 1 do
2: a(i, j,k)← 0
3: end for
4: a(1,1,0) ← a(2,1,1) ← a(3,2,0) ← 1;a(3,1,1) ← 2

{boundary condition}
5: for i = 4 to n do
6: t← 2⌊logi⌋−1−1+min{2⌊logi⌋−1, i−2⌊logi⌋+1}
7: for j = 1

2 logi to 1+ 1
2 logi do

8: α1← a(t, j−1,1)+a(i− t −1, j−1,1)
9: α2← a(t, j,0)+a(i− t −1, j,0)

10: α3← a(t, j−1,1)+a(i− t −1, j,0)
11: α4← a(t, j,0)+a(i− t −1, j−1,1)
12: a(i, j,0)←max{1+α1,a(i, j,0)}
13: a(i, j,1)←max{α1,α2,α3,α4,a(i, j,1)}
14: end for
15: end for
16: return max

0≤k≤1
1
2 logn≤ j≤1+ 1

2 logn

{a(n, j,k)}

The time complexity of Algorithm 3 is reduced
substantially to O(n), but the space costs remain
unchanged. In the insight of above observations (1) and
(2), we can build another efficient algorithm to compute
r(n) using onlyO(logn) space as follows.

Theorem 2Let n be the number of keys in a red-black tree,
and r(n) be the largest number of red nodes in a red-black

c© 2015 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. Lett.3, No. 3, 103-108 (2015) /www.naturalspublishing.com/Journals.asp 107

d(m) =







h(m) h(m)≤ 1
1+d(4m)+d(4m+1)+d(4m+2)+d(4m+3) h(m) mod 2= 1
d(2m)+d(2m+1) h(m) mod 2= 0

(18)

where

h(m) =

{

1+⌊logn⌋−⌊logm⌋ m
2⌊logn⌋−⌊logm⌋ ≤ n

⌊logn⌋−⌊logm⌋ otherwise
(19)

tree on n keys. The values of r(n) = d(1) can be computed
by the following recursive formula.

Proof.
In a maximal red-black tree, we can label the nodes as

a pre-order sequence like a heap. The root is labeled 1.
For each nodei in the tree, its left child is labeled 2i and
its right child is labeled 2i + 1. If we denoted(i), the
largest number of red nodes andh(i), the height of the
subtree rooted at nodei, then it is obvious that
r(n) = d(1). It is not difficult to verify that in the case of

i
2⌊logn⌋−⌊logi⌋ > n, we have h(i) = ⌊logn⌋ − ⌊logi⌋,
otherwise,h(i) = 1+ ⌊logn⌋−⌊logi⌋.

It can be verified directly that ifh(i) ≤ 1, thend(i) =
h(i).

It follows from observation (2) that ifh(i) is even then
nodei is red and its left and right subtrees rooted at nodes
2i and 2i+ 1 are both maximal red-black trees of black
root. In the case ofh(i) odd, the nodei is black and its
four grand children rooted at nodes 4i, 4i+ 1, 4i+ 2 and
4i+3 are all maximal red-black trees. Therefore, we can
conclude that in the case ofh(i)> 1,

d(i)=







1+ d(4i)+ d(4i+1)+d(4i+2)+
d(4i+3) h(i) odd
d(2i)+ d(2i+1) h(i) even

The proof is complete.�
According to Theorem2, a new recursive algorithm

for computing the largest number of red internal nodes in
a red-black tree onn keys can be implemented as the
following Algorithm 4.

Algorithm 4 d(m)

Input: Integern, the number of keys in a red-black tree
Output: d(m), the largest number of red nodes in a subtree
rooted on nodem
1: if h(m)≤ 1 then
2: return h(m)
3: else if h(m) mod 2= 1 then
4: return 1+d(4m)+d(4m+1)+d(4m+2)+d(4m+3)
5: else
6: return d(2m)+d(2m+1)
7: end if

Since the algorithm visit each node at most once, the
time cost of the algorithm is thusO(n). The space used

by the algorithm is only the stack space requirement of
recursive calls. The recursive depth is at most logn, and
therefore the space cost of the algorithm isO(logn).

4 Concluding remarks

We have suggested a new dynamic programming solution
for computing the maximum number of red internal nodes
in a dichromatic balanced trees onn keys. The new
dynamic programming algorithm requiresO(n2 logn)
time andO(n logn) space. We then improve the algorithm
to a newO(n) time algorithm. Based on the structure of
the solution we finally come to anO(n) time recursive
algorithm using onlyO(logn) space.

The smallest number of red internal nodes in a red-
black tree onn keys will have similar properties. We will
study the problem further.

References

[1] Arne Andersson, Balanced search treesmade simple, In
Proceedings of the Third Workshop on Algorithms and Data
Structures, vol. 709 of Lecture Notes in Computer Science,
1993, pp. 60-71.

[2] R. Bayer, Symmetric binary B-trees: Data structure and
maintenance algorithms,Acta Informatica, 1(4), 1972, pp.
290-306.

[3] Cormen T.H., Leiserson C.E., Rivest R.L., Stein C.,
Introduction to algorithms, 3rd ed., MIT Press, Cambridge,
MA, 2009.

[4] Leo J. Guibas and Robert Sedgewick, A dichromatic
framework for balanced trees, InProceedings of the 19th
Annual Symposium on Foundations of Computer Science,
1978, pp. 8-21.

[5] Robert Sedgewick, Left-leaning RedCBlack Trees,
http://www.cs.princeton.edu/ rs/talks/LLRB/LLRB.pdf

[6] Henry S. Warren,Hacker’s Delight, Addison-Wesley, second
edition, 2002.

[7] Mark Allen Weiss, Data Structures and Problem Solving
Using C++, Addison-Wesley, second edition, 2000.

[8] Shyu S.J., Tsai C.Y., Finding the longest common
subsequence for multiple biological sequences by ant colony
optimization,Comput Oper Res 36(1), 2009, pp. 73-91.

[9] Tang C.Y., Lu C.L., Constrained multiple sequence alignment
tool development and its application to RNase family
alignment,J Bioinform Comput Biol 1, 2003, pp. 267-287.

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


108 D. Zhu et al. : On the Maximal Number of Monochrome Nodes...

[10] Tsai Y.T., The constrained longest common subsequence
problem,Inform Process Lett 88(4), 2003, pp. 173-176.

Daxin Zhu received
his M.Sc. degree in Computer
Science from Huaqiao
University of China in
2003. He is now an associate
professor in Quanzhou
Normal University of China.
His current research interests
include design and analysis
of algorithms, network

architecture and data intensive computing.

Xiaodong Wang
is currently a professor
in Computer Science
Department of Quanzhou
Normal University and
Fuzhou University,China.
Has experience in
computer science and applied
mathematics. The areas
of interest are design and

analysis of algorithms,exponential-time algorithms for
NP-hard problems,strategy game programming.

c© 2015 NSP
Natural Sciences Publishing Cor.


	Introduction
	An O(n2logn) time algorithm
	An improved O(n) time recursive algorithm
	Concluding remarks

