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Abstract: In this paper, the frequencies estimation of two-dimensional (2-D) superimposed exponential model in zero-mean
multiplicative and additive noise which is stationary, is considered by a computationally efficient statistics based iterative algorithm.
The model we considered is a more general evanescent part of stationary random field as well as an important model in statistical signal
processing and texture classifications. It is observed that the estimator isconsistent and works quite well in terms of biases and mean
squared errors. Moreover, the asymptotic distribution of the estimators for the frequencies is multivariate normal and the estimators
attain the same convergence rate as the Least Squares Estimator (LSE) inadditive noise. Finally, the effectiveness of the algorithm and
the asymptotic results of the estimators for finite sample is verified via some numerical experiments.
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1. Introduction

We consider the following 2-D superimposed exponential
model in zero-mean stationary multiplicative and additive
noise:

x(m,n) =
p

∑
k=1

βk(m,n)ei(ukm+vkn+φk)+ γ(m,n), (1)

where {x(m,n), m = 1,2, . . . ,M, n = 1,2, . . . ,N} are
observed values,i =

√
−1, {uk,vk} is the unknown 2-D

frequency pair and both of the frequencies lie in[0,2π).
φk ∈ [0,2π) is the unknown phase. Multiplicative noise
{βk(m,n)} and additive noise {γ(m,n)} are both
stationary real random variables as follows:

βk(m,n) =
+∞

∑
s=−∞

+∞

∑
l=−∞

ak(s, l)εk(m−s,n− l), (2)

γ(m,n) =
+∞

∑
s=−∞

+∞

∑
l=−∞

a0(s, l)ε0(m−s,n− l), (3)

where the driving processes{εk(m,n)(k = 0,1, · · · , p)}
are all independent identically distribution (i.i.d.) random
variables with mean zero and varianceσ2

k . The
coefficients{ak(s, l)}(k = 0,1, · · · , p) are all absolutely
summable i.e.

+∞

∑
s=−∞

+∞

∑
l=−∞

|ak(s, l)|<+∞. (4)

In this paper, we concentrate on the estimation of the
frequencies(uk,vk), given a sample of sizeM and N,
namelyx(1,1), . . . ,x(M,N). The number of components
p is assumed to be known in advance. We make the
following assumptions:

(i)The driving process of multiplicative and additive
noise i.e.{εk(m,n)}(k> 0) and{ε0(m,n)} have finite
fourth order moment and they are independent with
each other;

(ii)The frequency pairs satisfy:(u j ,v j) 6= (uk,vk), (u j ,v j)
6= 2(uk,vk), (uk+ul ,vk+vl ) 6= (2u j ,2v j) for different
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k, j, l ;

(iii)0 < limsupmin{M,N}→+∞ M/N <+∞.

It can be seen from assumption (i) that the multiplicative
noise and additive noise are independent. It is also noted
that the assumption (ii) is some critical, however, it can be
relaxed (see Remark 1). If assumption (ii) is not satisfied,
the proposed algorithm is still feasible, but the asymptotic
distribution of the estimator for frequencies will be
changed accordingly.

Estimation of 2-D frequencies from a finite subset of
data in noise is an important problem in many practical
applications, such as joint frequency-angle estimation,
2-D spectral estimation, geophysics, radar imaging and
texture classifications [1,2]. In practical the noise tends to
be color [3,4] which make the estimation for the
parameter to be more difficult. The parameter estimation
of 2-D superimposed exponential model in zero-mean
multiplicative and additive noise is a special case of the
general problem of estimating the parameters of a
complex-valued homogeneous random field with mixed
spectral distribution from a single observed realization of
it [5,6]. According to the Wold decomposition theory of
[7], any 2-D regular and homogeneous discrete random
field can be represented as a sum of two mutually
orthogonal components: a purely indeterministic field and
a deterministic one. The deterministic component is
further orthogonally decomposed into a harmonic field
and a countable number of mutually orthogonal
evanescent fields. The purely indeterministic component
has a unique white innovations driven moving-average
representation which is stationary as the second term of
model (1) we considered, where the evanescent
component is a special case of the first term of model (1)
although the autoregressive (AR) process [5] considered
can be non-stationary.

It can be seen that model (1) is a non-stationary model
and the parameter estimation for non-stationary model is
a harder problem than for stationary model [8]. Much
work focus on the parameters estimation of homogeneous
random field consisting of harmonic field and purely
indeterministic field i.e. harmonic or superimposed
exponential model in additive noise [9,10,11,12,13]
while little attention has been paid to estimate the
parameters of homogeneous random field consisting of
evanescent field and purely indeterministic field. [5] used
a two-stage procedure to jointly estimate the parameters
of the harmonic, evanescent components of a real-valued
homogeneous random field. At the first stage, a
suboptimal initial estimate for the parameters of the
spectral support of the evanescent and harmonic
components is obtained by solving a set of
overdetermined 2-D normal equations of a high-order
linear predictor of the observed data. Then the initial
estimators were refined by iterative maximization of the
conditional likelihood of the observed data. Although a
separable LSE procedure was utilized in the second stage,

however, there are so many parameters to be estimated
simultaneously that the computation is complex and the
precision is limited. It is necessary to find a more accurate
and computationally efficient algorithm for the estimation
of the frequencies of the evanescent component. It is
known that both maximum likelihood estimator (MLE)
[14] and LSE [9,10,15] have excellent statistical
performance when there exists only harmonic and purely
indeterministic component in the random field, and MLE
is equivalent to LSE when there is only additive Gaussian
noise. The orders of convergence rate of the LSE for{uk}
and{vk} are Op(M−3/2N−1/2) and Op(M−1/2N−3/2)
respectively (hereOp(.) means bo-unded in probability),
which are expected to be the best [10]. But their high
computation burden limits their applications in practice.
Therefore, some sub-optimal approaches with less
amount of computation and some degradation in
performance, were studied extensively, such as the
subspace-based methods (e.g. 2-D ESPRIT-type method
[13], MEMP method [16], 2-D Prony method [17] and
ACMP method [18]).

However, the optimal choice is to find a
computationally efficient LSE equivalent algorithm for
this purpose. Recently, [12] generalized the seven step
iterative (SSI) algorithm [19] and three step iterative
(TSI) algorithm [20,21,22] to estimate the parameters of
2-D harmonic in additive noise. It was observed that both
SSI and TSI estimators for the frequencies of 1-D
harmonics attain the same convergence rate as LSE and
have an asymptotic normal distribution while TSI is more
computationally efficient than SSI. It must be pointed out
that [20,21] considered the parameter estimation of 1-D
harmonic with nonzero mean amplitude, in additive noise
and multiplicative noise respectively. [22] considered the
parameter estimation of 1-D harmonic with zero mean
multiplicative and additive noise. The three estimators
above laid a good basis for the TSI estimation of
parameters of 2-D harmonic, which is the deterministic
part of a 2-D regular and homogeneous random field.
Most recently, [23] further developed the TSI algorithm
to estimate the frequencies of random field consisting of
evanescent and purely indeterministic component which
are both constituted of i.i.d. random processes. It is
observed that the estimators are consistent and attain the
same convergence rate as LSE. However, the evanescent
and purely indeterministic component are more widely to
be described as stationary processes [5,25]. So it is
necessary to consider the parameters estimation when the
evanescent and purely indeterministic component are
constituted of stationary random processes.

But no where, at least not known to the authors, the
TSI estimator has been considered for the frequencies of
random field consisting of evanescent and purely
indeterministic component which are both constituted of
stationary random processes. Stimulated by the work of
[5], [12] and [23], in this paper, we use a modified TSI
(MTSI) algorithm which is based on a two-stage
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procedure to estimate the frequencies of harmonics in
zero-mean stationary multiplicative and additive noise, as
well as examine the efficiency of the MTSI algorithm for
model (1) and study the asymptotic behaviors for the
MTSI estimators of frequencies. It is important to
observed that the TSI algorithm in [12] considered the
frequencies estimation of harmonic and purely
indeterministic component and can not be used directly
for the frequency estimation of evanescent and purely
indeterministic component under zero mean
multiplicative and additive noise. It is also noticed that
although [23] also generalized the TSI algorithm to
estimate the frequencies of evanescent and purely
indeterministic component under zero-mean
multiplicative and additive noise condition, however, the
evanescent and purely indeterministic component are
considered as i.i.d. random processes which are not
suitable for the more general stationary processes.
Moreover, although the squaring of the observed values in
[23] can make the initial estimator and the iterative
process feasible, the stationary property of the evanescent
and purely indeterministic component seems to decrease
the performance of the TSI algorithm severely, thus
makes the consistency and asymptotic normality property
for the TSI estimators of frequencies in our considered
model not immediate in this case. The estimation
procedure in this paper is divided into two stages. At the
first stage, we use the half value of 2-D periodogram
maximizers over Fourier frequencies as the initial
estimators. At the second stage, a statistics based three
iterative process is utilized to refine the initial estimators.
It is observed that if the initial estimators are accurate up
to the orderOp(M−1) andOp(N−1) for the frequenciesu j
and v j respectively, then the MTSI algorithm produces
fully efficient estimators of frequencies with convergence
rate ofOp(M−3/2N−1/2) andOp(M−1/2N−3/2) for u j and
v j respectively, which are the convergence rate of the
LSE’s [9] in additive noise. Since the MTSI algorithm
needs only three steps to converge. So it is
computationally efficient and can be served as online
implementation.

The rest of the paper is organized as follows. In
Section 2, we give the initial estimators of frequencies
based on the 2-D periodogram. The proposed algorithm
and the asymptotic distribution of the estimator is
presented in Section 3. In Section 4, we present some
numerical experiments to observe the efficiency of the
algorithm. Finally, we conclude the paper in Section 5.
All the proofs are provided in the Appendix.

2. Initial estimator

We use the 2-D periodogram maximizers at the Fourier
frequencies as the initial estimator, which is defined as

follows:

f (u,v) =
1

MN

∣

∣

∣

∣

∣

M

∑
m=1

N

∑
n=1

x2(m,n)e−i(mu+nv)

∣

∣

∣

∣

∣

. (5)

Although Fourier transformation is efficient for the
frequency estimation of stationary signal [24]. It can be
observed that Fourier transform can also be used for the
initial frequency estimator of non-stationary signal [23],
especially for the non-zero mean exponential signal
model [21]. Since{βk(m,n)} and{γ(m,n)} in model (1)
are both i.i.d. zero-mean random processes and the square
of the observed values in model (1) can be seen as
complex harmonics with non-zero mean amplitude and
twice of the original frequencies and phases, so the
estimation of frequencies can also be obtained by
squaring the observed values. In practice, we employ the
2-D FFT ofx2(m,n) to find thep local maxima off (u,v)
and take the half values of them as the initial estimates. It
is observed that [12] also used a periodogram based initial
estimator. Different from (5), [12] used an average
estimator of the 1-D periodogram maximizers of each
column of the 2-D observed values while we use the 2-D
periodogram maximizers as the initial estimator.

It is known that the 2-D periodogram maximizers over
Fourier frequencies do not generally provide the accuracy
of the estimators up to the orderOp(M−1) andOp(N−1)
for the frequenciesu j and v j respectively. To overcome
this problem, we employ a varying sample size technique
as in [12] in the following estimation, i.e. increasing the
sample size gradually with the increase of steps.

3. MTSI estimator

In this section, a MTSI algorithm similar with that in [23]
are proposed to increase the accuracy of the frequencies
in zero-mean stationary multiplicative and additive noise.
Then the asymptotic behavior of the MTSI estimator of
frequencies under this condition is analyzed. For
convenience, in the following we noteu = (u1, ...,up),
v = (v1, ...,vp), ũ = (ũ1, ..., ũp), ṽ = (ṽ1, ..., ṽp),
û = (û1, ..., ûp) and v̂ = (v̂1, ..., v̂p) as the vectors of the
frequency pairs to be estimated, the vectors of frequency
pairs before iteration and the vectors of frequency pairs
after iteration respectively. Given a consistent estimator ũ
andṽ of model (1), we computêu andv̂ as follows:

û = ũ+
6

M2Im [AM,N ⊙CM,N] ,

v̂ = ṽ+
6

N2Im [BM,N ⊙CM,N] , (6)

whereIm[.] denotes the imaginary part of a complex
number and⊙ denotes Hadamard product [26]. AM,N,
BM,N and CM,N are vectors with lengthp and the j-th
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elements ofAM,N, BM,N andCM,N are as follows:

AM,N( j) =
M

∑
m=1

N

∑
n=1

x2(m,n)(m− M
2
)e−2i(ũ j m+ṽ j n),

(7)

BM,N( j) =
M

∑
m=1

N

∑
n=1

x2(m,n)(n− N
2
)e−2i(ũ j m+ṽ j n),

(8)

CM,N( j) = 1

/

M

∑
m=1

N

∑
n=1

x2(m,n)e−2i(ũ j m+ṽ j n) . (9)

The precision can be improved by (6) step by step from
any consistent initial estimator̃u and ṽ. The asymptotic
distribution and the convergence rate for the estimators of
frequencies after three iterations i.e.û andv̂ are provided
in the following theorem:

Theorem 1.If ũ − u = Op(M−1−δ )I p and
ṽ−v = Op(N−1−δ )I p, whereδ ∈ (0,1], then

(a) û−u = Op(M−1−2δ )I p, v̂−v = Op(N−1−2δ )I p,

f or 0< δ < 1
2,

(b)
[

M
3
2 N

1
2 (û−u),M

1
2 N

3
2 (v̂−v)

]

L−→

N2p

(

0,
[

∑1 0
0 ∑2

])

, f or 1
2 6 δ 6 1,

where

∑2 = ∑1,(∑1) j j =
E j

Fj
,

for j=1,2, · · · , p and

(∑1) jτ =
G jτ

H jτ
,

for j 6= τ. I p denotes a p-order vector with its all elements
to be 1.L denotes convergence in distribution.

Proof.See Appendix.

Remark.It can be seen from the Appendix that if the
assumption(ii) is not satisfied, the MTSI algorithm will be
still efficient. But the diagonal term inΣ1 will change, i.e.
if (uτ ,vτ) = 2(u j ,v j) then the seventh term in(∑1) j j will
be changed to:






4

∣

∣

∣

∣

∣

+∞

∑
s=−∞

+∞

∑
l=−∞

+∞

∑
s′=−∞

+∞

∑
l ′=−∞

aτ(s, l)a0(s
′, l ′)

∣

∣

∣

∣

∣

2

×σ2
0 sin2(φτ −2φ j)+4 ∑

k6=τ

∣

∣

∣

∣

∣

+∞

∑
s=−∞

+∞

∑
l=−∞

+∞

∑
s′=−∞

+∞

∑
l ′=−∞

ak(s, l)a0(s
′, l ′)ei[

(uk−2uj )
2 (s+s′)+

(vk−2vj )
2 (l+l ′)]

∣

∣

∣

∣

2

σ2
0 σ2

k

}

/[

+∞

∑
s=−∞

+∞

∑
l=−∞

a2
j (s, l)

]2

σ4
j ,

and if (uτ +uγ ,vτ + vγ) = (2u j ,2v j) then the last term in
(∑1) j j will be changed to:
{

4 ∑
k6=τ

∑
l<k,l 6=γ

∣

∣

∣

∣

∣

+∞

∑
s=−∞

+∞

∑
t=−∞

+∞

∑
s′=−∞

+∞

∑
t ′=−∞

ak(s, t)al (s
′, t ′)

ei[
(uk+ul−2uj )

2 (s+s′)+
(vk+vl−2vj )

2 (t+t ′)]
∣

∣

∣

∣

2

σ2
k σ2

l

+4

∣

∣

∣

∣

∣

+∞

∑
s=−∞

+∞

∑
t=−∞

+∞

∑
s′=−∞

+∞

∑
t ′=−∞

aτ(s, t)aγ(s
′, t ′)

∣

∣

∣

∣

∣

2

σ2
τ σ2

γ

×sin2(φτ +φγ −2φ j)}
/[

+∞

∑
s=−∞

+∞

∑
l=−∞

a2
j (s, l)

]2

σ4
j .

The detailed procedure of the two-stage algorithm is
described as the following. We start with the initial
estimates of the 2-D periodogram maximizers and
improve it step by step by the recursive process above.
The m-th step estimatorŝu(m) and v̂(m) (m= 1,2,3) are
computed from the(m−1)-th step estimatorŝu(m−1) and
v̂(m−1) respectively by the formulas as follows:

û(m) = û(m−1)+
6

M2
m
Im [AMm,Nm ⊙CMm,Nm] ,

v̂(m) = v̂(m−1)+
6

N2
m
Im [BMm,Nm ⊙CMm,Nm] , (10)

where ûm = (ûm
1 , ..., û

m
p ) and v̂m = (v̂m

1 , ..., v̂
m
p) are the

estimators after them-th iteration,AMm,Nm( j), BMm,Nm( j)
andCMm,Nm( j) can be obtained from (7)-(9) by replacing

M, N, ũ j and ṽ j with Mm, Nm, û(m−1)
j and v̂(m−1)

j
respectively. The detailed three-step iteration process is as
follows:

Step 1 Withm= 1, chooseM1 = M0.8, N1 = N0.8, û(0) = ũ
and v̂(0) = ṽ, which are the initial estimates obtained
by the 2-D periodogram maximizer.

Note thatũ − u = Op(M−1)I p = Op(M
−1− 1

4
1 )I p and

ṽ − v = Op(N−1)I p = Op(N
−1− 1

4
1 )I p. Taking

M1 = M0.8, N1 = N0.8, û(0) = ũ and v̂(0) = ṽ in (10),
and applying part (a) of Theorem 1 , we obtain

û(1)−u = Op(M
−1− 1

2
1 )I p = Op(M

− 6
5 )I p,

v̂(1)−v = Op(N
−1− 1

2
1 )I p = Op(N

− 6
5 )I p.

Step 2 With m = 2, chooseM2 = M0.9 and N2 = N0.9,
compute û(2) and v̂(2) from û(1) and v̂(1). Since

û(1) − u = Op(M− 6
5 )I p = Op(M

−1− 1
3

2 )I p and

v̂(1) − v = Op(N− 6
5 )I p = Op(N

−1− 1
3

2 )I p, use part (a)
of Theorem 1 again, we have

û(2)−u = Op(M
−1− 2

3
2 )I p = Op(M

− 3
2 )I p,

v̂(2)−v = Op(N
−1− 2

3
2 )I p = Op(N

− 3
2 )I p.
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E j =
3
2







∑
k6= j

∣

∣

∣

∣

∣

+∞

∑
s=−∞

+∞

∑
l=−∞

a2
k(s, l)e

2i[(uk−u j )s+(vk−v j )l ]

∣

∣

∣

∣

∣

2
[

E(ε4
k )−σ4

k

]

+4 ∑
k6= j

∣

∣

∣

∣

∣

+∞

∑
s=−∞

+∞

∑
l=−∞

∑
s′ 6=s

+∞

∑
l ′=−∞

ak(s, l)ak(s
′, l ′)ei[(uk−u j )(s+s′)+(vk−v j )(l+l ′)]

∣

∣

∣

∣

∣

2

σ4
k

+4 ∑
k6= j

∣

∣

∣

∣

∣

+∞

∑
s=−∞

+∞

∑
l=−∞

∑
l ′ 6=l

ak(s, l)ak(s, l
′)ei[2s(uk−u j )+(vk−v j )(l+l ′)]

∣

∣

∣

∣

∣

2

σ4
k +

∣

∣

∣

∣

∣

+∞

∑
s=−∞

+∞

∑
l=−∞

a2
0(s, l)e

2i(u j s+v j l)

∣

∣

∣

∣

∣

2
[

E(ε4
0)−σ4

0

]

+4

∣

∣

∣

∣

∣

+∞

∑
s=−∞

+∞

∑
l=−∞

∑
s′ 6=s

+∞

∑
l ′=−∞

a0(s, l)a0(s
′, l ′)ei[u j (s+s′)+v j (l+l ′)]

∣

∣

∣

∣

∣

2

σ4
0 +4

∣

∣

∣

∣

∣

+∞

∑
s=−∞

+∞

∑
l=−∞

∑
l ′ 6=l

a0(s, l)a0(s, l
′)ei[2suj+v j (l+l ′)]

∣

∣

∣

∣

∣

2

σ4
0

+4
p

∑
k=1

∣

∣

∣

∣

∣

+∞

∑
s=−∞

+∞

∑
l=−∞

+∞

∑
s′=−∞

+∞

∑
l ′=−∞

ak(s, l)a0(s
′, l ′)e

i
[

(uk−2uj )

2 (s+s′)+
(vk−2vj )

2 (l+l ′)
]

∣

∣

∣

∣

∣

2

σ2
0 σ2

k

+4
p

∑
k=1

p

∑
l=1

∣

∣

∣

∣

∣

+∞

∑
s=−∞

+∞

∑
t=−∞

+∞

∑
s′=−∞

+∞

∑
t ′=−∞

ak(s, t)al (s
′, t ′)e

i
[

(uk+ul −2uj )

2 (s+s′)+
(vk+vl −2vj )

2 (t+t ′)
]

∣

∣

∣

∣

∣

2

σ2
k σ2

l







,

Fj =

[

+∞

∑
s=−∞

+∞

∑
l=−∞

a2
j (s, l)

]2

σ4
j ,H jτ =

[

+∞

∑
s=−∞

+∞

∑
l=−∞

a2
j (s, l)

][

+∞

∑
s=−∞

+∞

∑
l=−∞

a2
τ (s, l)

]

,

G jτ = −6

∣

∣

∣

∣

∣

+∞

∑
s=−∞

+∞

∑
t=−∞

+∞

∑
s′=−∞

+∞

∑
t ′=−∞

a j (s, t)aτ (s
′, t ′)e

i
[

(uj−uτ )
2 (s+s′)+

(vj−vτ )
2 (t+t ′)

]

∣

∣

∣

∣

∣

2

,

Step 3 Withm= 3, chooseM3 =M andN3 =N, computêu(3)

andv̂(3) from û(2) andv̂(2), apply part (b) of Theorem
1, we have

(M
3
2 N

1
2 (û−u),M

1
2 N

3
2 (v̂−v)) L−→N2p

(

0,
[

∑1 0
0 ∑2

])

.

Table 1: The average estimates of the Initial and MTSI estimator
based on 100 replications, as well as the corresponding SEs and
ASEs of the two frequency pairs when M=N=128

σ0 ESTI Fr11 Fr12 Fr21 Fr22
PARA 0.50000 1.50000 0.60000 1.60000
INIT 0.49087 1.52171 0.58905 1.59534

0.5 MTSI 0.50009 1.50002 0.59999 1.60001
SE 2.334e-4 2.2215e-4 1.584e-4 1.651e-4
ASE 2.179e-4 2.1797e-4 1.555e-4 1.555e-4
PARA 0.50000 1.50000 0.60000 1.60000
INIT 0.49087 1.52170 0.58904 1.59534

1 MTSI 0.49999 1.50001 0.59997 1.60003
SE 2.826e-4 2.9262e-4 2.010e-4 2.124e-4
ASE 2.720e-4 2.7200e-4 1.976e-4 1.976e-4
PARA 0.50000 1.50000 0.60000 1.60000
INIT 0.49087 1.52170 0.58904 1.59534

1.5 MTSI 0.49994 1.50002 0.59999 1.60003
SE 4.633e-4 4.3237e-4 2.584e-4 2.726e-4
ASE 3.503e-4 3.5039e-4 2.590e-4 2.590e-4

It can be seen that a similar three-step iterative
process is used in [12]. The difference lies in that we use
the varying sample on M and N simultaneously while
[12] just use the varying sample on M or N solely.
Moreover, the factor of the iterative term in this paper is
different with that in [12] so as to deal with the estimation
of zero-mean multiplicative noise condition. It is
observed that if at any step, the estimators are accurate up
to the orderOp(M−1−δ ) and Op(N−1−δ ) for u j and
v j( j = 1, ..., p) respectively, the method provides
estimators with orders being improved toOp(M−1−2δ )

and Op(N−1−2δ ) respectively for 0< δ < 1
2 and if

1
2 6 δ 6 1, then it provides the efficient estimators with
convergence rate of Op(M−3/2N−1/2) and
Op(M−1/2N−3/2) for the frequency pairs. Comparing
with [23], it is observed that the MTSI algorithm still
works well and the MTSI estimators for the frequency
pairs have the same convergence rate as that of the i.i.d.
noise condition.

Remark.There are several other exponents we used above
can be chosen so that the iterative process will converge
in three steps. In another word, they are not unique. For
example another set of choices can beM1 = M0.75,
N1 = N0.75; M2 = M0.85, N2 = N0.85 and M3 = M,
N3 = N. It is not possible to choose a set of exponents to
make the iterative process converge in less than three
steps, but it is sure for several sets of exponents to take
more than three steps to converge. It is also noted that we
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take the same set of exponents for the first and second
dimension. Actually, they can be different provided that
they can guarantee MTSI to converge in three steps.

4. Numerical experiment

In this section we present some numerical results to
observe how the proposed algorithm works and the
asymptotic results behave for finite sample sizes. We
consider the following model:

x(m,n) = β1(m,n)ei(0.5m+1.5n+π/4)

+ β2(m,n)ei(0.6m+1.6n+π/3)+ γ(m,n), (11)

where multiplicative noise{β1(m,n)}, {β2(m,n)} and
additive noise{γ(m,n)} are all MA processes whose
driving processes are{ε1(m,n)}, {ε2(m,n)} and
{ε0(m,n)} respectively, which are all i.i.d. Gaussian
random variables with mean zero and variance 2, 3 and
σ2

0 respectively. The structure of{β1(m,n)}, {β2(m,n)}
and{γ(m,n)} are as follows

β1(m,n) = ε1(m,n)+0.6ε1(m−1,n−1),

β2(m,n) = ε2(m,n)−0.4ε2(m−1,n−1),

γ(m,n) = ε0(m,n)+0.5ε0(m−1,n−1).

Although the existing of the additive and multiplicative
noise both decrease the performance of the estimation,
however, the multiplicative noise is also useful for
estimating the frequencies observed from Section 2 and
the proof of Theorem 1. To assess the sensitivity of the
model to different noise levels, we fix the multiplicative
noise level and plot three different additive noise level
namelyσ0= 0.5, 1 and 1.5. To present the consistency, we
take the sample sizes as M=N=128, 256 and 512. We also
take M=512, N=128 to examine the performance when M
is not equal to N.

For illustration purpose for the efficiency of the initial
estimator, we plot the 2-D periodogram function of the
original observations in Figure 1-Figure 4 for sample size
(a) M=N=128, (b) M=N=256, (c) M=N=512 and (d)
M=512, N=128 respectively. For comparison purpose, we
also plot the 2-D periodogram function of the squared
values of the original observations in Figure 5-Figure 8
for the considered model corresponding to the above
sample size (a)-(d) respectively. The standard deviation of
the additive noise is taken as 1.5 for all the cases.
Comparing the corresponding Figure 1-Figure 4 with
Figure 5-Figure 8 for the same sample size, it is obvious
that there is no peak in the plot of the periodogram of the
original observations at the real frequency pairs while the
squaring of the original observations makes the peaks
obvious at the frequency pairs to be estimated. It is
because the spectra of the observations has the same
magnitude at all the frequency pairs when the
multiplicative noise is zero-mean. However, the squaring
of the observations makes the magnitude much larger at
the frequency pairs to be estimated than at the other
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Figure 1: Plot of the 2-D periodogram function of the original
observations for model (11) when (a) M=N=128 withσ0=1.5

frequency pairs. It is known that the number of peaks in
the periodogram function plot roughly gives an estimate
of the number of frequencies. It depends on the
magnitude of the amplitude associated with each effective
frequency and the noise level. From Figure 5-Figure 8, it
is quite clear that there are three peaks which include the
one at (0,0) for Figure 5-Figure 8. Actually, (0,0) is a
false frequency pair as the additive noise is real, thus
cause the periodogram maximizer of the squared
observations at (0,0). The remained two peaks are the plot
of the two pairs of frequencies to be estimated actually.

Table 2: The average estimates of the Initial and MTSI estimator
based on 100 replications, as well as the corresponding SEs and
ASEs of the two frequency pairs when M=N=256

σ0 EST Fr11 Fr12 Fr21 Fr22
PARA 0.50000 1.50000 0.60000 1.60000
INIT 0.50314 1.49716 0.60132 1.59534

0.5 MTSI 0.49999 1.49998 0.60000 1.60000
SE 5.446e-5 5.736e-5 4.213e-5 3.939e-5
ASE 5.449e-5 5.449e-5 3.889e-5 3.889e-5
PARA 0.50000 1.50000 0.60000 1.60000
INIT 0.50314 1.49716 0.60132 1.59534

1 MTSI 0.50000 1.50002 0.59999 1.59999
SE 6.828e-5 7.476e-5 5.094e-5 4.947e-5
ASE 6.800e-5 6.800e-5 4.941e-5 4.941e-5
PARA 0.50000 1.50000 0.60000 1.60000
INIT 0.50314 1.49716 0.60132 1.59534

1.5 MTSI 0.50002 1.49999 0.59999 1.60002
SE 8.779e-5 8.913e-5 6.438e-5 6.506e-5
ASE 8.759e-5 8.759e-5 6.476e-5 6.476e-5

Now for each sample size, we estimate the frequencies
based on the MTSI algorithm. In all cases we consider the
periodogram maximizer at the Fourier frequencies as the
initial estimator. We report the average estimates of the
two pairs of frequencies (Fr11, Fr12), (Fr21, Fr22) and
the standard errors (SEs) over 100 replications. For
comparison purpose, we also report the initial estimates
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as well as the true values of frequencies and the
corresponding asymptotic standard errors (ASEs). All the
estimators (ESTI) are reported in Tables 1-4 for the
average estimates and standard deviations of frequencies
of model (11) corresponding to M=N=128, 256, 512 and
M=512, N=128 respectively, in Table 5 for the
covariances of Fr11 and Fr21, and in Table 6 for the
covariances of Fr12 and Fr22 when M=N=128, 256, 512
and M=512, N=128 respectively. In Tables 1-4 and for
eachσ0, the first row represents the true parameter values
(PARA) and the initial estimates are reported at the
second row (INIT), the third row represents the MTSI
estimates and the SEs of the MTSI estimates are reported
at the fourth row. Finally, we reported the ASEs at the last
row. In Tables 5-6 and for eachσ0, the first row represents
the covariances (COVs) for the estimates of
corresponding frequencies between different frequency
pairs, and the asymptotic covariances (ACOVs) for the
estimates of corresponding frequencies between different
frequency pairs are reported at the second row.

Table 3: The average estimates of the Initial and MTSI estimator
based on 100 replications, as well as the corresponding SEs and
ASEs of the two frequency pairs when M=N=512

σ0 ESTI Fr11 Fr12 Fr21 Fr22
PARA 0.50000 1.50000 0.60000 1.60000
INIT 0.49701 1.49716 0.60132 1.60147

0.5 MTSI 0.50000 1.49999 0.59999 1.60000
SE 1.388e-5 1.495e-5 9.737e-6 1.011e-5
ASE 1.362e-5 1.362e-5 9.713e-6 9.713e-6
PARA 0.50000 1.50000 0.60000 1.60000
INIT 0.49701 1.49716 0.60132 1.60147

1 MTSI 0.50000 1.50000 0.59999 1.59999
SE 1.698e-5 1.715e-5 1.240e-5 1.326e-5
ASE 1.700e-5 1.700e-5 1.235e-5 1.235e-5
PARA 0.50000 1.50000 0.60000 1.60000
INIT 0.49701 1.49716 0.60132 1.60147

1.5 MTSI 0.50000 1.50000 0.59999 1.59999
SE 2.232e-5 2.254e-5 1.660e-5 1.625e-5
ASE 2.189e-5 2.189e-5 1.619e-5 1.619e-5

The following observations are very clear from the
numerical experiments. It is observed from Tables 1-4
that the MTSI estimates are very close to the true
parameter values and are better than the initial estimates
in nearly all the cases considered. It is immediate that the
biases decrease asσ0 decreases. Therefore, the MTSI
estimates provide asymptotically unbiased estimators of
the frequencies. It can be seen from Tables 1-4 that the
SEs of all the parameters decrease gradually and approach
the ASEs, as well as from Table 5-6 that the COVs of the
corresponding frequencies decrease gradually and
approach the ACOVs as the sample size increases, which
verifies the consistency of the MTSI estimates. It is also
observed from Tables 1-4 that the MTSI estimates are
also fairly good even for small sample size and high level

Figure 2: Plot of the 2-D periodogram function of the original
observations for model (11) when (b) M=N=256 withσ0=1.5

Figure 3: Plot of the 2-D periodogram function of the original
observations for model (11) when (c) M=N=512 withσ0=1.5

Figure 4: Plot of the 2-D periodogram function of the original
observations for model (11) when (d) M=512, N=128 with
σ0=1.5

of noise while the initial estimates are bad, which verifies
the robustness and efficiency of the MTSI algorithm.

Comparing Table 4 with Table 1 and Table 3, it is
observed that the SEs for all the frequencies in Table 4 are
lower than those corresponding in Table 1 and higher than
those corresponding in Table 3. It is not surprising
because the sample size M in Table 4 is larger than that in
Table 1 while the sample size N in Table 4 is smaller than
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Figure 5: Plot of the 2-D periodogram function of of the squared
observations for model (11) when (a) M=N=128 withσ0=1.5

Figure 6: Plot of the 2-D periodogram function of of the squared
observations for model (11) when (b) M=N=256 withσ0=1.5

Figure 7: Plot of the 2-D periodogram function of of the squared
observations for model (11) when (c) M=N=512 withσ0=1.5

that in Table 3. So the effectiveness of the MTSI
algorithm is also verified when the sample size is not
equal in the two dimensions.

5. Conclusions

In this paper, we considered the estimation of the
frequencies of 2-D superimposed exponential model in

Figure 8: Plot of the 2-D periodogram function of of the squared
observations for model (11) when (d) M=512, N=128 with
σ0=1.5

Table 4: The average estimates of the Initial and MTSI estimator
based on 100 replications, as well as the corresponding SEs and
ASEs of the two frequency pairs when M=512 and N=128

σ0 ESTI Fr11 Fr12 Fr21 Fr22
PARA 0.50000 1.50000 0.60000 1.60000
INIT 0.49703 1.49711 0.60132 1.59533

0.5 MTSI 0.50000 1.50001 0.59999 1.60000
SE 2.746e-5 1.155e-4 2.010e-5 7.885e-5
ASE 2.724e-5 1.089e-4 1.944e-5 7.778e-5
PARA 0.50000 1.50000 0.60000 1.60000
INIT 0.49713 1.49716 0.60132 1.59534

1 MTSI 0.49999 1.50003 0.59999 1.59997
SE 3.731e-5 1.369e-4 2.461e-5 9.982e-5
ASE 3.400e-5 1.360e-4 2.470e-5 9.883e-5
PARA 0.50000 1.50000 0.60000 1.60000
INIT 0.49715 1.49713 0.60132 1.59534

1.5 MTSI 0.50000 1.49999 0.59999 1.59998
SE 4.721e-5 1.792e-4 3.136e-5 1.346e-4
ASE 4.379e-5 1.751e-4 3.238e-5 1.295e-4

Table 5: The COVs and ACOVs of Fr11 and Fr21 based on 100
replications

σ0 EST 128,128 256,256 512,512 512,128

0.5
COV -1.35e-8 -1.21e-9 -5.11e-11 -1.04e-9

ACOV -1.31e-8 -8.23e-10 -5.14e-11 -8.23e-10

1
COV -1.65e-8 -1.27e-9 -6.26e-11 -2.26e-9

ACOV -1.31e-8 -8.23e-10 -5.14e-11 -8.23e-10

1.5
COV -2.60e-8 -1.47e-9 -8.96e-11 -2.32e-9

ACOV -1.31e-8 -8.23e-10 -5.14e-11 -8.23e-10

presence of stationary multiplicative and additive noise.
We used a two-stage joint algorithm to estimate the
frequencies of the model we considered. At the first stage,
a periodogram based initial estimator was given for a
rough estimation. Then the MTSI algorithm was proposed
to refine the initial estimator by three iterations. We
proved the consistency of the MTSI estimators and
obtained the asymptotic distribution of the MTSI
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Table 6: The COVs and ACOVs of Fr12 and Fr22 based on 100
replications

σ0 EST 128,128 256,256 512,512 512,128

0.5
COV -1.32e-8 -1.14e-9 -5.39e-11 -3.23e-9

ACOV -1.31e-8 -8.23e-10 -5.14e-11 -8.23e-10

1
COV -1.62e-8 -1.17e-9 -6.12e-11 -4.67e-9

ACOV -1.31e-8 -8.23e-10 -5.14e-11 -8.23e-10

1.5
COV -2.64e-8 -1.82e-9 -7.41e-11 -6.42e-9

ACOV -1.31e-8 -8.23e-10 -5.14e-11 -8.23e-10

estimators. It is observed that the MTSI algorithm works
quite well in terms of biases and mean squared errors
even when the two frequency pairs are very close, and the
estimators have the same convergence rate with LSE in
additive noise. Since the random field model consisting of
evanescent and purely indeterministic component can be
seen as a special case of our model (1), we generalized
the MTSI algorithm to a wider and more practical noise
distribution and provide an accurate and computationally
efficient algorithm for the parameter estimation of
stationary random field consisting of evanescent and
purely indeterministic component. Moreover, it needs
only three steps to converge from the given starting value,
so it naturally saves computational time and can be used
for online implementation. Finally, the amplitude of the
model in this paper is described to be zero mean MA
process which is stationary, however, the evanescent
component of a conditional random field may be
non-stationary. The MTSI algorithm for this condition
will be investigated later.
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Appendix

We need to computeAM,N,BM,N and CM,N for the
derivation of the algorithm. Firstly, we will compute
CM,N. Since {εk(m,n)} is an array of i.i.d. random
variable with mean zero and varianceσ2

k respectively, if
we noteηk(m,n) , ε2

k (m,n)− σ2
k , then ηk(m,n)) is an

array of i.i.d. variable with mean zero and variance

E(ε4
k )−σ4

k .

1/CM,N( j) =
p

∑
k=1

M

∑
m=1

N

∑
n=1

β 2
k (m,n)

×e2i[(uk−ũ j )m+(vk−ṽ j )n+φk]

+
M

∑
m=1

N

∑
n=1

γ2(m,n)e−2i(ũ j m+ṽ j n)

+2
p

∑
k=1

M

∑
m=1

N

∑
n=1

βk(m,n)γ(m,n)

×ei[(uk−2ũ j )m+(vk−2ṽ j )n+φk]

+2
p

∑
k=1

∑
l<k

M

∑
m=1

N

∑
n=1

βk(m,n)βl (m,n)

×ei[(uk+ul−2u j )m+(vk+vl−2v j )n+φk+φl ]

= C1+C2+C3+C4,(say) (12)

where

C1 =
p

∑
k=1

+∞

∑
s=−∞

+∞

∑
l=−∞

a2
k(s, l)σ

2
k e2iφk

×
M

∑
m=1

N

∑
n=1

e2i[(uk−ũ j )m+(vk−ṽ j )n]

+
p

∑
k=1

M

∑
m=1

N

∑
n=1

+∞

∑
s=−∞

+∞

∑
l=−∞

a2
k(s, l)ηk(m−s,n− l)

×e2i[(uk−ũ j )m+(vk−ṽ j )n+φk]

+2
p

∑
k=1

M

∑
m=1

N

∑
n=1

+∞

∑
s=−∞

+∞

∑
l=−∞

∑
s′ 6=s

+∞

∑
l ′=−∞

ak(s, l)ak(s
′, l ′)

×εk(m−s,n− l)εk(m−s′,n− l ′)e2i[(uk−ũ j )m+(vk−ṽ j )n+φk]

+2
p

∑
k=1

M

∑
m=1

N

∑
n=1

+∞

∑
s=−∞

+∞

∑
l=−∞

∑
l ′ 6=l

ak(s, l)ak(s, l
′)εk(m−s,n− l)

×εk(m−s,n− l ′)e2i[(uk−ũ j )m+(vk−ṽ j )n+φk]

=
p

∑
k=1

+∞

∑
s=−∞

+∞

∑
l=−∞

a2
k(s, l)σ

2
k e2iφkJ1k(M,N)+R1(M,N).(say)

(13)

For k 6= j, J1k(M,N) = Op(1). For k = j, using Taylor
series approximation ofe2i(u j−ũ j )m ande2i(v j−ṽ j )n both up
to first order, we have

J1 j(M,N) =
M

∑
m=1

N

∑
n=1

e2i[(u j−ũ j )m+(v j−ṽ j )n]

=
M

∑
m=1

e2i(u j−ũ j )m
N

∑
n=1

e2i(v j−ṽ j )n
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=

[

M+2i(u j − ũ j)
M

∑
m=1

meiθ1(u j−ũ j )m

]

[

N+2i(v j − ṽ j)
N

∑
n=1

ne2iθ2(v j−ṽ j )n

]

= MN
[

1+Op(M
−δ )+Op(N

−δ )
]

, (14)

here 0< θ1 < 1,0 < θ2 < 1. Using the independence of
{ηk(m,n)} and{ε0(m,n)}, (2)-(4) and Lemma 2 of [23],
we have

R1(M,N) = Op(M
1
2 N

1
2 ), (15)

and

C2 =
M

∑
m=1

N

∑
n=1

γ2(m,n)e−2i(ũ j m+ṽ j n)

=
+∞

∑
s=−∞

+∞

∑
l=−∞

a2
0(s, l)σ2

0

M

∑
m=1

N

∑
n=1

e−2i(ũ j m+ṽ j n)

+
+∞

∑
s=−∞

+∞

∑
l=−∞

M

∑
m=1

N

∑
n=1

a2
0(s, l)η0(m−s,n− l)

×e−2i(ũ j m+ṽ j n)

+2
+∞

∑
s=−∞

+∞

∑
l=−∞

∑
s′ 6=s

+∞

∑
l ′=−∞

M

∑
m=1

N

∑
n=1

a0(s, l)a0(s
′, l ′)

×ε0(m−s,n− l)ε0(m−s′,n− l ′)e−2i(ũ j m+ṽ j n)

+2
+∞

∑
s=−∞

+∞

∑
l=−∞

∑
l ′ 6=l

M

∑
m=1

N

∑
n=1

a0(s, l)a0(s, l
′)

×ε0(m−s,n− l)ε0(m−s,n− l ′)e−2i(ũ j m+ṽ j n)

= Op(M
1
2 N

1
2 ). (16)

Similarly, we have

C3 = Op(M
1
2 N

1
2 ), C4 = Op(M

1
2 N

1
2 ). (17)

From (12)-(17), it is immediate that

CM,N( j) = 1

/{

+∞

∑
s=−∞

+∞

∑
l=−∞

a2
j (s, l)σ2

j e2iφ j MN

[

1+Op(M
−δ )+Op(N

−δ )
]}

. (18)

Secondly, we will computeAM,N in the following:

AM,N( j) =
p

∑
k=1

M

∑
m=1

N

∑
n=1

β 2
k (m,n)(m− M

2
)

×e2i[(uk−ũ j )m+(vk−ṽ j )n+φk]

+
M

∑
m=1

N

∑
n=1

γ2(m,n)(m− M
2
)e−2i(ũ j m+ṽ j n)

+2
p

∑
k=1

M

∑
m=1

N

∑
n=1

(m− M
2
)βk(m,n)γ(m,n)

×ei[(uk−2ũ j )m+(vk−2ṽ j )n+φk]

+2
p

∑
k=1

∑
l<k

M

∑
m=1

N

∑
n=1

βk(m,n)βl (m,n)(m− M
2
)

×ei[(uk+ul−2ũ j )m+(vk+vl−2ṽ j )n+φk+φl ]

= A1+A2+A3+A4,(say) (19)

where

A1 =
p

∑
k=1

+∞

∑
s=−∞

+∞

∑
l=−∞

a2
k(s, l)σ

2
k e2iφk

M

∑
m=1

N

∑
n=1

(m− M
2
)

×e2i[(uk−ũ j )m+(vk−ṽ j )n]

+
p

∑
k=1

M

∑
m=1

N

∑
n=1

+∞

∑
s=−∞

+∞

∑
l=−∞

a2
k(s, l)ηk(m−s,n− l)

×(m− M
2
)e2i[(uk−ũ j )m+(vk−ṽ j )n+φk]

+2
p

∑
k=1

M

∑
m=1

N

∑
n=1

+∞

∑
s=−∞

+∞

∑
l=−∞

∑
s′ 6=s

+∞

∑
l ′=−∞

ak(s, l)ak(s
′, l ′)

×εk(m−s,n− l)εk(m−s′,n− l ′)(m− M
2
)

×e2i[(uk−ũ j )m+(vk−ṽ j )n+φk]

+2
p

∑
k=1

M

∑
m=1

N

∑
n=1

+∞

∑
s=−∞

+∞

∑
l=−∞

∑
l ′ 6=l

ak(s, l)ak(s, l
′)

×εk(m−s,n− l)εk(m−s,n− l ′)(m− M
2
)

×e2i[(uk−ũ j )m+(vk−ṽ j )n+φk]

=
p

∑
k=1

+∞

∑
s=−∞

+∞

∑
l=−∞

a2
k(s, l)σ

2
k e2iφkJ2k(M,N)+R2(M,N).

(20)

For k 6= j, J2k(M,N) = Op(M). For k = j, using Taylor
series approximation ofe2i(u j−ũ j )m ande2i(v j−ṽ j )n both up
to first order, we have

J2 j(M,N) =
[

M

∑
m=1

(m− M
2
)+ i(u j − ũ j)

M(M+1)(M+2)
6

−2(u j − ũ j)
2

M

∑
m=1

(m− M
2
)m2e2iθ3(u j−ũ j )m

]
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×
[

N+2i(v j − ṽ j)
N

∑
n=1

ne2iθ4(v j−ṽ j )n

]

= i(u j − ũ j)
M3N

6

[

1+Op(M
−δ )+Op(N

−δ )
]

,

(21)

here 0< θ3 < 1,0 < θ4 < 1. Using Taylor series
approximation ofei[(u j−ũ j )m+(v j−ṽ j )n] up to first order and
Lemma 2 of [23], we have

R2(M,N) =
p

∑
k=1

M

∑
m=1

N

∑
n=1

+∞

∑
s=−∞

+∞

∑
l=−∞

a2
k(s, l)

×ηk(m−s,n− l)(m− M
2
)e2i[(uk−u j )m+(vk−v j )n+φk]

+2
p

∑
k=1

M

∑
m=1

N

∑
n=1

+∞

∑
s=−∞

+∞

∑
l=−∞

∑
s′ 6=s

+∞

∑
l ′=−∞

ak(s, l)ak(s
′, l ′)

×(m− M
2
)εk(m−s,n− l)εk(m−s′,n− l ′)

×e2i[(uk−u j )m+(vk−v j )n+φk]

+2
p

∑
k=1

M

∑
m=1

N

∑
n=1

+∞

∑
s=−∞

+∞

∑
l=−∞

∑
l ′ 6=l

ak(s, l)ak(s, l
′)

×(m− M
2
)εk(m−s,n− l)εk(m−s,n− l ′)

×e2i[(uk−u j )m+(vk−v j )n+φk]

+Op(M
3
2−δ N

1
2 )+Op(M

3
2 N

1
2−δ ). (22)

Similarly, we have

A2 =
M

∑
m=1

N

∑
n=1

γ2(m,n)(m− M
2
)e−2i(ũ j m+ṽ j n)

=
+∞

∑
s=−∞

+∞

∑
l=−∞

a2
0(s, l)σ2

0

M

∑
m=1

N

∑
n=1

(m− M
2
)e−2i(u j m+v j n)

+
M

∑
m=1

N

∑
n=1

+∞

∑
s=−∞

+∞

∑
l=−∞

a2
0(s, l)η0(m−s,n− l)(m− M

2
)

×e−2i(u j m+v j n)

+2
M

∑
m=1

N

∑
n=1

+∞

∑
s=−∞

+∞

∑
l=−∞

∑
s′ 6=s

+∞

∑
l ′=−∞

a0(s, l)a0(s
′, l ′)

×ε0(m−s,n− l)ε0(m−s′,n− l ′)(m− M
2
)

×e−2i(u j m+v j n)

+2
M

∑
m=1

N

∑
n=1

+∞

∑
s=−∞

+∞

∑
l=−∞

∑
l ′ 6=l

a0(s, l)a0(s, l
′)

×ε0(m−s,n− l)ε0(m−s,n− l ′)(m− M
2
)

×e−2i(u j m+v j n)

+Op(M
3
2−δ N

1
2 )+Op(M

3
2 N

1
2−δ ), (23)

A3 = 2
p

∑
k=1

M

∑
m=1

N

∑
n=1

βk(m,n)γ(m,n)(m− M
2
)

×ei[(uk−2ũ j )m+(vk−2ṽ j )n+φk]

= 2
p

∑
k=1

M

∑
m=1

N

∑
n=1

+∞

∑
s=−∞

+∞

∑
l=−∞

+∞

∑
s′=−∞

+∞

∑
l ′=−∞

ak(s, l)a0(s
′, l ′)

×εk(m−s,n− l)ε0(m−s′,n− l ′)(m− M
2
)

×ei[(uk−2u j )m+(vk−2v j )n+φk]

+Op(M
3
2−δ N

1
2 )+Op(M

3
2 N

1
2−δ ), (24)

and

A4 = 2
p

∑
k=1

∑
l<k

M

∑
m=1

N

∑
n=1

βk(m,n)βl (m,n)(m− M
2
)

×ei[(uk+ul−2ũ j )m+(vk+vl−2ṽ j )n+φk+φl ]

= 2
p

∑
k=1

∑
l<k

M

∑
m=1

N

∑
n=1

+∞

∑
s=−∞

+∞

∑
t=−∞

+∞

∑
s′=−∞

+∞

∑
t ′=−∞

ak(s, t)

×al (s
′, t ′)(m− M

2
)εk(m−s,n− t)εl (m−s′,n− t ′)

×ei[(uk+ul−2ũ j )m+(vk+vl−2ṽ j )n+φk+φl ]

+Op(M
3
2−δ N

1
2 )+Op(M

3
2 N

1
2−δ ). (25)

From (19)-(25), it is immediate that

AM,N( j) = i
+∞

∑
s=−∞

+∞

∑
l=−∞

a2
j (s, l)σ2

j e2iφ j (u j − ũ j)
M3N

6

×
[

1+Op(M
−δ )+Op(N

−δ )
]

+
p

∑
k=1

M

∑
m=1

N

∑
n=1

+∞

∑
s=−∞

+∞

∑
l=−∞

a2
k(s, l)ηk(m−s,n− l)(m− M

2
)

×e2i[(uk−u j )m+(vk−v j )n+φk]

+2
p

∑
k=1

M

∑
m=1

N

∑
n=1

+∞

∑
s=−∞

+∞

∑
l=−∞

∑
s′ 6=s

+∞

∑
l ′=−∞

ak(s, l)ak(s
′, l ′)

×εk(m−s,n− l)εk(m−s′,n− l ′)(m− M
2
)

×e2i[(uk−u j )m+(vk−v j )n+φk]

+2
p

∑
k=1

M

∑
m=1

N

∑
n=1

+∞

∑
s=−∞

+∞

∑
l=−∞

∑
l ′ 6=l

ak(s, l)ak(s, l
′)εk(m−s,n− l)

×εk(m−s,n− l ′)(m− M
2
)e2i[(uk−u j )m+(vk−v j )n+φk]

+
M

∑
m=1

N

∑
n=1

+∞

∑
s=−∞

+∞

∑
l=−∞

a2
0(s, l)η0(m−s,n− l)(m− M

2
)

×e−2i(u j m+v j n)

+2
M

∑
m=1

N

∑
n=1

+∞

∑
s=−∞

+∞

∑
l=−∞

∑
s′ 6=s

+∞

∑
l ′=−∞

a0(s, l)a0(s
′, l ′)

×ε0(m−s,n− l)ε0(m−s′,n− l ′)(m− M
2
)e−2i(u j m+v j n)
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+2
M

∑
m=1

N

∑
n=1

+∞

∑
s=−∞

+∞

∑
l=−∞

∑
l ′ 6=l

a0(s, l)a0(s, l
′)

×ε0(m−s,n− l)ε0(m−s,n− l ′)(m− M
2
)e−2i(u j m+v j n)

+2
p

∑
k=1

M

∑
m=1

N

∑
n=1

+∞

∑
s=−∞

+∞

∑
l=−∞

+∞

∑
s′=−∞

+∞

∑
l ′=−∞

ak(s, l)a0(s
′, l ′)

×εk(m−s,n− l)ε0(m−s′,n− l ′)(m− M
2
)

×ei[(uk−2u j )m+(vk−2v j )n+φk]

+2
p

∑
k=1

∑
l<k

M

∑
m=1

N

∑
n=1

+∞

∑
s=−∞

+∞

∑
t=−∞

+∞

∑
s′=−∞

+∞

∑
t ′=−∞

ak(s, t)

×al (s
′, t ′)εk(m−s,n− t)εl (m−s′,n− t ′)(m− M

2
)

×ei[(uk−2u j )m+(vk−2v j )n+φk]

+Op(M
3
2−δ N

1
2 )+Op(M

3
2 N

1
2−δ ). (26)

Therefore

û = ũ+
6

M2Im [AM,N ⊙CM,N]

= u+(u− ũ)
[

Op(M
−δ )+Op(N

−δ )
]

+
6

M3N
X, (say) (27)

where

X( j),

{

p

∑
k=1

M

∑
m=1

N

∑
n=1

+∞

∑
s=−∞

+∞

∑
l=−∞

a2
k(s, l)

×ηk(m−s,n− l)(m− M
2
)

×sin2[(uk−u j)m+(vk−v j)n+φk−φ j ]

+2
p

∑
k=1

M

∑
m=1

N

∑
n=1

+∞

∑
s=−∞

+∞

∑
l=−∞

∑
s′ 6=s

+∞

∑
l ′=−∞

ak(s, l)ak(s
′, l ′)

×εk(m−s,n− l)εk(m−s′,n− l ′)(m− M
2
)

×sin2[(uk−u j)m+(vk−v j)n+φk−φ j ]

+2
p

∑
k=1

M

∑
m=1

N

∑
n=1

+∞

∑
s=−∞

+∞

∑
l=−∞

∑
l ′ 6=l

ak(s, l)ak(s, l
′)

×εk(m−s,n− l)εk(m−s,n− l ′)(m− M
2
)

×sin2[(uk−u j)m+(vk−v j)n+φk−φ j ]

−
M

∑
m=1

N

∑
n=1

+∞

∑
s=−∞

+∞

∑
l=−∞

a2
0(s, l)η0(m−s,n− l)

×ε0(m−s,n− l)(m− M
2
)sin2(u jm+v jn+φ j)

−2
M

∑
m=1

N

∑
n=1

+∞

∑
s=−∞

+∞

∑
l=−∞

∑
s′ 6=s

+∞

∑
l ′=−∞

a0(s, l)a0(s
′, l ′)

×ε0(m−s′,n− l ′)(m− M
2
)sin2i(u jm+v jn+φ j)

−2
M

∑
m=1

N

∑
n=1

+∞

∑
s=−∞

+∞

∑
l=−∞

∑
l ′ 6=l

a0(s, l)a0(s, l
′)

×ε0(m−s,n− l)ε0(m−s,n− l ′)(m− M
2
)

×sin2i(u jm+v jn+φ j)

+2
p

∑
k=1

M

∑
m=1

N

∑
n=1

+∞

∑
s=−∞

+∞

∑
l=−∞

+∞

∑
s′=−∞

+∞

∑
l ′=−∞

ak(s, l)a0(s
′, l ′)

×εk(m−s,n− l)ε0(m−s′,n− l ′)(m− M
2
)

×sin[(uk−2u j)m+(vk−2v j)n+φk−2φ j ]

+2
p

∑
k=1

p

∑
l=1

M

∑
m=1

N

∑
n=1

+∞

∑
s=−∞

+∞

∑
t=−∞

+∞

∑
s′=−∞

+∞

∑
t ′=−∞

ak(s, t)

×al (s
′, t ′)εk(m−s,n− t)εl (m−s′,n− t ′)(m− M

2
)

× sin[(uk−2u j)m+(vk−2v j)n+φk−2φ j ]
}

/

+∞

∑
s=−∞

+∞

∑
l=−∞

a2
j (s, l)σ2

j .

Similarly, we have

v̂ = ṽ+
6

N2Im [BM,N ⊙CM,N]

= v+(u− ṽ)
[

Op(M
−δ )+Op(N

−δ )
]

+
6

N3M
Y, (say) (28)

where Y is similar with X and can be obtained by
substituting(m− M

2 ) in each term ofX with (n− N
2 ) .

Using Lemmas 1 and Lemma 2 of [23], we have when
min{M,N}→ ∞

var

[

6

M
3
2 N

1
2

X( j)

]

→ (∑1) j j ,

var

[

6

M
1
2 N

3
2

Y( j)

]

→ (∑2) j j ,

Cov

[

6

M
3
2 N

1
2

X( j),
6

M
1
2 N

3
2

Y( j)

]

→ 0, (29)

where(∑1) j j and (∑2) j j are defined in Theorem 1. For
j 6= τ, we have

var

[

6

M
3
2 N

1
2

X( j),
6

M
3
2 N

1
2

X(τ)
]

→ (∑1) jτ ,

var

[

6

M
1
2 N

3
2

Y( j),
6

M
1
2 N

3
2

Y(τ)
]

→ (∑2) jτ ,

Cov

[

6

M
3
2 N

1
2

X( j),
6

M
1
2 N

3
2

Y(τ)
]

→ 0, (30)
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where(∑1) jτ and(∑2) jτ are defined in Theorem 1.

From assumption (iii), we haveOp(M− 3
2 N− 1

2 ) = Op

(M− 1
2 N− 3

2 ) = Op(M−2) = Op(N−2). Therefore, if
ũ − u = Op(M−1−δ )I p, ṽ − v = Op(N−1−δ )I p and
0 < δ 6 1

2, then from (27) and (28),
û − u = Op(M−1−2δ )I p, v̂ − v = Op(N−1−2δ )I p. If
1
2 < δ 6 1, from (27)-(30) and using the Central Limit
Theorem of linear process [27], it follows that:

[

M
3
2 N

1
2 (û−u),M

1
2 N

3
2 (v̂−v)

]

L−→ N2p

(

0,
[

∑1 0
0 ∑2

])

.
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