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Abstract: In this paper, an efficient fractional model predictive controller (FMPC) is proposed to control an underactuated system, and

its robustness is analysed by varying the system parameters. The performance merit of proposed design method of FMPC controller

is compared to the MPC and various other existing controller designs. It is noticed using simulation that the transient response of the

considered system improved by using FMPC control.
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1 Introduction, preliminaries and motivation

The fractional order (FO) calculus have generated considerable recent research interest and has found various applications,
especially in control systems. K. B. Oldhamand et al. [1] have given an extensive background study, and many researchers
have been used the fractional order calculus to improve the performance of dynamical systems [2,3,4,5,6,7,8,9]. Many
real-time dynamical systems possess fractional order behavior; therefore, fractional order calculus can provide a better
response as it can attain the more accurate values of the required parameters. Designing an optimized controller for a
systems is required and it is active fields o research currently, and fractional order controllers have been demonstrated
commendable in this field [10,11,12,13,14,15]. Recently, several studies have been done on model predictive control
(MPC) [16,17,18] in which the system parameters are controlled with information of the system’s model which anticipate
the system’s behavior for further action. An efficient design of fractional model predictive controller is proposed in this
paper for an underactuated system, i.e. 2 D Gantry Crane. The controller design proposed has less error, and it can stabilize
the underactuated system in minimum time compared to the existing system.Various existing studies in MPC [19] and
other controllers [20,21,22,23,24,25,26,27] designed for underactuated system have motivated this study. The Euler-
Lagrange formulation is used to get the integer order (IO) modeling of the considered underactuated system. To design
FMPC controller, the FO model of the system is derived from the IO model. To get real world significance Oustaloup-
recursive-approximation is use to get approximated model of the considered system. The simulation experiment shows
that the out response of FMPC is good when compared to MPC. Moreover, the robustness of a system is analyzed by
varying the system parameters. After discussing a brief background in Section 1, the system modeling and its fractional
embedding are discussed in Section 2. Section 3 provides the robustness analysis followed by conclusion.

2 Modeling of the system

The aim of this paper is, modeling and control of an underactuated system. The considered system is a 2-D gantry crane
system shown in Fig. 1. It is used generally in industries, platforms, depots, etc. to carry load. This system is efficient and
can handle heavy loads as well.
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Fig. 1: Schematic diagram of 2-D Gantry crane

System’s model equations can be achieved by taking into account the Euler-Lagrange(EL) formulation, and the
Lagrangian equation for a system is given by

L = T −V (1)

i.e., necessary calculations of kinetic and potential energy to get Lagrangian of a system is required. The various
parameters to obtain the Lagrangian of the system are given as
u(t) = force on the trolley in x-direction
M= mass of the cart
g = acceleration due to gravity
l = length of the cable
x(t) = cart position
θ (t) = tilt angle in the vertical direction
m = the mass of the load

After various mathematical manipulations, linearization and choosing the values of values of m = 1 kg, g = 9.8m/sec2,
l = 1 m, M = 2.5 kg, we get a linear equation of the system as
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ẋ

θ

θ̇ .











(3)

After finding the Lagrangian, the FO model is incorporated in this system. To get physical interpretation, this model
is then approximated by Oustaloup recursive method [28], then it is used to design the controller. Many real-time
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Table 1: Output Response Comparison Table

Specifications and α
Settling Time (Sec) Overshoot Oscillations

x(t) θ (t) x(t) θ (t) x(t) θ (t)
0.3 0.8 16 No No No No

0.5 0.8 3.5 No No No No

0.8 0.8 5 Yes Yes No Yes

1 3.8 4 Yes Yes Yes Yes

dynamical systems possess fractional order behavior [29,30,31]; therefore, fractional order modeling will improve
system performance. The Integer Order modeling is popular amongst the researchers because of the lack of the solution
for fractional models [32]; however, different methodologies are present now for approximation to fractional equivalent
[29,33,34] and used in control theory [35], circuital analysis [36], system models [37], mechanical systems analysis
[38], etc. Bys using (2) and (3), a transfer function can be obtained as (4).

H(s) =

(

0.4s2+4
s4+13.7s2

−0.4s2

s4+13.7s2 .

)

(4)

The fractional transfer function (TF) for this system can be obtained by introducing the fractional term in the TF [4,3,
40],

H(s) =

(

0.4s2α+4
s4α+13.7s2α

−0.4s2α

s4α+13.7s2α .

)

(5)

Selecting different values of α = 1 in Eq. (5), will give different equivalent fractional dynamical models of the system,
and the value of α is between 0 < α < 1. Substituting α = 1 in (5) will result in the same transfer function represented in
(4). The selection of α value is critical and important. FMPC can bedesigned by validating the model using the simulation
for different values of α .

3 Robustness of the FMPC to the variation of the system parameters

An MPC toolbox of MATLAB [41] is used opted to design controller which can also be seen in [42,43]. The structural
diagram of toolbox shown in Fig.2. The system has one input and two outputs.

Fig. 2: MPC toolbox structure

The input applied to the system, as shown in Fig. 2 and has two outputs which are cart positions and swing angle. The
designed MPC has prediction horizon 30, sampling interval 0.1 sec, and control horizon 6. To control the motion x(t) and
to control the swing θ (t) is the main objective with minimum oscillations and minimum overshoot for different values of
α = 0.3, 0.5, 0.8, and 1. Fig. 3 shows the output response and a comparison Table can be drawn from Fig. 3,

It can be observed from Table 1 that the FMPC gives a better response. Substituting α = 0.5 gives the best response in
terms of settling time, overshoot, and oscillations. Therefore, for further analysis, this paper will consider α = 0.5 as best
FO model and robustness is checked for this particular model of the system.

Now for analysing the robustness of the controller, two scenarios are considered, i.e., variation in the mass of the load
and variation in the mass of the cart(trolley).
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Fig. 3: Output Response Comparison for α = 0.3, 0.5, 0.8, 1

3.1 When the mass of cart changes

The FMPC model is analyzed for different values of cart mass by keeping α = 0.5. Two cases for cart mass M= 50kg and
M=10kg are analyzed in this section. It can be concluded from the Fig. 4 that the controller corresponding to FMPC has
very good settling time, and there is no oscillation with zero overshoot for both swing angle and position when trolley
mass changes. However, the response corresponding to traditional MPC (figure 4 corresponding to α=1) concludes that
the settling time is poor, it produces the oscillations, and it has an overshooting if the cart mass changes. For the higher
value of trolley mass, traditional MPC has higher oscillation and overshooting.

Fig. 4: Output Response of FMPC and MPC controllers when trolley mass M changes
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Fig. 5: Output Response of FMPC and MPC controllers when load mass m changes

Table 2: Summary table when the trolley mass changes

Specifications and α
Mass (kg) Settling Time (Sec) Overshoot Oscillations

M x(t) θ (t) x(t) θ (t) x(t) θ (t)
0.5 10 0.66 14.4 No No No No

0.5 20 0.75 9.2 No No No No

1 10 8.9 17.8 Yes Yes Yes Yes

1 20 9.5 90 Yes Yes Yes Yes

Table 3: Summary table when the load mass changes

Specifications and α
Mass (kg) Settling Time (Sec) Overshoot Oscillations

M x(t) θ (t) x(t) θ (t) x(t) θ (t)
0.5 10 0.66 17.4 No No Yes No

0.5 20 4.03 7.18 No No No No

1 10 5.65 7.75 Yes Yes Yes Yes

1 20 28.5 70 Yes Yes Yes Yes

3.2 When the mass of load changes

The FMPC model is analysed for different values of load mass by keeping α = 0.5. Two cases for cart mass m= 50kg
and m=10kg are analysed in this section. It can be concluded from Fig. 5 that the controller corresponding to FMPC has
very good settling time, and there is no oscillation with zero overshoot for both swing angle and position when load mass
changes. However, the response corresponding to traditional MPC (figure 5 corresponding to α=1) concludes that the
settling time is poor, it produces the oscillations, and it has an overshooting if the load mass changes. For the higher value
of load mass, traditional MPC has higher oscillation and overshooting.

Therefore, it can be concluded from Table 2 and Table 3 that the FMPC designed for 2-D Gantry crane system is
robust, and corresponding performance is improved in all aspects compared to the traditional MPC of this system.

The results obtained in this paper is compared with the existing controllers for the same system in Table 4. The
comparison Table 4 tells us that FMPC controller gives a better response than all the existing controllers.
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Table 4: Comparison with the existing control strategy

Publisher Authors Trolley settling time (sec) Swing angle settling time (sec) Methodology used

Acta Polytechnica Hungarica Fetah Kolonic, Alen Poljugan, Ivan Petrovic (2006) 3 4 Tensor Product

Journal of Automation and Control Engineering Le Anh Tuan (2016) 5 6 Sliding Mode Controller

Indian Journal of Engineering Materials Sciences Huseyin Arpaci and O Faruk Ozguvenb (2011) 6, 6, 8 6, 6, 6 Fractional PID, ANFIS Controller, PID Controller

International Journal of Advanced Robotic Systems Wahyudi; Jamaludin Jalani, et al. (2007) 5.36 4 NCTF Control

Engineering, Scientific research Shebel Asad, Maazouz Salahat, et al. (2011) 10 - Fuzzy-PD controller

- Proposed Controller 0.8 3.5 Uses fractional model predictive control strategy

4 Conclusion

It is observed in this paper that the overshooting is minimized and settling time is reduced for 2D Gantry crane system
by using FMPC control. The proposed design of FMPC gives better results in all control aspects compared to traditional
MPC and various other existing controller designs. Moreover, it is identified in this paper that FMPC is a robust controller
to the variations of the system parameters of the considered crane system when compared to a traditional MPC controller.
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