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Abstract: Public transportation systems face the dual challenge of improving service quality while managing demand to prevent
overuse or under-utilization. In this paper, we develop a differential game model to represent the interactions between two key players:
the public transportation management (service provider) and demand regulators. The service provider aims to enhance service quality
and system efficiency, while demand regulators focus on controlling excessive demand. Each player uses control strategies that influence
the state of the system over time, represented by congestion levels or service utilization. We derive optimal strategies for both players
using Hamiltonian functions and evaluate their performance through numerical simulations. Our results reveal how balancing these
conflicting objectives can lead to a more efficient and cost-effective public transportation system.
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1 Introduction

Effective management of public transportation systems is
essential for urban mobility, environmental sustainability,
and economic efficiency. These systems serve as the
backbone of daily commutes, reducing congestion and
pollution, and providing reliable service to millions of
users. However, public transportation systems often face
challenges such as fluctuating demand, limited capacity,
and operational inefficiencies [1,2,3,4]. Balancing these
factors to ensure both service quality and optimal
utilization is a key concern for urban planners and
policymakers, requiring innovative strategies such as
those provided by differential game theory [5,6,7,8,9].

Public transportation systems operate in a dynamic
environment, where both service providers and
passengers’ behaviors influence system performance [10,
11]. Service providers must constantly optimize routes,
schedules, and capacity to meet varying levels of demand
[12,13]. At the same time, they must regulate the overuse
of resources, ensuring that services are neither

underutilized nor overwhelmed by excessive demand, a
balance that is essential to maintaining the efficiency of
the system [1,4]. This creates a delicate balancing act,
where the dual objectives of improving service quality
and controlling demand must be dynamically managed
[12,14].

In this paper, we propose a novel approach using
differential game theory to model the interactions
between two key players in a public transportation
system: the public transportation management (or service
provider) and the demand regulators [3,9]. The service
provider’s main objective is to improve the efficiency and
quality of the transportation service, while the demand
regulators aim to control excessive demand that can lead
to system overloading [5,15]. This interaction is modeled
as a non-cooperative, non-zero-sum differential game,
where each player seeks to optimize their respective
performance indices, leading to a dynamic system where
the control strategies of both players directly influence
overall system behavior [2,16].
By applying optimal control theory through Hamiltonian
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functions, we derive strategies that enable both the service
provider and the demand regulator to achieve their
objectives [17,18]. Our model highlights the inherent
conflict between enhancing service performance and
controlling demand, showing how an optimal balance can
be achieved [4,18]. We explore the impact of these
strategies through numerical simulations, offering
insights into how public transportation systems can be
better managed to achieve higher efficiency with minimal
resource use [12,19,20].

This work is organized as follows: Section 2
introduces the mathematical model of public
transportation management, detailing the dynamics
between the service provider and demand regulator.
Section 3 presents the Hamiltonian approach for deriving
optimal control strategies. Section 4 show cases the
results of our numerical simulations and the impact of
some of the factors on this study. Section 5 we discuss the
optimization of the effective parameters to get the best
results. Finally, Section 6 concludes with key insights and
suggestions for future research, including the integration
of real-time data and cooperative game theory to further
enhance transportation system management.

2 Public Transportation Management
Models

In the management of public transportation systems, a
dynamic model is needed to represent how service and
demand interact over time. The public transportation
system is influenced by two main control inputs: one
aimed at enhancing the service performance, and the
other focused on regulating demand. These inputs affect
the state of the system, which can be thought of as a
representation of service utilization or congestion levels.

The evolution of the state variable x(t), which may
represent the level of congestion or the overall
performance of the system, is governed by the following
differential equation:

ẋ = u1(1− x)−u2x (1)

In this equation:
• u1(t) represents the efforts of the transportation
management to enhance service (e.g., increasing fleet
size, reducing wait times, or adding more routes).
• u2(t) represents the efforts to manage demand (e.g.,
through pricing strategies, service restrictions during peak
times, or other regulatory measures).
• x(t) is the state variable representing the degree of
congestion or the level of system performance at time t.
• ẋ is the rate of change of x(t), capturing how quickly the
system responds to the control efforts of the players.

The model assumes that as the service provider
increases effort u1, the state variable x decreases,
indicating an improvement in the system’s performance
(e.g., reduced congestion). Conversely, the effort u2 by
demand regulators aims to reduce demand by decreasing
the level of service utilization, particularly during peak
times.

To evaluate the effectiveness of these control
strategies, we define two performance indices, J1 and J2,
which measure the outcomes of the service provider’s and
demand regulator’s efforts, respectively. These indices
capture the balance between improving service,
controlling demand, and minimizing control costs.

The first performance index, J1, represents the
objective of the service provider:

J1 =
∫ T

0

(
r1x(t)− k1u2

1(t)
)

dt (2)

Here:
• r1 represents the weight given to improving service
quality, with higher values indicating a greater emphasis
on reducing congestion.
• k1 penalizes the control effort u1, reflecting the
operational costs incurred in improving the service.
• The goal of the service provider is to maximize service
quality (minimizing x(t)) while minimizing the control
costs (penalizing excessive effort in u1).

The second performance index, J2, represents the goal
of the demand regulator:

J2 =
∫ T

0

(
r2(1− x(t))− k2u2

2(t)
)

dt (3)

Here:
• r2 represents the weight given to controlling demand,
with higher values indicating a stronger emphasis on
reducing service utilization (e.g., during peak periods).
• k2 penalizes the control effort u2, reflecting the costs
associated with implementing demand control measures.
• The goal of the demand regulator is to decrease demand
(minimizing 1− x(t)) while minimizing the control effort
(avoiding excessive u2).

In summary, these performance indices capture the
trade-offs between improving service performance,
managing demand, and minimizing control costs. The
dynamics of the system are driven by the efforts of both
the service provider and the demand regulator, and the
model helps to identify the optimal strategies for each
player to achieve their respective objectives[5,6,7,8,9].

Next, we introduce the Hamiltonian functions, which
are essential for deriving the optimal control laws:

H1(t,x,u1,u2,λ1) = (r1x− k1u2
1)+λ1(u1(1− x)−u2x) (4)
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H2(t,x,u1,u2,λ2) = (r2(1− x))− k2u2
2 +λ2(u1(1− x)−u2x)

(5)

To find the optimal controls u1 and u2, we take the
partial derivatives of the Hamiltonian with respect to u1
and u2 and set them equal to zero:

∂H1

∂u1
=−2k1u1 +λ1(1− x) = 0 ⇒ u1 =

λ1(1− x)
2k1

(6)

∂H2

∂u2
=−2k2u2 −λ2x = 0 ⇒ u2 =−λ2x

2k2
(7)

Substituting these values into the expression for ẋ gives
us:

ẋ =
λ1(1− x)

2k1
(1− x)+

λ2x
2k2

x (8)

To further analyze the system, we calculate the time
derivatives of the co-state variables λ1 and λ2 by
differentiating H1 and H2 with respect to x:

First, for λ1, we compute:

H1(t,x,u1,u2,λ1) = r1x−k1u2
1+λ1(u1(1−x)−u2x) (9)

The partial derivative with respect to x is:

∂H1

∂x
= r1 −λ1u1 −λ1u2 (10)

Thus, the time derivative of λ1 is:

λ̇1 =−∂H1

∂x
=−r1 +λ1u1 +λ1u2 (11)

Similarly, for λ2, we start with:

H2(t,x,u1,u2,λ2) = r2(1− x)− k2u2
2 +λ2(u1(1− x)−u2x)

(12)
The partial derivative with respect to x is:

∂H2

∂x
=−r2 +λ2u1 −λ2u2 (13)

Therefore, the time derivative of λ2 is:

λ̇2 =−∂H2

∂x
= r2 −λ2u1 +λ2u2 (14)

Finally, after substituting the values of u1 and u2 into
the expressions for λ̇1 and λ̇2, we obtain:

λ̇1 =−r1 +
λ 2

1 (1− x)
2k1

− λ1λ2x
2k2

(15)

λ̇2 = r2 +
λ1λ2(1− x)

2k1
− λ 2

2 x
2k2

(16)

These final expressions represent the dynamics of the
co-state variables within the model, taking into account
the optimal control laws derived earlier.

After reducing the equation of the system, we obtain:

ẋ =
λ1(1− x)

2k1
(1− x)+

λ2x
2k2

x (17)

λ̇1 =−r1 +
λ 2

1 (1− x)
2k1

− λ1λ2x
2k2

(18)

λ̇2 = r2 +
λ1λ2(1− x)

2k1
− λ 2

2 x
2k2

(19)

ẋ(0) = x0, λ1(T ) = 0, λ2(T ) = 0 (20)

By integrating the differential equations (17), (18) and
(19), we have the following system:

x(t) = x0 +
∫ t

0

λ1(1− x)2

2k1
+

λ2x2

2k2
dt

= x0 +
∫ t

0

λ1

2k1
− λ1

k1
x+

λ1

2k1
x2 +

λ2

2k2
x2 dt (21)

λ1(t) =
∫ t

T
−r1 +

λ 2
1 (1− x)

2k1
− λ1λ2x

2k2
dt

=
∫ t

T
−r1 +

λ 2
1

2k1
− λ 2

1
2k1

x− λ1λ2

2k2
xdt (22)

λ2(t) =
∫ t

T
r2 +

λ1λ2

2k1
(1− x)− λ 2

2
2k2

xdt

=
∫ t

T
r2 +

λ1λ2

2k1
− λ1λ2

2k1
x− λ 2

2
2k2

xdt (23)

By applying the Picard method to equations (21), (22)
and (23), we have:

xn(t) = x0 +
∫ t

0

(λ1)n−1

2k1
− (λ1)n−1

k1
xn−1

+
(λ1)n−1

2k1
x2

n−1 +
(λ2)n−1

2k2
x2

n−1 dt (24)

(λ1(t))n =
∫ t

T
−r1 +

(λ1)
2
n−1

2k1
−

(λ1)
2
n−1

2k1
xn−1

− (λ1)n−1(λ2)n−1

2k2
xn−1 dt (25)

(λ2(t))n =
∫ t

T
r2 +

(λ1)n−1(λ2)n−1

2k1
− (λ1)n−1(λ2)n−1

2k1

xn−1 −
(λ2)

2
n−1

2k2
xn−1 dt (26)

x(0) = x0, (λ1)0 = 0, (λ2)0 = 0 (27)
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For n = 1, we have:

x1(t) = x0 +
∫ t

0

(λ1)0

2k1
− (λ1)0

k1
x0 +

(λ1)0

2k1
x2

0

+
(λ2)0

2k2
x2

0 dt (28)

(λ1(t))1 =
∫ t

T
−r1 +

(λ1)
2
0

2k1
−

(λ1)
2
0

2k1
x0

− (λ1)0(λ2)0

2k2
x0 dt (29)

(λ2(t))1 =
∫ t

T
r2 +

(λ1)0(λ2)0

2k1
− (λ1)0(λ2)0

2k1
x0

−
(λ2)

2
0

2k2
x0 dt (30)

x(0) = x0, (λ1)0 = 0, (λ2)0 = 0 (31)

Therefore, the first approximation for x,λ1 and λ2 is
the following:

x1(t) = x0 (32)

(λ1(t))1 =
∫ t

T
−r1 dt =−r1(t −T ) (33)

(λ2(t))1 =
∫ t

T
r2 dt = r2(t −T ) (34)

Hence the first approximation of u1 and u2 is the
following:

(u1)1 =
(λ1)1(1− x1)

2k1
=

−r1(t −T )
2k1

(1− x0) (35)

(u2)1 =
−(λ2)1x1

2k2
=

−r2(t −T )
2k2

x0 (36)

For n = 2, we have:

x2(t) = x1 +
∫ t

0

(λ1)1

2k1
− (λ1)1

k1
x1 +

(λ1)1

2k1
x2

1 +
(λ2)1

2k2
x2

1 dt (37)

(λ1(t))2 =
∫ t

T
−r1 +

(λ1)
2
1

2k1
−

(λ1)
2
1

2k1
x1 −

(λ1)1(λ2)1

2k2
x1 dt (38)

(λ2(t))2 =
∫ t

T
r2 +

(λ1)1(λ2)1

2k1
− (λ1)1(λ2)1

2k1
x1 −

(λ2)
2
1

2k2
x1 dt

(39)

Therefore, the second approximation for x,λ1 and λ2
is the following:

x2(t) = x0 +

[(
x0 −

1
2

)
r1

k1
−

r1x2
0

2k1
+

r2x2
0

2k2

](
t2

2
−Tt

)
(40)

(λ1(t))2 =

[
−r1 +

r1

2k1
(1− x0)+

r1r2

2k2
x0

]
(t −T )3

3
(41)

(λ2(t))2 =

[
r2 −

r1r2

2k1
(1− x0)−

r2
2

2k2
x0

]
(t −T )3

3
(42)

Hence the second approximation of u1 and u2 is the
following:

(u1)2 =
(λ1)2(1− x2)

2k1

=

[
(t −T )3

6k1

][
−r1 +

r1

2k1
(1− x0)+

r1r2

2k2
x0

]
[1− x0

−

((
x0 −

1
2

)
r1

k1
−

r1x2
0

2k1
+

r2x2
0

2k2

)(
t2

2
−Tt

)
] (43)

(u2)2 =
−(λ2)2x2

2k2

= −
[
(t −T )3

6k2

][
r2 −

r1r2

2k1
(1− x0)−

r2
2

2k2
x0

]
[x0

+

((
x0 −

1
2

)
r1

k1
−

r1x2
0

2k1
+

r2x2
0

2k2

)(
t2

2
−Tt

)
] (44)

The following section provides an in-depth look at the
numerical simulation process and the results derived from
the public transportation management model.

3 Numerical Simulation

In this section, the results of the numerical simulation
for the public transportation management model are
presented. The model is governed by differential
equations, which describe the evolution of the state
variable x(t) and the control inputs u1(t) and u2(t)[8,9].
The control inputs aim to optimize both service
performance and demand management. For the
simulation, the following parameter values were utilized:

These parameters control the trade-offs between
service optimization and demand management.
Specifically, r1 and r2 determine the importance of
service performance and demand control, respectively,
while k1 and k2 penalize excessive control efforts. The
total simulation time, T , defines the observation period
for system behavior, and x0 represents the initial
condition of the state variable, potentially reflecting initial
congestion levels. The simulation results illustrate how
the system’s state variable evolves over time, showcasing
the effectiveness of the control strategies in balancing
service enhancement and demand regulation.

Next, we explore the key results and performance
metrics from the simulation.
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Table 1: Parameter values used in the simulation.

Parameter Description Value

r1 Coefficient for service performance impact 0.5

r2 Coefficient for demand control impact 0.2

k1 Weight for control effort of u1 1.0

k2 Weight for control effort of u2 1.0

T Total simulation time (seconds) 2.0

x0 Initial condition for state variable x(t) 0.5

4 Simulation Results

This section explores the outcomes of the simulation,
analyzing the behavior of the state variable and control
inputs over time, as well as the performance indices that
measure the trade-off between system optimization and
control efforts. The following analysis provides insights
into the effectiveness of control strategies in balancing
service improvement and demand regulation.

Fig. 1: Time evolution of the system state and control
variables

The simulation outputs, visualized in Fig. 1, depict
the time evolution of the state variable x(t) and the
control inputs u1(t) and u2(t). The state variable, x(t),
which might represent congestion or service utilization,
decreases from an initial value of 0.5, indicating system
improvement over time. This decline suggests that the
control actions are effectively optimizing the system’s
performance. The control input u1(t), which is
responsible for improving service, shows a decreasing
trend, signifying increased efforts to enhance service,
such as by adding more vehicles or reducing wait times.
On the other hand, the control input u2(t), related to
demand management, begins with a small negative value,
decreases initially, and then rises again. This pattern
reflects an initial intensification of demand control efforts,

followed by a reduction as the system approaches
equilibrium.

Fig. 2: Comparison of initial performance indices
between the service provider’s objective function J1
and the demand regulator’s objective function J2 before
optimization.

Fig. 2 presents the integrands for the performance
indices J1 and J2, which measure the system’s
performance relative to the control efforts. The integrand
for J1, which balances service improvement and control
effort, decreases over time, reflecting a reduction in
congestion or enhanced service performance. However, as
u1(t) becomes more negative, the control effort increases,
leading to diminishing returns in performance
improvement. The integrand for J2, representing demand
control, shows an increase over time, indicating that
demand management becomes progressively more
challenging as the simulation progresses. The system
expends more effort on demand control, with diminishing
returns toward the end of the simulation.

The final values of the performance indices are
J1 = 0.39111 and J2 = 0.22131. These values provide
insights into the trade-offs between service optimization
and demand management. The higher value of J1
indicates that improving service required more effort
compared to demand control, as reflected in the lower
value of J2. Overall, the system requires less effort to
manage demand than to enhance service, but both
objectives necessitate significant control inputs.

5 Sensitivity and Optimization

Sensitivity analysis is the study of how various
sources of uncertainty in a mathematical model’s or
system’s inputs can be assigned to the uncertainty in the
model’s or system’s output, whether it be numerical or
otherwise. This entails calculating sensitivity indices,
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which measure how much an input or set of inputs affects
the result. Uncertainty and sensitivity analysis should
ideally be conducted together. Uncertainty analysis is a
related activity that focuses more on quantifying and
propagating uncertainty.

Sensitivity analysis is a crucial component of model
construction and quality control in models with numerous
input variables. It can be helpful to ascertain the influence
of an uncertain variable for a variety of reasons, such as
[21]:
• Evaluating a model or system’s ability to produce
reliable outcomes when uncertainty is present.
• Improved comprehension of how input and output
variables relate to one another in a system or model.
• Identifying model inputs that significantly raise output
uncertainty and should thus be the focus of attention in
order to boost robustness is one way to reduce
uncertainty.
• Looking for model flaws (by finding unexpected
connections between inputs and outputs).
• Fixing model input that has no bearing on the output or
locating and eliminating unnecessary components from
the model structure are examples of model simplification.
• Improving communication between decision makers
and modelers (e.g., by making proposals more persuasive,
compelling, comprehensible, or credible).
• Locating areas in the input factor space where the
model’s output satisfies some optimal condition or is
either the maximum or the lowest (see optimization and
Monte Carlo filtering).
• By concentrating on the sensitive parameters, models
with a lot of parameters can be calibrated.
• To find significant relationships between observations,
model inputs, and forecasts or predictions in order to
improve models.

In this section, we study the effect of changing
r1,r2,k1, and k2 on j1 and j2. To conduct this study, we
will discuss the sensitivity of these factors as shown

Fig. 3: Sensitivity analysis of performance indices for
the impact of parameter variations r1,r2,k1 and k2 on the
objective functions J1 and J2.

Based on the study of sensitivity and from Fig. 3, we
noticed that the most effective factors on j1 and j2 are r1
and r2 as shown in Fig. 3. Since, the goal of an
optimization problem is to maximize or minimize a
function in relation to a set, which frequently represents
the range of options accessible in a given circumstance.
Comparing the many options to see which would be
”best” is made possible by the function. For this reason,
we will optimize these two factors to get the best value
for them using the genetic algorithm as shown in the fig. 4

Fig. 4: Convergence of the Genetic Algorithm for finding
the optimal values for r1 and r2 that minimize the
combined cost function.

this Figure shows that the accuracy of the factors r1
and r2 which is increased significantly and the error rate
decreased greatly with the iteration.

Therefore, we repeated the all previous calculations in
the section 4, but by using the optimal values of r1 and r2,
then we got the control inputs u1(t) and u2(t) as

Fig. 5: Time evolution of the optimized system state
and control variables after the optimization of weighting
parameters r1 and r2 via the Genetic Algorithm.

Moreover, after applying this study, we noticed the
effect on both j1 and j2, where j1 increased significantly
and j2 decreased, as shown in the following figure.
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Fig. 6: Comparison of performance indices J1 and J2 after
applying the optimal parameters derived from the Genetic
Algorithm.

6 Conclusion

This paper presented a differential game model to
optimize public transportation management by balancing
service improvement and demand control. The model,
based on a non cooperative, nonzero-sum framework,
allowed us to derive optimal control strategies using
Hamiltonian functions. Numerical simulations showed
how the strategies effectively reduce congestion while
maintaining system efficiency.

For future research, several areas could be explored to
enhance the model’s applicability. Real-time data
integration would allow for dynamic adjustments in
control strategies, making the system more responsive to
changing conditions. Cooperative game theory could also
be investigated, encouraging collaboration between
service providers and demand regulators for more
efficient outcomes. Additionally, incorporating dynamic
pricing and multi-agent systems—such as different
transportation modes—could provide a more holistic
view of urban transportation networks. Finally, adding
stochastic elements would improve the model’s
robustness, accounting for uncertainties in passenger
demand and system disruptions.

In conclusion, this study lays the groundwork for a
comprehensive approach to public transportation
management, with future work offering pathways to
refine and enhance the model’s practical applications.

Appendix

SET T = 2.0
SET x0 = 0.5
SET parameter ranges = {

”r1”: LINSPACE(0.3, 0.7, 5),
”r2”: LINSPACE(0.1, 0.5, 5),
”k1”: LINSPACE(0.8, 1.2, 5),
”k2”: LINSPACE(0.8, 1.2, 5),
”T”: LINSPACE(1.0, 3.0, 5) }
SET t eval = LINSPACE(0, T, 500)

Functions:

1. **Function: System Dynamics**
FUNCTION system dynamics(t,y,r1,r2,k1,k2) {
COMPUTE control inputs u1,u2
COMPUTE derivatives dx/dt,dλ1/dt,dλ2/dt
RETURN [dx/dt,dλ1/dt,dλ2/dt]}

2. **Function: Compute Performance Indices**
FUNCTION compute performance indices (r1,r2,k1,k2)
{
INITIALIZE state vector y0
SOLVE system dynamics over t eval
EXTRACT state variable x and control inputs u1,u2
COMPUTE performance indices J1,J2
RETURN J1,J2,x,u1,u2}

3. **Function: Sensitivity Analysis**
FUNCTION sensitivity analysis(base parameters,
perturbation = 0.05) { COMPUTE baseline J1,J2
FOR each parameter IN base parameters {
PERTURB parameter by +perturbation and compute
J1,J2
PERTURB parameter by -perturbation and compute J1,J2
CALCULATE sensitivity for J1,J2}
RETURN sensitivities}

4. **Function: Optimize r1 and r2**
FUNCTION optimize r1&r2 (r1 bounds, r2 bounds,
k1,k2) {
DEFINE objective function
USE optimization algorithm to minimize objective
function
RETURN optimized r1,r2 }

Main Execution:

1. **Initialize Parameters**
SET r1 = 0.5,r2 = 0.2,k1 = 1.0,k2 = 1.0

2. **Calculate Initial Performance Indices**
CALL compute performance indices (r1,r2,k1,k2)
PLOT state variable and control inputs
PLOT J1 and J2 as bar chart

3. **Perform Sensitivity Analysis**
CALL sensitivity analysis ([r1,r2,k1,k2])
PLOT sensitivity results

4. **Optimize r1 and r2**
SET bounds for r1 and r2
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CALL optimizer1&r2(r1 bounds, r2 bounds, k1,k2)
CALL compute performance indices with optimized r1,r2
PLOT state variable and control inputs after optimization
PLOT optimized J1 and J2 as bar chart
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