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Abstract: We investigate the stability of the equilibria and the in@at manifolds of the host-parastoid model due to Beddimgto
Free, and Lawton [2] subject to the Allee effect.
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1 Introduction The following density-dependent predator-prey model
was investigated by Beddington et 8];[
One of the most commonly used ecology models is

Nicholson-Bailey host-parasitoid mode8][ This is a . N
discrete-time model applicable to biological systems Ny =Neexpir| 1 aR|, (1)
involving two insects, a parasitoid}) and its host I). R.1=CcN[1—exp—aR)]

Nicholson and Bailey developed the model (1935) and

applied it to the parasitiodzncarsia formosaand the  \yhereK is the carrying capacity. It represents maximum
host, Trialeurodes vaporariorumThe term “parasitoid”  yopylation size that can be supported due to availability
means a parasite which is free living as an adult but laysyf 1 the potentially limiting resources. In the teaR,

eggs in the larvae or pupae of the host. Hosts that are noj s the searching efficiency that is, the probability that a
parasitized give rise to their own progeny. Hosts that aregiyen parasitoid will encounter a given host during its
successfully parasitized die, but the eggs laid by thesearching lifetime. Note that Nicholson-Bailey Model
parasitoid may survive to be the next generation ofrequces to the density independent one-species model

parasitoids. Ne.1 = rN; if the parasitoid is not present. Since this is
o _ not realistic for most of the species, modé&) (ectifies

The general host-parasitoid model has the form: this by adopting the density-depending Ricker Model
N1 = rNeF (NG R), N1 = Neexp[r(1— )], where K is the carrying

. capacity of the host and is the sustainable size of the host.
Ria=eN(1-1(\R)). Moreover, in the absence of the parasitiod, the
where the parameters(number of eggs laid by a host equilibrium K is globally asymptotically stable for
that survive through the larvae, pupae, and adult staged) < r < 2 on(0,) [5]. It is assumed that the parameters
ande (number of eggs laid by a parasitoid on a single hosta,r,c,K are all positive real numbers.

that survive through larvae, pupae, and adult stages) are

positive. The functionf can be interpreted as the When a population is small or its density is low, the
probability that each individual host escapes theclassical view of population dynamics is that the major
parasitoids, so that the complementary term fi(Ni, R) ecological force at work is the release from the
in the second equation is the probability of being constraints of intraspecific competition. Individual fisse
parasitized. or one of its components, is positively correlated to
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population size or density. Most definitions of the Allee a.for any values of parameters, there exist two
effect apply either to density of the population or its size.  non-negative fixed points which af@,0) and(1,0);
Allee effects occurs when the per capita growth rate of a b.there exists one positive fixed poiét,r (1— 0)) if and
species is an increasing function of the population size for  only if m> 1 andB = F(6);
a certain range of population size below which the c.there exist two positive fixed points in the form
population dies off. Allee effects may occur due to a  (¢,r(1—¢)), if and only if m> 1 andB < F(6),
variety of causes ranging from mating limitation, predator ~ where 0< /¢ < 1.
saturation and anti-predator defence, etc. Much of what i . ) o
we know about Allee effects comes from mathematicalProof. To find the fixed points of the system given i (
models since models help us organize, conceptualize anfe solve the following system of equations:
interpret a vast amount of complex ecological data, and
predict or hypothesize when such data are not available. x = xexp[r (1—x) -],
We refer the reader7[10,11,7] and references cited _ —exp )Y ©)
. y=mxl—expg-y)z"—.

therein about Allee effects. B+y

We know that predation can create component Allee L i
effects in prey. This requires that predator populations ddf x =0, we have .the extinction f'X?d pom, 0). If x#0
not respond numerically to the target prey species an@ndy = 0 we obtain the exclusion fixed poift, 0). If x 7
that the overall mortality rate of prey due to these O @ndy 7 O the system of equation8)(becomes

predators is hyperbolic function of prey density?]. We

assume that the host population undergoes Allee effects in y=r(1-x,
host-parasitoid interaction. The asymptotic dynamics of . B+y (4)
host-parasitoid model with the Allee effects will be m[1— exp(—Y)]

investigated. We study the following discrete-time = . ]
host-parasitoid model which is the Beddington Model Eliminatingyin (4), we obtain
with Allee effect on the parasitoid population.

B = —r+ (r+m)x—mxexp[—r(1—Xx)]. (5)
Ne Let us denote
Nij1 = Ntexp{f (1— ?) —aR] ) z=F(X) = —r + (r + m)x — mxexp[—r(1—x)]. When
R (2) this curve intersects with the horizontal lime= B, some
—cNJ1—exd—a : fixed points are obtained.
Faa = ol d R)]AJr R Notice that~ is continuousf (0) = —r < 0,F(1) =0,

_ » F”(x) < 0 for all X, limy_e F(x) = —o0, F'(0) > 0. Since
where the parameters K, a, ¢, andA is positive. Now, F/(1) = r(1—m), we have the following cases:
we eliminate some of the parameters by changing the ’

variables. Taking; = X, andy; = aR, we obtain i.lf m= 1, thenF’(1) = 0 and the only maximum point
K is atx = 1. SinceB > 0, there is no intersection of the
= xexplr (1—x) —Wwl, functionsz= B andz = F(x) (See Figure 1(a)).
X1 =X explr(1-) yt]yt ) i.lf m< 1, thenF’(1) > 0. We know thaf" (x) < O for
Yer1 = Mx[1—exp(—yi)] By all xand limy_ F (X) = —o0. This means that for some

values ofB, there exist either one (if the horizontal line
wherem = acK andB = aA is tangent to the curve= F (x)) or two (if Bis less than
the height of the maximum point of the functian=

F (x)) fixed points and for any of them if we denote the
x-component of the any such fixed poinths: w, then

2 Equilibrium Points w> 1. We havey = r(1— w) < 0 by the first equation
of system §) (See Figure 1(b)). Since one component
The fixed points of the discrete syster) &re described in of (w,r(1— w)) is negative, this fixed point is not of
the following theorem: interest in biology and hence it will be omitted.
Theorem 2.1.Let iii.lf m> 1, thenF’(1) < 0. We know thaf" (x) < O for
all xandF (0) = —r < 0. Hence, for some values Bf
F(X) = —r + (r + m)x—mxexp[—r(1—X)] there exist either one (if the horizontal line is tangent
to the curvez = F(x)) or two (if B is less than the
and height of the maximum point of the function
z= F(x)) fixed points. Let us denote thecomponent
g_ (B+ NDVE+VB+ry/4m+r(4+B+r) of such a fixed point by = ¢. Then? < 1 and hence
- 2(m+r) : y=r(1-¢) >0 by @) (See Figure 1(c)). Hence,
(4,r(1—2¢)) is a candidate to be a coexistence fixed
For the system given in, point.
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Now, we have to determine the condition for which
the horizontal linez = B intersects the function
z=F(x) for m> 1. That is the condition for which
the numbeB is less than the height of the maximum
value of the curvez = F(x). Let us denote the
maximum point by(x;y). In order to find that point,
we have

F'(X)=r —m(—1+ er(‘1+’3(1+r>§) =0.

We focus on the case in which the horizontal lzve B
is tangent to the curve= F(x), that isF (X) = B:

—r+ (r+m)x—mxexp[—r(1—X)] = B.
Eliminating the ternme "% we obtain

(m+r)>?: 5

—r 4+ (M+r)X— e
+(m+r) 141X

(6)

The positive solution of equatioB)for xis as follows:

(B+1)\T+vVB+ry/4m+r(4+B+r)

X= 2(m—+r)

(7)

Hence, the condition for existence of the positive fixed
point in part (b) and (c) is obtained: There exist one
intersection pointx,r(1—x)) if and only ifm > 1 and

B = F(x), and there exist two intersection points if and
only if m> 1 andB < F(X).

3 Stability of extinction and exclusion fixed
points

Theorem 3.1.For system «£), the following statements
hold true:

a.The equilibrium(0, 0) is unstable.
bif 0 < r < 2, then the equilibrium(1,0) is
asymptotically stable .

Proof. The Jacobian matrix of the map

G(x,y) = (xe’(lX)y, mx(1— ey)i>

B+y
is
g€ Y(1-rx) —g Yy
JG(x,y) = (1-eV)my e Ymx(y>+B(-1+&+y)) |-
Bty (B+y)?

a.The Jacobian evaluated at the pg0) is

3G(0,0) = (% g) .

The eigenvalues ofG(0,0) are 0 and'. Sincer > 0,
it follows thate’ > 1. Thus(0,0) is unstable.

b.The Jacobian evaluated(dt0) is

JG(1,0) = (15r _01).

The eigenvalues for this matrix arg = 1 —r and
A2 = 0. Thus, the fixed point(1,0) is stable if
p(JG(1,0)) < 1, thatis O<r < 2. If r > 2, the fixed
point (1,0) is unstable. Ifr = 2, then the eigenvalue
areA; = —1 andA; = 0. Now, we have to apply the
center manifold theorenB]: by changing variables,
letu=x—1 andv =y in system £), we have a shift
from the point(1,0) to (0,0). Then the new system is
given by

U1 = (U + 1) exp[—rug — w] — 1,

Veet = (U + 1)[1— exp—v)] vat - ®

The Jacobian of the planar map given &) i6

. —e "M V(=1+4r+ru) —e "M V(1+u)
JG(u,v) = (1-eV)mv e Vm(1-+u) (VZ+B(—1+e'+v))
B+v (B+v)?
()

At (0,0), JG has the form
~ 1-r-1
JG(0,0) = ( 0 0 )
Whenr = 2 we have
= -1-1
JG(0,0) = ( 00 )
Now we can write the equations in syste@) és

= —t— Ve + f(u,v
Ue1 =~k t+ (U, ), (10)
Virr = G, W),

where
flu,v) = —1+u+e (1w +w

and

(1—e")m(1+ w)v .

Let us assume that the map= h(u) takes the form

h(u) = au®+ pu*+0O(u"), a,BcR.

Now, we compute the constarasandf. The function
v = h(u) must satisfy the center manifold equation

h[—u—h(u) + f(u,h(u))] - §(u,h(u)) = 0.

The Taylor series expansion at the point= 0 is
evaluated for the equation above. Equating the
coefficients of the series, we obtain= 3 = 0.
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Thus on the center manifold = 0 we have the where
following map f(uv) = =14 (=14r)u+e ™ V(1+u)+v

P(u)=—1+e 2(1+u). and
(v) ( ) 5 V)_(l—e*")m(1+u)v
Calculations show thal’(0) = —1 and Schwarzian Itk %) = B+v '
derivative of the mapP at the origin is—% < 0. The eigenvalues of the Jacobian matii®(0,0) are
Hence, the exclusion f|xeq pointl,0) is locally  A; =1-—r andA, = 0. Thus, at the fixed poir(tL,0), the
asymptotically stable (See Figuty unstable and stable manifold must be tangent to the
eigenvectors(é) and( 1Er>’ respectively.
{u, P} In order to find the unstable manifold for the exclusion
oo fixed point, we assume that the map= h(u) takes the
form

0.4r

h(u) = au?+Bu+0O(u*), a,BeR.

The maph must satisfy the following center manifold
0.2+

equation
h((1—r)u—h(u)+ f(u, h(u))) — §(u,h(u)) = 0.
-06  -04  -02 0.2 04 06 The Taylor expansion at the poif@, 0) yields
a(—1+1)2%— (—1+4r) (—20%+ B(—1+r1)2+ a(—2+1)r)u*+Ou*=0.
02} Thus, we obtaina = 3 = 0. Hence, the unstable
manifold is h(u) = 0 and the map on the unstable
manifold is

—0.4f

Qu)=—-1+e"(1+u).
Notice that|@'(0)| = |1—r| > 1 whenr > 2.

—0.6}F

Fig. 1: The mapP on the center manifoldl = h(u), wherer = 2 In order to find the stable manifold for the exclusion
fixed point, we assume that magakes the form

h(v) = 1—:v+ av?+ BV +0OVY, a,BeR.

4 Stable and Unstable Man|f0|dS Of the Hence, the center manifold equation is

Extinction and Exclusion Fixed Points h(G(h(vV).v)) — (1 1)h(¥) +v— f(h{¥).v) 0.

For the point(0,0), since|A;| =€ > 1 and|Az] =0< 1, By using the Taylor series expansion at the po®0)

the extinction fixed point is saddle for any values of and equating the coefficient of the polynomials to 0, we
parameters andm. For this point, thex-axis is unstable obtain

and they-axis is stable. _ 2m+B(=3+r)

Now, let us focus on the exclusion fixed poirt 0): By 2B(—1+r)2

using the similar procedure that is used for the centergngd

manifold in the proof of Theorer, we obtain the stable _ 6m(—141)243Bm(—1+1)2+B?(—9+21r—9r2+r3)
and unstable manifolds. In model)(the saddle scenario B=- 6B2(—1+r1)3 :
for the exclusion fixed point occurs when> 2. Shifting Hence, the map on the center manifold is obtained as
the exclusion fixed point frorni,0) to (0,0), we have the _y v 5
following Jacobian matrix: R(v) = (1-eM)mv(l+ g5 +avi+ V)
B+v ’
3G(0,0) = (1af —01> . and the stable manifoldvis
hv) = — +av?+ BVe,

We can write the equations in systeg) &s where o and 3 are given above. Notice th& (0) = 0
1 B e which makes the fixed poiritL,0) locally asymptotically
Ura = (1= = Vet Tl ), (11)  stable (See Figurg).

Virr = G(u,w),
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