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Abstract: Recently, brain tumor diagnosis has increasingly relied on medical image analysis, providing essential inputs for diagnosis,
prognosis, and treatment planning. Deep learning models are an important method used to predict patient progression, impacting the
selection of effective medical prescriptions. Deep learning models have achieved impressive results in automatic classification, but
diverse datasets face challenges in achieving high generality and robustness. In this paper, we propose a new approach that combines
fine-tuning of hyperparameters with advanced computational scripting techniques to increase segmentation accuracy. In this case, we
adopted a modified FCNN architecture to systematically adjust learning speeds, batch size, dropout, and optimizer parameters. We
incorporated data scripting strategies such as rotation, flipping, density variation, and elastic deformation to increase dataset diversity.
This combination helps improve the performance of deep learning models when applied to a wide variety of datasets and study samples.
The proposed method was evaluated on the Brats 2020 dataset and compared to existing methods, including Patchnet, Deeplabav3,
and Baseline FCNN. The results indicate that our augmented model improves state-of-the-art methods in terms of Dice coefficients,
accuracy, and memory. The results demonstrate the effectiveness of combining computer-centric and model-centric adaptation strategies
for improving brain tumor segmentation.
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1 Introduction

Brain tumors are among the most severe and
life-threatening medical conditions, necessitating accurate
and efficient diagnosis and treatment strategies. These
tumors can be primary, originating in the brain, or
metastatic, spreading from other parts of the body.
Regardless of their origin, brain tumors pose significant
challenges due to their complex structure, variability in
size and location, and the critical nature of the brain as an
organ [1]. Accurate segmentation of brain tumors in
clinical imaging is vital for surgical planning,
radiotherapy, and monitoring disease development.
Segmentation involves delineating tumor regions from
surrounding healthy tissue, which is crucial for
determining the quantity of the tumor, making plans for

surgical interventions, and assessing treatment efficacy
[26].

Traditional segmentation methods rely on manual
annotations by radiologists, which can be subjective,
time-consuming, and prone to inter-observer variability.
Manual segmentation requires significant expertise and is
often inconsistent due to differences in interpretation
among radiologists [18]. Moreover, the increasing volume
of medical imaging data in clinical practice has made
manual segmentation impractical, highlighting the need
for automated and reliable segmentation methods.

With the rise of artificial intelligence (AI), deep
learning-based segmentation methods have shown
remarkable success in improving the accuracy and
efficiency of brain tumor segmentation. Deep learning
models, especially convolutional neural networks
(CNNs), have become the cornerstone of automated
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medical image analysis. These models can research
complicated styles and functions from huge datasets,
enabling them to perform responsibilities that include
classification, detection, and segmentation with high
precision [3]. Architectures such as Fully Convolutional
Networks (FCNN) [10], U-Net [4], and DeepLab [25]
have demonstrated substantial improvements in
segmenting brain tumors from MRI scans [5], [6]. For
instance, the U-Net architecture, introduced by
Ronneberger et al. [4], has become a benchmark for
medical image segmentation due to its encoder-decoder
structure and skip connections, which preserve spatial
information and improve segmentation accuracy.

Despite these improvements, demanding situations
stay in making use of deep learning models for brain
tumor segmentation. One major challenge is the limited
availability of labeled datasets. Annotating medical
images is a labor-intensive process that requires expertise,
and the resulting datasets are often small compared to
those used in other domains of AI [6]. This limitation can
lead to model overfitting, wherein the model performs
well on the training data but fails to generalize new,
unseen data. Additionally, variability in MRI scans due to
differences in acquisition protocols, scanner types, and
imaging parameters can similarly complicate the
segmentation task [5].

To address these challenges, researchers have
explored various strategies, consisting of switch getting to
know, information augmentation, and hyperparameter
optimization. Transfer learning involves fine-tuning
pre-trained models on new datasets, allowing the model
to leverage knowledge from larger datasets. Data
augmentation enhances model robustness by artificially
increasing the size and diversity of the training dataset
through transformations such as rotation, flipping, elastic
deformations, and contrast adjustments [8]. These
techniques help the model generalize better to new data
and reduce overfitting. Hyperparameter optimization, on
the other hand, involves tuning parameters such as
learning rates, dropout rates, batch sizes, and activation
functions to improve model convergence and performance
[9].

In this study, we investigate how fine-tuning
hyperparameters and augmenting training datasets can
enhance the performance of deep learning models in brain
tumor segmentation. We compare our approach with
existing models such as PatchNet, DeepLab, and FCNN
to evaluate improvements in segmentation accuracy and
generalizability. By leveraging a combination of
optimized deep learning models and data augmentation
techniques, we aim to provide a more effective and
reliable method for brain tumor segmentation, ultimately
assisting clinicians in more precise diagnosis and
treatment planning. The rest of this paper is organized as
follows. Section 2 discusses previous studies, Section 3
explains the data and methods we used, Section 4 covers
the models we tested, and Section 5 outlines how we
improved them. Section 6 describes the training process,

Section 7 introduces our approach, Section 8 explains
how we measured performance, Section 9 presents the
results, and the Conclusion summarizes our findings and
future work.

2 Related Work

Medical imaging analysis uses new safety technologies
like computed tomography (CT), magnetic resonance
imaging (MRI), and positron emission tomography (PET)
to diagnose patients and preserve lives. The four MRI
image modalities are T1-weighted, T2-weighted,
T1-weighted with contrast enhancement (T1ce), and
fluid-attenuated inversion recovery (FLAIR). Each
modality is represented as a 2D slice, and when all the
slices are combined, a 3D representation of the brain is
generated. Segmenting the brain tumor using a variety of
modalities and sequencing can enhance outcomes and
yield complementary features on areas of various
sub-gliomas. In the field of brain tumor segmentation,
semi-automatic and automatic methods have been
presented; the automatic method demonstrated its
effectiveness and a great potential for more reliable and
accurate outcomes.

The field of medical image segmentation has seen
significant advancements with the introduction of deep
learning architectures. These models have demonstrated
remarkable success in automating the segmentation of
complex structures, including brain tumors, by learning
hierarchical features [28] from large datasets. Below, we
discuss several key deep learning architectures and their
contributions to medical image segmentation, with a
focus on brain tumor segmentation.

Convolutional networks (CNNs) were among the first
deep learning architectures designed for pixel-wise
segmentation tasks. Long et al. [10] introduced CNNs by
replacing fully connected layers in traditional CNNs with
convolutional layers, enabling the network to produce
spatial output maps instead of classification scores. This
architecture laid the foundation for many subsequent
segmentation models. CNNs have been widely adopted in
medical imaging due to their ability to handle variable
input sizes and produce dense predictions. However, their
performance is often limited by the loss of fine-grained
spatial details due to repeated pooling operations.

The U-Net architecture, introduced by Ronneberger et
al. [4], revolutionized medical image segmentation by
addressing the limitations of FCNNs. U-Net features an
encoder-decoder structure with skip connections that
bridge the gap between the contracting path (encoder) and
the expansive path (decoder). The encoder extracts
high-level features through convolutional and pooling
layers, while the decoder reconstructs the segmentation
mask using upsampling and convolutional layers. The
skip connections preserve spatial information, enabling
the model to produce precise segmentation masks even
with limited training data. U-Net has become the gold
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standard for medical image segmentation and has been
extensively applied to brain tumor segmentation tasks [5].

While 2D CNNs process individual slices of
volumetric data, 3D CNNs extend this approach to handle
entire 3D volumes, capturing spatial context across
multiple slices. Kamnitsas et al. [6] proposed a
multi-scale 3D CNN architecture for brain tumor
segmentation, which leverages 3D convolutions to model
volumetric dependencies. Their model achieved
state-of-the-art results on the BraTS dataset by combining
multi-scale features and fully connected conditional
random fields (CRFs) for post-processing. However, 3D
CNNs are computationally intensive and require
significant memory resources, limiting their applicability
in resource-constrained settings.

DeepLab, introduced by Chen et al. [25], is another
influential architecture for semantic segmentation. It
employs atrous (dilated) convolutions to capture
multi-scale contextual information without increasing the
number of parameters. DeepLab also incorporates a fully
connected CRF to refine segmentation boundaries. While
originally designed for natural image segmentation,
DeepLab has been adapted for medical imaging tasks,
including brain tumor segmentation. Its ability to handle
large receptive fields makes it suitable for capturing the
diverse appearance and size of brain tumors.

Patch-based methods, such as PatchNet, divide the
input image into smaller patches and process them
independently. This approach reduces memory
requirements and allows the model to focus on local
features. Zhao et al. [27] proposed a patch-based CNN for
brain tumor segmentation, which achieved competitive
results on the BraTS dataset. However, patch-based
methods often struggle to capture global context, which is
crucial for accurate segmentation of large or irregularly
shaped tumors.

Attention mechanisms have been integrated into deep
learning models to improve segmentation performance by
focusing on relevant regions of the input image. Oktay et
al. [13] introduced attention gates in U-Net, which
dynamically highlight important features while
suppressing irrelevant ones. This approach has been
shown to enhance segmentation accuracy, particularly for
small or poorly contrasted tumor regions.

Generative Adversarial Networks (GANs) have been
explored for medical image segmentation, particularly in
scenarios with limited labeled data. GANs consist of a
generator and a discriminator, which are trained
simultaneously in a competitive manner. The generator
produces segmentation masks, while the discriminator
evaluates their quality. Xue et al. [14] proposed a
GAN-based model for brain tumor segmentation, which
demonstrated improved performance by leveraging
adversarial training to produce more realistic
segmentation masks.

Transfer learning has emerged as a powerful strategy
for medical image segmentation, particularly when
labeled data is scarce. By fine-tuning pre-trained models

on new datasets, transfer learning enables the model to
leverage knowledge learned from larger, more diverse
datasets. Havaei et al. [7] demonstrated the effectiveness
of transfer learning for brain tumor segmentation,
achieving state-of-the-art results by fine-tuning a
pre-trained CNN on the BraTS dataset [26].

Data augmentation techniques have been widely
adopted to address the limited availability of annotated
medical images. Perez and Wang [8] highlighted the
effectiveness of data augmentation in improving model
generalization and robustness. Common augmentation
techniques for brain tumor segmentation include rotation,
flipping, scaling, elastic deformations, and intensity
transformations. These techniques artificially increase the
size and diversity of the training dataset, reducing the risk
of overfitting and improving segmentation accuracy.

Wang et al. introduced TensorMixup, a novel statistics
augmentation method that blends three-D MRI patches
with the usage of tensors sampled from a Beta
distribution. Applied to a 3-D U-Net structure, this
method executed Dice scores of 92.15%, 86.71%, and
83.49% for entire tumor, tumor core, and enhancing
tumor regions, respectively, demonstrating its efficacy in
glioma segmentation [39].

In the context of the BraTS 2023 undertaking [38],
Ferreira et al. employed generative adversarial networks
(GANs) and registration-based techniques to synthetically
augment training records. Their ensemble technique,
combining nnU-Net, Swin UNETR, and former
BraTS-triumphing models, carried out Dice ratings of
0.9005, 0.8673, and 0.8509 for complete tumor, tumor
core, and enhancing tumor, respectively, highlighting the
potential of synthetic data in enhancing segmentation
overall performance [38].

Fine-tuning pre-trained fashions has additionally been
pivotal. Asiri et al. [37] utilized an exceptionally tuned
Vision Transformer (ViT) for mind tumor detection in
MRI scans, achieving excessive accuracy and
performance, underscoring the advantages of adapting
transformer-primarily based architectures to clinical
imaging responsibilities.

In addition, Zeinelldin and Mathis-Hulrich proposed
HT-CNNS architecture, with hybrid transformers and
conversion of neural networks adapted through
transmission learning. His approach demonstrated better
classification results in different brain tumor types, which
emphasize the versatility of the fine-tuning hybrid model
[24].

The evolution of deep learning architecture has
significantly advanced the field of medical image
segmentation, particularly for brain tumors. From CNNs
and U-Net to 3D CNNs and GANs, each architecture has
contributed unique strengths to address the challenges of
brain tumor segmentation. However, challenges such as
limited labeled data, class imbalance, and variability in
imaging protocols remain. Recent advancements in
transfer learning, attention mechanisms, and data
augmentation have shown promise in overcoming these
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challenges, paving the way for more accurate and reliable
segmentation methods.

The key contributions of our research can be
summarized as follows:

–This research demonstrates the end-to-end training
and evaluation of a deep lightweight neural network
for brain tumor segmentation using the BraTS2020
dataset. We explored critical data preprocessing
techniques, utilized the PatchNet, DeepLab, and
FCNN architectures, and employed a full set of
evaluation metrics to achieve robust and reliable
model performance. Throughout, we emphasized
attention to 3D medical image processing, appropriate
preprocessing procedures, and the selection of
evaluation metrics that provide insight into
segmentation quality.

–This study provides a useful basis for future research
and potential clinical applications in the medical
image segmentation. This accomplishment
underscores the promise of deep learning solutions for
solving challenging medical image analysis tasks,
such as segmenting brain tumors from MRI snapshots.

–This study lays good groundwork for future
applications and research in medical image
segmentation. A few potential directions to further
improve this work are as follows: trying other
network structures, e.g., attention networks;
hyperparameter optimization for better performance;
and using advanced techniques such as data
augmentation, transfer learning, or ensemble
strategies to further improve segmentation accuracy.
Additional improvement may also be realized by
leveraging domain knowledge and post-processing
techniques to further refine the predictions of the
model and its clinical utility.

By building on these efforts, we wish to contribute to
the creation of tools that will allow clinicians to diagnose
and treat brain tumors more precisely and effectively and
thereby improve patient outcomes.

3 Materials and Methodology

In this section, we provide a detailed description of the
methodology used to improve brain tumor segmentation
using fine-tuned deep learning models and data
augmentation techniques. The method is split into several
key components: dataset description, records
preprocessing, statistics augmentation, model
architectures (PatchNet, DeepLab, and FCNN), best
tuning, training, and evaluation metrics, as shown in Fig.
1.

Fig. 1: The methodology

3.1 Dataset Description

The Brain Tumor Segmentation (BraTS) 2020 dataset is a
famous and widely used multimodal Magnetic Resonance
Imaging (MRI) scan dataset for brain tumor segmentation
tasks. The dataset consists of MRI scans of glioma
patients, which are brain tumors that occur from glial
cells in the brain. Every patient case includes four various
MRI modalities, as shown in Fig. 2 and Fig. 3, which
include complementary information about brain tissue
and tumor characteristics. These modalities are:

–Native T1-weighted (T1): This type of imaging
offers anatomical details of the brain with high
resolution, with emphasis on the structural integrity of
tissues. It is extremely helpful in visualizing normal
brain anatomy and discriminating between several
types of tissues [26].

–Post-contrast T1-weighted (T1ce -
contrast-enhanced): In this modality, the patient
receives a gadolinium-based contrast agent, allowing
easier visualization of disturbed blood-brain barrier
areas, such as active tumor sites. This modality is
useful for the detection of enhancing tumor
components [15].

–T2-weighted (T2): T2-weighted images are sensitive
to fluid and are optimal at detecting regions of edema
(fluid) and cystic or necrotic regions in the tumor. This
modality is helpful in providing contrast between fluid-
containing regions and solid tissues [26].

–T2-FLAIR (T2-Fluid Attenuated Inversion
Recovery): It suppresses the signal of free fluid (e.g.,
cerebrospinal fluid) but keeps other tissues’ signals
intact. It is particularly useful in showing peritumoral
edema and non-enhancing tumor regions that are
obscured in routine T2-weighted images [15].

Each patient’s dataset includes co-registered and
skull-stripped volumes in these four modalities for the
purpose of spatial registration and multimodal analysis.
The dataset also includes expert-annotated segmentation
masks that delineate the tumor into individual
sub-regions, delineating the heterogeneity of gliomas.
The annotations are provided in the form of pixel-wise
labels, where each label corresponds to an individual
tumor sub-region or non-tumor tissue. The labeling
scheme is as follows:

–Label 0: Not Tumor (NT): This category
encompasses all non-tumor regions in the brain,
including normal brain tissue, cerebrospinal fluid, and
other non-pathological systems.
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Fig. 2: Different modalities of an MRI image slice number
60 from left to right: T1, T1ce, T2, Flair, and Mask

–Label 1: Necrotic and Non-Enhancing Tumor Core
(NCR/NET): This label is used to identify the necrotic
(dead) tissue in the tumor core and segments of the
tumor that do not enhance on contrast. These
segments usually equate to less active or non-viable
tumor tissue.

–Label 2: Peritumoral Edema (ED): This label is used
to describe the edematous (swollen) brain tissue
surrounding the tumor, typically because of the
spillage of fluid out of the tumor into surrounding
brain parenchyma. Edema is a common feature of
gliomas and can contribute to the overall mass effect
of the tumor.

–Label 3: Missing: This is reserved for spaces where
there isn’t a proper annotation. Unsurprisingly, in the
case of the BraTS 2020 dataset, no pixels on any of
the volumes are labeled with this category, implying
all spaces have been annotated [16].

–Label 4: GD-Enhancing Tumor (ET): It labels the
region in the tumor that enhances after gadolinium
contrast administration. It usually describes active,
high-grade regions of tumor with blood-brain barrier
disruption.

The BraTS 2020 data set is a valuable resource for
developing and evaluating automated brain tumor
segmentation algorithms because it provides a
well-annotated and standardized multimodal MRI data
set. Having multiple MRI modalities and extensive
annotations allows researchers to study the complex
spatial and structural heterogeneity of gliomas, which is
crucial for accurate diagnosis, treatment planning, and
follow-up of brain tumor patients [15], [26].

3.2 Data Preprocessing

Preprocessing is a critical step to ensure the quality and
consistency of the input data. The following preprocessing
steps were applied:

–Skull Stripping: Non-brain tissues were removed
using the Brain Extraction Tool (BET) from the FSL
software suite. This step ensures that the model
focuses only on brain regions [19].

Fig. 3: Different modalities of an MRI image slice number
95 from left to right: T1, T1ce, T2, Flair, and Mask

–Normalization: Intensity values were normalized to
the range [0, 1] using min-max normalization:

Inorm =
I − Imin

Imax − Imin
(1)

where I is the original intensity value, and Imin and
Imax are the minimum and maximum intensity values
in the volume [?].

–Co-registration: All MRI modalities (T1, T1c, T2,
FLAIR) were co-registered to the same spatial space
to ensure alignment. This step is crucial for
multi-modal fusion [21].

–Patch Extraction: For PatchNet, the input volumes
were divided into smaller patches of size 64 × 64 × 64
voxels. This reduces memory requirements and allows
the model to focus on local features [6].

3.3 Data Augmentation

Data augmentation is essential to increase the diversity of
the training dataset and improve model generalization. The
following augmentation techniques were applied:

1.Rotation: Randomly rotating images by angles
between −15◦ and 15◦.

2.Flip: Horizontally and vertically flipping images.
3.Scaling: Randomly scaling images by factors between

0.9 and 1.1.
4.Translation: Shifting images by up to 10% of their

width and height.
5.Elastic Deformations: Applying small elastic

deformations to simulate natural variations in brain
anatomy.

These transformations were applied on-the-fly during
training to generate new training samples dynamically
[22], [23], [24].
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4 Model Architectures

We evaluated three model architectures: PatchNet,
DeepLab, and the proposed model (Fast Convolutional
Neural Network (FCNN)). Each model was fine-tuned
using transfer learning and trained with data
augmentation.

4.1 PatchNet

In order to concentrate on localized features, the PatchNet
architecture first splits the input image into small,
overlapping or non-overlapping patches. Each patch is
then analyzed independently. A convolutional neural
network (CNN) is then used to treat these individual
patches, which removes important properties without
considering the global structure of the total image [23].
After patchwork processing, the properties obtained from
each patch are collected or integrated using more complex
fusion techniques to generate a full representation of the
image. To produce the final prediction, which could
require class labeling or region segmentation, this
aggregated feature set is further passed via fully
connected layers or other classification/segmentation
components, as shown in Fig. 4.

Fig. 4: PatchNet architecture process

4.2 DeepLab

DeepLab uses atrous (dilated) convolutions to capture
multi-scale features and a CRF to refine segmentation
boundaries [25]. The architecture is shown in Fig. 5.
DeepLab architecture for semantic segmentation begins
with feature extraction utilizing a backbone network like
MobileNet, ResNet, or Xception. These networks, often
pretrained on large datasets such as ImageNet, are
adapted to maintain high spatial resolution through the
use of dilated convolutions. Instead of standard
convolutions, DeepLab later replaced layers to expand the
receptive area without reducing the feature map solution
so that the model can occupy more global context and
multiscale without increasing the number of parameters.
To improve multiscale feature learning, DeepLab
introduces atrous spatial pyramid pooling (ASPP), where
several parallel atrous convolutions are used with
different dilation rates, catching objects and patterns on

different scales. The outputs from these branches are then
combined to create a rich representation on several levels.
A simple 1 × 1 conversion is used on the ASPP output to
generate a coarse segmentation map, which predicts class
probabilities on each pixel.

Fig. 5: DeepLab architecture process

4.3 The proposed model: Fast Convolutional
Neural Network (FCNN)

This section introduces the lightweight FCNN, a unique
deep learning model created especially for enhanced
brain tumor segmentation. This model’s goal is to provide
a compromise between low computational complexity
and good detection accuracy, which makes it suitable for
quick scientific diagnoses. As seen in Fig. 6, the FCNN
architectural design. Our inference framework employs a
more flexible design with fewer layers and filters than the
convolutional neural network (CNN) architecture, which
is typically demanding and processing costly. We limit
the amount of parameters and concentrate on improving
performance in feature extraction and classification. This
approach makes the model appropriate for real-time
applications while lowering the amount of time and
computing resources needed for training.

Fig. 6: Architecture of the Fully Convolutional Neural
Network (FCNN)

Table 1 showcases the details of a compact Fast
Convolutional Neural Network (FCNN) architecture

© 2026 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 20, No. 2, 357-370 (2026) / www.naturalspublishing.com/Journals.asp 363

designed for efficiency. The model kicks off with a
conv2D layer that transforms the input into a feature map
of dimensions (128, 128, 32), utilizing 608 parameters.
This is observed by way of a maxpooling2D layer that
compresses the feature map to (64, 64, 32) without
introducing any additional parameters. Next, a second
conv2D layer processes the data with 9,248 parameters,
after which another pooling layer reduces the spatial
dimensions to (32, 32, 32). Transitioning into the
decoding phase, the model employs an Upsampling2D
layer to restore the size back to (64, 64, 32). It then uses
another convolutional layer that mirrors the previous one,
also with 9,248 parameters. This is succeeded by using
any other up-sampling layer that brings the resolution
back to the original size of (128, 128, 32). Finally, the
output conv2D layer refines the data using 132
parameters, producing an intensity of four channels
appropriate for multi-class segmentation tasks. In general,
the model consists of 19,236 parameters (approximately
75.14 kb), all of which are trainable, making it an
effective and compact solution ideal for settings with
limited computational resources.

Table 1: Architecture of the proposed FCNN model

Layer (type) Output Shape Param
#

conv2d 4 (Conv2D) (None, 128,
128, 32)

608

max pooling2d 2
(MaxPooling2D)

(None, 64, 64,
32)

0

conv2d 5 (Conv2D) (None, 64, 64,
32)

9,248

max pooling2d 3
(MaxPooling2D)

(None, 32, 32,
32)

0

up sampling2d 2
(Upsampling2D)

(None, 64, 64,
32)

0

conv2d 6 (Conv2D) (None, 64, 64,
32)

9,248

up sampling2d 3
(Upsampling2D)

(None, 128,
128, 32)

0

conv2d 7 (Conv2D) (None, 128,
128, 4)

132

Total params: 19,236 (75.14 KB)
Trainable params: 19,236 (75.14 KB)
Non-trainable params: 0 (0.00 B)

Fine-Tuning: Fine-tuning involves adjusting the
parameters of pre-trained models to adapt them to the
brain tumor segmentation task. The learning rate for the
encoder was set lower than that of the decoder to preserve
the learned features. The fine-tuning process can be
described as:

θfinal = θpre−trained +∆θ (2)

Fig. 7: One-hot encoding

where θpre−trained represents the pre-trained weights,
and ∆θ represents the adjustments made all through
fine-tuning [29].

Training: The models have been trained using the
Dice loss function, which is well-suited for segmentation
tasks due to its capacity to handle class imbalance. The
Dice loss is described as

Dice Loss = 1−
2
∑

i pigi∑
i pi +

∑
i gi

(3)

where pi represents the predicted segmentation mask, and
gi represents the ground truth mask. We used the Adam
optimizer with a batch size of 16 and trained the models
for 10 epochs. A learning rate scheduler was employed to
adjust the learning rate during training, starting with a
higher rate and gradually reducing it. Early stopping was
used to prevent overfitting [30].

5 The Proposed Approach

We described our proposed approach using the following
two algorithms. Algorithm 1 outlines the structure and
operation of a custom data generator designed for MRI
image segmentation.

Image resize: Resize every slice from (1240x1240) to
(128x128) becoming properly in PatchNet and FCNN
networks and (256x256) becoming properly in DeepLab
network. This form is chosen because it is a power of two,
and balances computational efficiency and preserved
information.

One hot encoding: It applies to the mask array to
convert classes (0 to 3) into formatting of numerical
suitable for neural networks, as shown in Fig. 7.

This DataGenerator is an efficient manner to load,
preprocess, and feed big-scale MRI segmentation facts to
a deep learning model without strolling into reminiscence
constraints. It guarantees proper facts, pipeline glide,
handling of missing files, and cleaning of segmentation
labels, making it best for schooling a brain tumor
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Algorithm 1 DataGenerator for MRI Image Segmentation
Require: list IDs: List of image identifiers
Require: Dim: Target image dimensions (height, width)
Require: Batch size: Number of samples per batch
Require: Shuffle: Boolean flag for shuffling data
Ensure: Batch of preprocessed MRI images X and one-hot

encoded segmentation masks y.
Step 1: Initialization (init)

Accept list IDs, dim, batch size, and shuffle as input
parameters.

Initialize internal attributes.
Call on epoch end().

Step 2: Define Number of Batches (len)
num batches = ⌊total samples/batch size⌋

Step 3: Fetch a Batch (getitem)
Select batch indices.
Retrieve corresponding image IDs.
Generate batch data.
Return (X, y).

Step 4: Shuffle Data (on epoch end)
Generate index array.
Shuffle if enabled.

Step 5: Data Generation
Initialize X and y.
For each image ID:

Load FLAIR and T1ce images.
Load segmentation mask.
Remove invalid labels.
Resize images and masks.
Normalize intensities.
Apply one-hot encoding.

Step 6: Output
Return (X, y).

segmentation version on the usage of deep mastering.
Algorithm 2 gives a description of the fine-tuning
process of an FCNN for the function of brain tumor
sharing into 2 multimodal MRI images. Tuning is
performed using random searches in the cause, which
enables automated exploration of different model
architectures and training configurations to adapt the
performance. This process begins with defining an
FCNN-based partition model that accepts entrance
images of 128 × 128 with two channels, and T1CE
represents MRI methods. Model architecture has a
coder-based structure, which has conventions and merger
layers for functional extraction and discharge, followed
by upsampling layers to organize the spatial resolution of
the partition output. The final layer uses a Softmax
activation feature with four filters so that the model can
divide the pixel multi-class according to four different
physical or disease areas. The Adam Optimizer is chosen
for training due to its adaptive learning ability, with a
predetermined set {10−2, 10−3, 10−4}. The tuning
process is carried out using a random discovery algorithm
as a random configuration within the defined
hyperparameter room. This method allows for the

automatic choice of the greatest network intensity, feature
dimensionality, and learning rate, which appreciably
influence the accuracy and generalization functionality of
segmentation models in medical imaging responsibilities.

Algorithm 2 Fine-Tuning FCNN for Brain Tumor
Segmentation Using Keras
Require: MRI image size patch (128, 128, 2)
Require: Partition mask with 4 square meters
Require: Search placement for number of filters and learning

frequency.
Ensure: FCNN model set up with custom hyperparameters
1: Step 1: Define FCNN model
2: Define input shape as (128, 128, 2) to simply accept twin-

modality MRI snapshots.
3: Add a Conv2D layer with filters ∈ {32, 64, 128} (chosen

using hp.Choice()), kernel size = 3, activation = ReLU.
4: Add a MaxPooling2D layer to reduce spatial dimensions.
5: Add a 2D Conv2D layer with tunable filter size, identical as

in Step 1.2.
6: Add a second MaxPooling2D layer.
7: Add an UpSampling2D layer to repair spatial resolution.
8: Add a second UpSampling2D layer.
9: Add a final Conv2D layer with four filters and softmax

activation for pixel-sensible category into 4 instructions.
10: Compile the model using of the Adam optimizer by getting

a rate ∈ {1e− 2, 1e− 3, 1e− 4}.
11: Step 2: Set the Hyperparameter Tuner
12: Initialize a RandomSearch tuner with the following settings:

13: • Objective: ”Val accuracy”
14: • Maximum test: 2
15: • directory and project name to save search results
16: Define the search area:
17: 1. Number of filters in conv2D -layer
18: 2. Learning Frequency for Optimizer
19: Provide training and verification data through training

generators and valid generators.
20: Step 3: Perform Hyperparameter Search
21: Start search using the search with tuner.search():
22: • Training data
23: • Validation data
24: • The number of epochs.
25: • batch size
26: Tuner evaluates different combinations and records the

performance measurements.
27: Step 4: Retrieve and Use the Best Model
28: Receive the best hyperparameter using

tuner.get best hyperparameter()
29: Rebuild the model using tuner.hypermodel.build (best hps).
30: Evaluate and train the final model data sets.

The tuning process begins with the definition of an
FCNN architecture that accepts input images of size
128 × 128 with two channels, representing the
multimodal MRI inputs (FLAIR and T1CE). The model
follows an encoder-decoder structure, where the encoder
extracts features through convolutional and pooling
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layers, and the decoder restores spatial resolution through
upsampling layers. The final convolutional layer uses a
softmax activation function with four filters to perform
multi-class segmentation into four different tissue
regions. The Adam optimizer is employed for training,
with learning rates selected from {10−2, 10−3, 10−4}
through the hyperparameter tuning process.

6 Evaluation Metrics

To thoroughly assess how well a brain tumor
segmentation model performs, we utilize a detailed array
of metrics. These metrics shed light on the model’s
effectiveness in accurately outlining tumor sub-regions
while tackling the difficulties posed by imbalanced
datasets, exemplified by the BraTS 2020 dataset, where
the volume is largely comprised of non-tumor regions
(background). Below, we will mathematically define
these metrics and explore their importance in the realm of
brain tumor segmentation.

Accuracy: it quantifies the overall proportion of
correctly classified pixels in the segmentation output and
is defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

where TP, TN, FP, and FN denote true positives, true
negatives, false positives, and false negatives,
respectively. Although accuracy is a straightforward
metric, it can be misleading when applied to imbalanced
datasets where one class (such as background)
significantly outnumbers the others. In the context of
brain tumor segmentation, high accuracy scores may not
adequately represent the model’s proficiency in accurately
segmenting small or rare tumor sub-regions [16].

Intersection over Union (IoU): it is commonly
referred to as the Jaccard Index and quantifies the overlap
between the predicted segmentation and the ground truth.
It is defined as follows:

IOU =
TP

TP + FP + FN
(5)

where TP represents true positives, FP denotes false
positive, and FN signifies false negative. The IoU score
ranges from 0, indicating no overlap, to 1, indicating
perfect overlap. It is specifically touchy to each false
positives and false negatives, making it a valuable metric
for assessing the spatial agreement between the model’s
predictions and expert annotations [26].

Dice Coefficient: commonly referred to as the F1
score, it assesses the similarity between predicted and
ground truth segmentations. It is defined as follows:

Dice =
2× TP

2× TP + FP + FN
(6)

The Dice Coefficient is considerably applied in
medical photo segmentation because of its robustness in

handling class imbalances and its ability to provide a
balanced evaluation of segmentation performance. Like
the IoU, it ranges from 0 to 1, with higher values
signifying superior overall performance [16].

Sensitivity, also known as Recall or True Positive
Rate, quantifies the proportion of positive ground truth
pixels, such as tumor regions, that the model accurately
predicts as positive. It is defined as follows:

Sensitivity =
TP

TP + FN
(7)

A high sensitivity value signifies that the model is
proficient in identifying tumor regions, which is essential
for clinical applications where the oversight of tumor
tissue may lead to significant repercussions [26].

Precision, additionally referred to as Positive
Predictive Value, assesses the ratio of predicted positive
pixels that correspond to true positive values in the
ground truth. It is calculated using the subsequent
formulation:

Precision =
TP

TP + FP
(8)

A high precision value means that the model
effectively reduces false positives, that’s critical for
minimizing over-segmentation and suring the accuracy of
predicted tumor regions [15].

Specificity: Specificity, also known as the True
Negative Rate, quantifies the proportion of negative
ground truth pixels (such as non-tumor regions) that the
model, as it should be predicted as negative. It is defined
by the formulation:

Specificity =
TN

TN + FP
(9)

While specificity may be less critical in tumor
segmentation compared to sensitivity and precision, it
offers valuable insights into the model’s capability to
correctly identify healthy tissue [26].

7 Results and Discussion

This research examines how hyperparameter tuning and
data augmentation influence the performance of deep
learning models in brain tumor segmentation. We
compare our suggested method FCNN with established
models like PatchNet, and DeepLab to measure
enhancements in segmentation precision and model
generalization. Through the careful integration of
precisely calibrated model architectures with a variety of
enhanced training data, our approach provides a more
reliable and precise solution for brain tumor
segmentation, aiding clinicians in making more accurate
diagnostic and therapeutic choices.

Fig. 8 shows training against verification accuracy
(left) and training vs. verification loss (right) using the
FCNN model. These plots show the models’ learning
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Fig. 8: The accuracy and loss of training and validation
performance of a FCNN deep learning model over 10
epochs

behavior and performance through the training process.
The curves indicate that the model acquires high accuracy
with minimum losses and reflects strong convergence and
effective generalization. The narrow gap between exercise
and verification measurements suggests that the model is
well trained, with a low margin of minimal overdue and
fault. Overall, the results suggest that the FCNN model
provides a segmentation performance in the Brats2020
validation setting.

Fig. 9 presents the segmentation performance metrics
of the FCNN model over 10 training epochs. The left plot
shows the Dice coefficient, a commonly used metric for
evaluating the overlap among predicted and ground truth
segmentation masks. The Dice coefficient exhibits a
consistent upward trend throughout training, indicating
progressive improvement in the model’s learning
functionality. The right plot shows the Mean IoU, another
overlap-based metric that is particularly sensitive to false
positives. The IoU demonstrates a stable and gradual
increase across epochs, in our evaluation, the proposed
method received a high performance metrics than selected
techniques under specific conditions with the Brats2020
dataset.

A qualitative outcome of our strategy from the
validation subsets is shown in Fig. 10. The proposed
method successfully segmented the tumor regions in most
validation cases, particularly when boundaries were
well-defined, and the images that do not contain the
tumor also perform well (no segmentation in the
prediction images). Furthermore, the core tumor has been
satisfactorily segmented. Certain visuals work well for
visualization, while others don’t. Lastly, a large number
of early tumor photos lack appropriate segmentation. We

Fig. 9: The Dice coefficient and mean Intersection over
Union (IoU) the performance matrices of FCNN model

have a goal for future work to improve this last kind of
tumor.

The per-class Dice coefficient functions are used to
evaluate the segmentation performance of a model by
calculating the Dice coefficient for specific tumor regions.
These functions help in accurately measuring how well
the model predicts different parts of the tumor. The
dice coef necrotic function calculates the Dice coefficient
for the necrotic (dead tissue) region of the tumor by
computing the intersection over the sum of squares of the
true and predicted values for the necrotic class. Similarly,
the dice coef edema function measures the cube
coefficient for the edema (swelling) region, evaluating
how accurately the model captures this area. Lastly, the
dice coef enhancing characteristic calculates the dice
coefficient for the enhancing tumor region, focusing on
the parts of the tumor that display contrast enhancement.
Together, these functions provide detailed insights into
the model’s ability to segment and differentiate between
various tumor structures.

Table 2 presents a comparative assessment of three
partition models - FCNN, Patchnet and DeepLab - More
performance measurements. Among them, the FCNN
model shows the best total performance, the lowest loss
(0.0303) and the highest accuracy (0.9981). In addition,
FCNN receives the highest intersection and dice
coefficients of 0.2526 at Intersection over Union (IoU) at
0.3168, reflecting a more overlap between the
approximate division and the ground. The PatchNet
model ranks second, where it shows competitive results in
accuracy (0.9817), and sensitivity (0.9812). These
calculations suggest that PatchNet performs well and
normalize es well, although it does not match the level of
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Fig. 10: Qualitative results obtained from the validation
subset of the BraTS 2020 training dataset. From left
to right: original image flair, ground truth, all classes
predicted, necrotic/core, edema, and enhancing predicted

consistency and accuracy of FCNN. In contrast, the
DeepLab model shows the weakest performance in
almost all considered matrix. It reports the highest loss
(0.3709) and the lowest accuracy (0.8165). While
sensitivity remains relatively high (0.9499), indicating the
right ability to identify proper positivity, its accuracy and
specificity are low, suggesting a higher rate of false
positivity.

In addition, Deeplab specifically shows the lower
class-specific dice score, especially to challenge tumor
subgroups such as necrotic tissue (0.0204) and to increase
the tumor (0.0168), indicates difficult ties in fragmenting
small or less specific areas. In summary, FCNN appears
as the most consistent and accurate model for brain tumor
segmentation among between the three models, followed
by the PatchNet, which provides the right performance.
DeepLab lags behind in both overall and class-specific
segmentation.

Compared with state-of-art methods: Table 3
presents a comparative analysis of the performance of the
proposed technique against several existing methods for
brain tumor segmentation, focusing on their accuracy.
Traditional clustering methods, like k-means combined

Table 2: Quantitative evaluation of DeepLab, FCNN, and
PatchNet models

Metric DeepLab FCNN PatchNet

Loss 0.3709 0.0303 0.1262
Accuracy 0.8165 0.9981 0.9817
Mean IoU 0.1820 0.3168 0.2500
Dice coefficient 0.2238 0.2526 0.2346
Precision 0.7960 0.9982 0.9813
Sensitivity 0.9499 0.9958 0.9812
Specificity 0.7947 0.9994 0.9939

Class-wise Dice coefficients:
Necrotic 0.0204 0.0026 0.0176
Edema 0.0509 0.0157 0.0272
Enhancing 0.0168 0.0103 0.0140

with FCM [31], and bisecting methods [30],
demonstrated limitations in handling complex medical
imaging, achieving only 56.40% and 83.05% accuracy,
respectively. In contrast, deep learning techniques yielded
significantly better outcomes. For instance, the original
U-NET architecture [4] achieved an impressive 92.0%
accuracy on the Brats2020 dataset. Variants like
U-NET-VGG16 [33] and VGG-19 with decoders [32]
showed even greater improvements, reaching 96.10% and
97.26% accuracy, respectively. More sophisticated
architectures, such as 3Encoder with decoder [32] and its
updated BiFPN [32] version, attained an accuracy of
99.10%. Recent techniques like RES-UNeT [34] and
FTVT-L16 [35] have additionally shown strong overall
performance, delivering accuracies of 97.95% and
98.70%, respectively. Notably, a fully Convolutional
Network (FCN) model executed a high accuracy of 99.1%
at the TCGA dataset [36]. Ultimately, the delivered
method outperformed all the listed techniques, reaching
an incredible accuracy of 99.81% at the Brats2020
dataset, underscoring its advanced functionality in
accurately segmenting brain tumors.

The limitations of our work: Despite promising
results, this study has many limitations. First, the
experiments were limited to the BraTS2020 dataset,
limiting the model’s generalization to other datasets or
clinical environments. Second, the method relies on
manually annotated training data, which cannot fully
capture the variability of tumor morphology in different
populations. Third, while fine-tuning and improvements
improved the model’s accuracy, they also increased the
computational cost and training time. Finally, further
validation with independent datasets and prospective
clinical data is required to confirm robustness and
applicability in actual clinical workflows.
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Table 3: Comparison of the suggested model’s
performance with recent methods

Method Database Accuracy (%)

Bisecting (no
initialization) [30]

MRI collected by
authors

83.05

K-means and FCM
[31]

Radiopaedia.org 56.40

U-Net [4] BraTS2020 92.00
U-Net-VGG16 [33] Data approved

by Dr. Soetomo
Surabaya

96.10

VGG-19 + Decoder
[32]

BraTS2020 97.26

3Encoder +
Decoder [32]

BraTS2020 98.29

3Encoder + BiFPN
+ Decoder [32]

BraTS2020 98.99

3Encoder + BiFPN
+ AttDecoder [32]

BraTS2020 99.10

Res-UNet [34] BraTS2020 97.95
FTVT-L16 [35] Figshare, SARTAJ,

and Br35H
98.70

FCN [36] TCGA 99.10

Our method BraTS2020 99.81

8 Conclusion

The proposed fine-tuned full convolutional neural
network (FCNN) demonstrated high segmentation
accuracy and strong generalization ability in automatic
brain tumor detection from MRI data. Quantitative
evaluation on the BraTS2020 dataset showed that FCNN
achieved an accuracy of 0.9981, an average IoU of
0.3168, and a Dice coefficient of 0.2526, outperforming
DeepLab and PatchNet under the same experimental
settings. The model also achieved accuracy (0.9982),
sensitivity (0.9958), and specificity (0.9994), confirming
its reliability in accurately distinguishing tumor and
non-tumor regions with minimal misidentification.

Although these global metrics are encouraging,
class-specific DICE scores–necrotic (0.0026), edema
(0.0157), and growth (0.0103)–indicate that improved
tumor subregion segmentation remains challenging.
These findings reflect the limitations of two-dimensional
modeling and class imbalance in the data set, suggesting
that better spatial context and balanced data augmentation
are needed.

The observed results validate the effectiveness of the
proposed fine-tuning and enhancement strategy, which
optimized learning stability while maintaining a
lightweight, computationally efficient design suitable for
clinical deployment. Future research will extend the
model towards 3D volumetric architectures, attentional or

transformer-based modules, and semi-supervised or
domain-adaptive techniques to increase generalization
and reduce annotation dependency. Comparative
evaluation with recent segmentation approaches further
supports the strength of the proposed model: it achieved
an accuracy of 99.81% on the BraTS2020 dataset,
outperforming U-Net (92.0%), Res-UNet (97.95%) and
FTVT-116 (98.70%). This highlights the efficiency,
accuracy, and reliability of the proposed FCNN as a
promising framework for high-precision brain tumor
segmentation.

In conclusion, the proposed fine-tuned FCNN
provides a robust, interpretable and computationally
efficient framework for brain tumor segmentation,
achieving a scientifically sound balance between accuracy
and complexity. This establishes a promising direction for
the development of next-generation, clinically deployable
deep learning systems in neuro-oncology imaging.

Future work: The use of semi-supervised and
unsupervised learning techniques may be explored in
order to lessen reliance on extensive labeled datasets,
which are frequently hard to come by in the medical
domain. Future research should evaluate the suggested
approach’s practical application by validating it in actual
clinical settings.
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[20] Nyúl, L. G., Udupa, J. K., & Zhang, X. (2000). New
variants of a method of MRI scale standardization. IEEE
transactions on medical imaging, 19(2), 143-150.

[21] Jenkinson, M., Bannister, P., Brady, M., & Smith, S.
(2002). Improved optimization for the robust and accurate
linear registration and motion correction of brain images.
NeuroImage, 17(2), 825–841

[22] Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on
image data augmentation for deep learning. Journal of Big
Data, 6, 60.

[23] Simard, P. Y., Steinkraus, D., & Platt, J. C. (2003). Best
practices for convolutional neural networks applied to visual
document analysis. In Proceedings of the International
Conference on Document Analysis and Recognition (pp.
958–963).

[24] Zeineldin, R. A., & Mathis-Ullrich, F. (2024).
Unified HT-CNNs architecture: Transfer learning for
segmenting diverse brain tumors in MRI from gliomas
to pediatric tumors. arXiv preprint arXiv:2412.08240.
https://arxiv.org/abs/2412.08240

[25] Chen, L. C., Papandreou, G., Kokkinos, I., Murphy,
K., & Yuille, A. L. (2017). DeepLab: Semantic image
segmentation with deep convolutional nets, atrous
convolution, and fully connected CRFs. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 40(4),
834–848. https://doi.org/10.1109/TPAMI.2017.2699184

[26] Menze, B. H., Jakab, A., Bauer, S., Kalpathy-Cramer, J.,
Farahani, K., Kirby, J., ... & Van Leemput, K. (2015). The
multimodal brain tumor image segmentation benchmark
(BRATS). IEEE Transactions on Medical Imaging, 34(10),
1993–2024. https://doi.org/10.1109/TMI.2014.2377694

[27] Zhao, X., Wu, Y., Song, G., Li, Z., Zhang,
Y., & Fan, Y. (2018). A deep learning model
integrating FCNNs and CRFs for brain tumor
segmentation. Medical Image Analysis, 43, 98–111.
https://doi.org/10.1016/j.media.2017.10.002

[28] Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). How
transferable are features in deep neural networks?. Advances
in neural information processing systems, 27.

[29] Isensee, F., Kickingereder, P., Wick, W., Bendszus, M.,
& Maier-Hein, K. H. (2018). Brain tumor segmentation
and radiomics survival prediction: Contribution to the brats
2017 challenge. In Brainlesion: Glioma, Multiple Sclerosis,
Stroke and Traumatic Brain Injuries: Third International
Workshop, BrainLes 2017, Held in Conjunction with
MICCAI 2017, Quebec City, QC, Canada, September 14,
2017, Revised Selected Papers 3 (pp. 287-297). Springer
International Publishing.

[30] Mahmud, M.R.; Mamun, M.A.; Hossain, M.A.; Uddin,
M.P. Comparative Analysis of K-Means and Bisecting
K-Means Algorithms for Brain Tumor Detection. In
Proceedings of the 2018 International Conference on
Computer, Communication, Chemical, Material and
Electronic Engineering (IC4ME2), Rajshahi, Bangladesh,
8–9 February 2018.

[31] Almahfud, M.A.; Setyawan, R.; Sari, C.A.; Rachmawanto,
E.H. An effective MRI brain image segmentation using joint
clustering (K-Means and Fuzzy C-Means). In Proceedings
of the 2018 International Seminar on Research of
Information Technology and Intelligent Systems (ISRITI),
Yogyakarta, Indonesia, 21–22 November 2018; IEEE: New
York, NY, USA, 2018.

[32] Aboussaleh, I., Riffi, J., Fazazy, K. E., Mahraz, M. A., &
Tairi, H. (2023). Efficient U-Net architecture with multiple

© 2026 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


370 H. H. Amin et al.: A Novel Brain Tumor Segmentation Approach Based...

encoders and attention mechanism decoders for brain tumor
segmentation. Diagnostics, 13(5), 872.

[33] Pravitasari, A.A.; Iriawan, N.; Almuhayar, M.; Azmi, T.;
Irhamah, I.; Fithriasari, K.; Purnami, S.W.; Ferriastuti,
W. UNet-VGG16 with transfer learning for MRI-based
brain tumor segmentation. TELKOMNIKA (Telecommun.
Comput. Electron. Control.) 2020, 18, 1310–1318.

[34] Yu, W., & Wu, G. (2024, November). Enhanced Deep Brain
Tumor Segmentation with Medical Image Signal of MRI. In
2024 Cross Strait Radio Science and Wireless Technology
Conference (CSRSWTC) (pp. 1-3). IEEE.

[35] Reddy, C. K. K., Reddy, P. A., Janapati, H., Assiri, B.,
Shuaib, M., Alam, S., & Sheneamer, A. (2024). A fine-
tuned vision transformer based enhanced multi-class brain
tumor classification using MRI scan imagery. Frontiers in
oncology, 14, 1400341.

[36] Sun, H., Yang, S., Chen, L., Liao, P., Liu, X., Liu, Y., &
Wang, N. (2023). Brain tumor image segmentation based on
improved FPN. BMC.

[37] Asiri, A. A., Shaf, A., Ali, T., Shakeel, U., Irfan, M.,
Mehdar, K. M., Halawani, H. T., Alghamdi, A. H.,
Alshamrani, A. F. A., & Alqhtani, S. M. (2023).
Exploring the power of deep learning: Fine-tuned
vision transformer for accurate and efficient brain tumor
detection in MRI scans. Diagnostics, 13(12), 2094.
https://doi.org/10.3390/diagnostics13122094

[38] Ferreira, A., Solak, N., Li, J., Dammann, P., Kleesiek,
J., Alves, V., & Egger, J. (2024). How we won BraTS
2023 Adult Glioma challenge? Just faking it! Enhanced
synthetic data augmentation and model ensemble for brain
tumour segmentation. arXiv preprint arXiv:2402.17317.
https://arxiv.org/abs/2402.17317

[39] Wang, Y., Ji, Y., & Xiao, H. (2022). A data
augmentation method for fully automatic brain tumor
segmentation. arXiv preprint arXiv:2202.06344.
https://arxiv.org/abs/2202.06344

Hanan H. Amin received
the B.Sc. degree in Computer
Science from Sohag
University, Egypt, in 2006,
and the M.Sc. and Ph.D.
degrees in Computer Science
from Sohag University,
in 2018. Currently,
she is Assistant Professor at
the Information Technology

Department, Faculty of Computers and Artificial
Intelligence, Sohag University, Egypt. Her research
interests include, but are not limited to, machine learning,
deep learning, natural language processing, computer
vision, data mining, cloud computing, cybersecurity, and
artificial intelligence applications. She has published
many research papers in international journals and
conferences and has participated in several collaborative
research projects related to IT and AI. She can be
contacted at: hanan.hamed@fci.sohag.edu.eg

E. A. Zanaty is the Dean
of Faculty of Computers
and Artificial Intelligence,
Sohag University, Sohag,
Egypt. He received his Ph.D.
from Chemnitz University
of Technology, Germany,
in 2003. His research interests
include computer graphics,
image processing, machine

learning, and data mining. He has extensive experience in
academic leadership and has served on numerous
committees for the Supreme Council of Universities in
Egypt. He has published widely in international journals
and conferences.

Walaa M.
Abd-Elhafiez is an Assistant
Professor of Computer
Science. She received
her Ph.D. degree from
Sohag University, Sohag,
Egypt. Her research interests
include image segmentation,
image enhancement, image
recognition, image coding,

and video coding, and their applications in image
processing, machine learning, and artificial intelligence.
She has more than 55 published research papers in
reputed journals and conferences.

© 2026 NSP
Natural Sciences Publishing Cor.


	Introduction
	Related Work
	Materials and Methodology
	Model Architectures
	The Proposed Approach
	Evaluation Metrics
	Results and Discussion
	Conclusion

