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Abstract: In this paper, Fractional initial value probleyl$®) (x) = f(x,y)is solved base on the proposed fractional spline interjpolat
for the casex, 0 < o < 1, relied on clas€9—splines as a way to approximate the exact solution of suchlgmes. In addition, this
fractional spline interpolation contaiffsparameter, wherg < (0,1] andf is taken to be equal to one to test the stability analysis of
the method.
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1 Introduction 2 Construction of The General Fractional
Spline Function

Fractional calculus is an important subject that can b : . . . .
described as (Complex orde[r) or caIcquJs of integral angThe. main aim of t.h's SECtI%ﬂ IS _Construc_t general
derivatives of any arbitrary real). Fractional calculus ha fractional spline functiors(x) € C%[0, 1] interpolating to a
achieved too importance and considerable popularity irfunction defined on [a, b],such as Abass, Faraidun and
three past decades. This is referred entirely to haveRostam, Sallam and Karaballi, and Sallam and Anwar ,
showed applications in numerous seemingly divers and1,12,14] respectively, satisfies 1f at the knots
widespread fields of engineering and science. Indeedy, —ih, i =0,1,...,Nand h= %

differential and integral equations, and other differentom_ spline function is defined as follows

problems to be solved, it requires to provide many

potentially useful tool that involves generalizations teo ~ Shza = |S(X);S € CI[0,1],5€ Prg(x),x € | = [%,%i11]

and more variables and special functions of mathematicalyhere P, (x) is the set of all fractional polynomials of
physics as well as their extensiorg19)] degree at mostd

Spline functions are a great tool that can be used for the

numerical approximation of functions on the one hand. . ) o

On other hand, they can recommend new, rewarding?€finition 1.[9,8] The Caputo fractional derivative of
problems on the other and challenging. Lacunaryordera > 0is defined by

interpolation by spline become visible whenever
observation points out irregular or scattered in formation

0 (s)
. . O Tt ds forn—1 neN
that is related to a function and it is derivativ@sl3] DY f(x) = 8 TomT RS A= e

#]‘xi
r(n-a) Ja (x—s)(@+i-n

@)

Create a new fractional spline interpolation based on a Lﬂz)f(x fora =nneN
new class ofc%—spline interpolation and use it to find a dx
numerical solution of FIVP :
If3a>1 3 Existences and Uniqueness
Y () = F(x,Y), Y(X0) =Yo, ¥ (o) = Yo, X€ [0,1]. o
Andif3a <1 Theorem 1Given the real numbers,
¥ () = (xy), ¥(%) = Yo, X€ [0,1]. 2 = 0,1,..,N,5,5"and$>® then there exist a
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unigue cubic spline s § ;, such that

S((): o (@)

a a

% =To
g% = £89 5 fori=0,1,...,N ()
an
S(()Sa) _ féSG)

Proof.The unique spline functios(x) € $7a in (X, Xit1]

wheref € (0,1) will be

s() = A)s +BeOh"s ™ + 7 [C(x)s > +D(x)s 35
+E(x)h°® 3(5‘”
(4)
where
A(x) =1,
B(X) — ;X(a)
CM(a+1)"
_ 1 em T(4a+1)  qq
M= FEaTD BUEr(7a+1).
C T@4atl) g
DX = saar 7a 1) “,
and
_ 1 sa) (40 +1) (7a)
BN = Faa ) pErGa D7t
)

We can express any(t) in [0, 1] in the following form:

p(t) = Pofo(t) + i B(t) + PG C(t) + Py /D () + B E(D),

to determineA, B,C,D andE we write the above equality
for

p(t) = 1,t%,t3% t59 t7% we get
A=1,
:71 t?

MNoa+1) ~’

I(3a+1)C+TI(3a+1)D =t
I (5a +1)B%® —
—— " D4 1)E =t>@
Fatn DFMGa+D ’
I (7a +1)B% _ 7
r4a+1

solving these we obtained the equatioB), ( and
X=X +tBh,0 <t <1 with a similar expression for

S(X)in[Xi—1,Xi].
Since s € C90,1], and S(x") S(x) to
SBa)(x") = SB)(x7) respectively, fori = 0,1,...,N,

leads to the following linear system of equations:

— C{ C{
r@a+1)r(7a+1) -1
+/_(4G+1)%(3a) ] I'(2a+1)l'(7a+1)B50, 50 (50)
(7a+1)7-1F " [ (4a+1)I (5a +1) -1
(6)
ala) _ pada) r6a+1)—ra+1ra+1)
e =hs1+ F2a 11l 6a+1) ]
2apgag ) [(4a+1) o4, 30 (30)
B S  Faa P S
1

2
+ (2a+1) (6a +1)
r(2a+1)|-|E 4I'(kor+1){ D

r(5a+1) |'| 4a+1]ﬁ4"h5°' (50)

(7)
$% = f(x,5),8° =% 8)
and
h50{ (5a) -r (4a + 1) h3C{ 3G —I (4a + 1) h3a (3a)

~pEraty B (2ot 1) 8

r]k l_r(4a+1)} (_1)7 i=12..N

N |'|k=11'(201 +1)

9)
and hence(x) is uniquely determined if0, 1].

Remarkif B =1 in the theoreni then the linear system
(6)-(9) will be written as:

aJa)

1
S :Sfl‘i‘mh %71
+hga[[r(7or+1)_r(sor+1)r(4a+1)] (3a) [ (4a+1) (30)
F(Ba+ 1 (7a+1) S1 T F7a+1)
FrRa+1)r (7a+1) 54 (5a)
I (4a +1)r (5a +1) -1
(10)
ada) _pada) , [F(6a+1)—T 2o+ (5a+1)7 3¢ (3a)
s =%+ | I (2a+1)T (6a +1) Jres™
L T(Aa+1), 5 (3a)
r(7a+1)

N [F(Za +1)M2_ M (6a+1)—T (5a +1) 2, T (4a +1)]
r2a+1)ne_,r(ka+1)
hSa%(E‘i)7
(11)

(12)
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and 4 Stability Analysis
hpa(5) _ —M(4a+1) ao@a)  —F(40+1) 30 30)  The presented methodi@),(11) and (3 is under
I(2a+1) 1 r2a+1) consideration for it's stability analysis and executing th
2 method to the test equation
|_|k§1 r(4a+1):| S(E(Z:I{.)J =1,...,N.
M2l (20 +1) w3 yBO(x) = —ABNy(x) A eR (17)
with the initial condition of ) settingAh = Z , using
2 ) (17) to obtain
Theorem 2[4,7,10,?] Let g € C“M0,h] be given. let
Pom-1 be the unique Hermite interpolation polynomial of g = 1 [I’(3a+1)
degree 2m — 1 that matches g and its first m 1 T FBa+1)[r(7a+1)—I(4a +1)A3an3a]
derivatives ¢ at 0 and h. then ,-(7a+1)+[,-(7a+1)_,-(3a+1),-(4a+1)])\3ah3a]371
m-r r(7a+1)
h' | x(h—x G ha
|e(r)(x)|< |: ( )} , rZO(l)m, 0<x<h +I’(a+1)[l'(7or+1) I'(4or+1)/\3“h3“ Sal
- ri(2m-1)! - L[ [Ra+Dr(7a+1) —r(4a+1)r(5a+1) s s
(14) [I‘(Za F ) (5a+ 1) (7a+1)—T (4a+1)A 30’h30f] -
where
_ (r) g L
[e(x) |= lg(”( X) — Pp_1(X) | and (15) NS = R Fka D 6at DIF (7a + 1)~ (@a s DA%na]
G = max 19" (x) | [r(sa+1) |1| I (ko + D)A%R 4 [ (20 + 1) (4a + 1) (7a + 1)
k=6
the bounds irf{14) are best possible for+ 0 only. - r(3a+1)r(4a+1)r(6g+1)],\6ah50']}371
Theorem 3suppose that s(x) be the fractional spline 1
defined in theoreml ,f%andf3® ¢ CY[0,1]and that +"(0’+1)’_(6“+1)“_(7“+1)*"(4"’“)’\3"“3“][“““)
fP(0) = 0,p=1,2then for any x [0, 1] we have |1Lr(ka+1)+[r(4a+1)r(7a+1)fr(a+1)r(4a+1)
K=
2
|'s(x) — f(x) |< Wf@m (16) r(6a+1)]A3“h3"]h“§”,l
1
Proofbecauses” (x) is hermite interpolation polynomial +[r 2a +1) |-|k JF (ka +1)[r (7a+1) I'(4a+1))\30'h3"}

of degree 3 matching?(x), atx = x,%+1 so for any
X € [X,X+1] we have using 14 with

[r 2a+1) |'Lr (ka+1)— |-|1r (4 +1))I (5a + 1) (7a +1)]
m=1,g= f(@ andp=s?

+[r(2a+1)(|'| I (4a+ 1))l (7o +1) — (22 + 1) |-| I (ka +1)]
k=1 k=4

h? 2

| @) — £0@) < (1)!(4)D D(@)f Aaah3u]h5a§5§1‘
also if we putg = (3% and p= s%) we get o F (4 + 1)F (Ta + 1)A6hSa

- ) h2 2 (30 Me_, T (ka + 1) (6a +1)[M (7a +1) — r(4a+1))\30

|8 g < T _p2pBag I (4a+1)r (7a +1) o
(D)4 +|']ﬁ:11'(ka+1)[l'(7a+1)7F(4a+1)/\3"h3"] !
Then we can get H 1
e { } < [ h2 D2p(a >f} Me_, T (ka + 1) (5a +1)[7 (7a +1) — I’(4or+l)}\3“h3“]
ol < Lok (1)!(4) [[ﬁl’(ka+1) I (5a+1)r (Ta+1)— |‘|r ka + 1)) (7a + 1)]

h?2 K=1
| S(x) —S(0) — F(x) + F(0) |[< T (@ + 1)x@ [ZDZD(") f}
since s(0) = f(0) and x € [0,1] then the last equation
becomes r (50+ D]ASH oo,

(%) — F(x) |< ’_(%)WDZDW

and sincefP(0) = 0, p = 1,2, following [10] we have

M (20 + 1) (4o +1)r (7Ta+1) — |‘| r(a+1)r4a+1)
k=1

or in matrix notatior§ =BS_1; i =1,...,N

D2D(@) f — D2+a) § — f(2+a) S S-1 b1y b1z big
hich direct to
e r(a+1)h? §S=|s"|, S-1=|51| and M= |by bz b
1500~ 1) |< O g,
@ 5 4 ba1 ba b
(@© 2017 NSP
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where

1
r@Ba+n[r(7a+1)—

r(Ba+1)r(7a+1)+

by = I (4o +1)Z%]

[F(7a+1)—TBa+1)

r(4a+1)]2%]

r(7a+1)

Fa+1)[(7a+1)—T(4a+1)23 h?

b=

1
[I’(Za+1)l’(5a+1)[l’(7a+1)—I‘(4a+1)Z3a}

[r (200 +1)I (7ot +1) — I (4o + 1)T (50 + 1)} h5a

biz=

1

b1 = M2, 7 (ka +1)I (6a +1)[I (7a +1) —

{I’(Sa +1) |1LI'(kor +1)Z% 4 M (20 + 1) (40 +1)

r (4a +1)2%]

I (7a+1) - (3a + 1) (4a + 1) (60 + 1)}260}]

1
Fa+1rGa+1)[r(7a+1) -

b2z = I (4o +1)Z%]

[r(a+1) |1| I(ka +1)+ [ (4a + 1) (7a +1)
k=6

—I(a+1)r (4a + 1)l (6a +1)]2% |h®

1
b33:[|_|2 I (ka+1)r (5a +1)[I (7a +1) —T (4a +1)Z37]
[ r (ko + ) (5a +1)7 (7o +1) - IEIF"““”

"( +1)]+

- ﬁ I (a+ 1) (4a +1)I (5a + 1)}23“] h5a
k=1

The characteristic equation can be expressed as below:

[F 2o +1)r (4a +1)I (7o +1)

r3— (trB)r’+ (B1+By+Bg)r—det(B)=0  (18)

The cofactors of the diagonal elements can be denoted by
B1,By,Bs respectively where r is the eigenvalue ,In
addition, @0),(11) and (3 can define the cubic spline
approximation method that have interval of periodicity
(0,Z3%), where the eigenvalues , of the matrix M are
complex conjugate and r3 |< 1. If all complex
eigenvalues have negative real parts, the characteristic
equation will be stable as the characteristic polynomial
(18) says.L,5,17]

5 Algorithm
1.
S(x) = A(X)s + Bx)h?s® + h3[C(x)5%) 4 D(x)s %]

+E(x)h%g >

was constructed and derived @fja,b], 0 < a < 1
and 8 € (0,1].

2.3 = 1 was put in equatiorg}, (7), and Q) in theorem
(1) and equationX0), (11) and (L3) were achieved.

3. The error bounded in theored) (vas discussed.

1
bp3 = - . .
B T a+ 1), T (ka + 1) (7a+1) — T (4a +1)23 4. The stability analysis of equation type
7 2 yB9) (x) = —ABy(x),A € R, was demonstrated.
[r(2a+1) [ (ka+1)~ ([ 7 (4 +1)r (50+1)
k=5 k=1
) .
I (7a+1)]+[r (2a +1)( |‘| (4a + 1))l (Ta +1) 6 Numerical Examples
5 K=t In this section, some numerical results are shown to
~r@a+1)[] I‘(ka+1)]z3”]h5" illustrate the presented method and comparison between
k=4 them depending on the value of h amd
Example 18] Consider the following nonlinear
) I (4a + 1) (7a +1)289 fractional differential equation
31= —3 3a
M, T (ka +1)I (6a +1)[I (7a +1) — T (4a +1)A r(3.5)
a __ b : 2.5—a
(X) + xy?(X) = X +7r(3.5_0)x ,
b I (4a + 1) (7Ta+1) " 0 < a < 1with initial condition y(0) = 0,
2T M2 T (ka+1)[M (7Ta+1)— T (4a +1)239] and the exact solution is(y) = x5/2.
(@© 2017 NSP
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The absolute errorde™| = |D(Mg(x) — DM@ y(x)|
where m=0,1,...,6.

Table 1: Absolute Error of Example{) for o = 75

h le] | e | |e2| Exactsolution Approximation solution
0.4 0.0749 0.0787 0.1049 0.0179 0.0608
0.6 0.2223 0.2337 0.2712 0.1012 0.1325
0.8 0.4648 0.4885 0.5229 0.2789 0.2096
Table 2: Absolute Error of Examplel) for a = %
h le] |e% | |e§ | Exactsolution Approximation solution
0.4 0.0589 0.0634 0.1329 0.0179 0.0455
0.6 0.1668 0.1798 0.2991 0.1012 0.0786
0.8 0.3395 0.3660 0.5317 0.2789 0.0871

Example 6] Consider the following fractional
differential equation

W 40320 4 o T(5-9)
PV = Fem R

+(L5xE X — (y(x))?

NN

0 < a < 1 with initial conditiony(0) = 0, y (0) =0 . The
exact solution ig/(x) = x8 — x4+ 2 + 2.25x.

Table 3: Absolute Error of Example2) for a = 1—10

h le| |[e”] |€%| Exactsolution Approximation solution
0.4 0.0222 0.233 0.5707 1.914 1.681
0.6 0.1683 0.177 0.0541 2.0292 1.8522
0.8 0.2572 0.2703 0.0126 2.0284 1.7581

Table 4: Absolute Error of Example2) for a = %

h le| |[e”] €| Exactsolution Approximation solution
0.4 0.0247 0.0266 1.112 1.7192 1.6926
0.6 0.1813 0.1954 0.1978 1.9083 1.7129
0.8 0.243 0.2619 0.3364 1.959 1.6971
7 Conclusion

X% 42250 (o +1)

2 t 2 e
-~ __——”_‘- ]
e AT .'I - o ik
> —
15 [ 1.5 r
1 1
0.5 ——s(x)| 0. 51& —k— sz}
~ —yix)| . ===y
04 o+
] 200 400 600 0 2000 4000 G000
2
! _/-H_’
15/ ja’
14 —a— gPigy
- ,Y‘J”}fx}
0.5
0 2000 4000 6000

Fig. 1. Exact and Absolute Error of Examplawhena = .

2 - 2 [
Vs e T oo
15 zﬁ 15
14 1
051 —+—s(x)] 05} —*— s
i et 1) k0 — )
o ot
0 200 400 800 0 2000 4000 6000
2 —
y
15
1¢
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05 —a— gl
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é T

o] 2000 4000 G000 BOOO

Fig. 2: Exact and Absolute Error of ExampBawhena = 3—6L.

fractional initial value problems on other hand , error
bounded and stability analysis was discussed and
examples was used to clarify this presented method based
on step size h and the value ®f
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