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Abstract: This study focuses on developing fully functional cutting stock software by utilizing an improved multi-phase heuristic
algorithm to find the optimal solution for the cutting material. Issues which commonly appear in real-world cutting stock applications
are also discussed
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1 Introduction

The classic optimization issue known as the cutting stock
problem (CSP) is common in industrial manufacturing. It
is often referred to as a nesting or packing problem and
typical scenarios include how to most efficiently cut
sheets of raw materials into pieces or rolls of different
sizes. Applications and methodologies designed to
optimize efficiency by minimizing cutting waste through
have been researched by programmers and businesses for
decades. Extensions of CSP have been utilized in
industrial applications including packing, loading and
assortment composition. This issue has gained even more
attention in the recent global economic downturn as
companies seek to reduce labor costs and material waste
in order to remain competitive. CSP generally contains
many variables and leads to many feasible solutions.
Recent research shows that heuristic algorithms can
obtain the optimal solution in the solution domain. In
CSP, the material to be cut is referred as a sheet or plate,
and the patterns which need to be cut are called pieces. In
this study, the major focus is placed on a two-dimensional
constrained guillotine cut with multiple stock sheets.
Commonly used in panel saw machines, a guillotine cut
requires a cut on a regular sheet to begin at one edge and
run continuously to another edge.

Most theoretical 2D guillotine problems use heuristic
algorithms which focus on single sheets in attempting

minimize cutting waste. However, in real-world industrial
applications, cutting is commonly performed on multiple
sheets to raise manufacturing efficiency. Therefore, it is
necessary to modify and enhance the traditional objective
function used for single sheets. In order to reach the
maximum cutting ratio, available algorithms require
heavy computational resources. Heuristic algorithms
require both a large population and number of generations
to reach the optimal result, resulting in a large amount of
computation. However, many factories require minimal
delays in cutting sequences, particularly when the
material being cut is inexpensive and manufacturing time
is the primary concern. Under this scenario, the tradeoff
between the efficiency and accuracy of a given algorithm
becomes important. If the cutting ratios are very close,
many applications tend to favor solution speed over
maximum optimization. This study presents an improved
heuristic algorithm to handle a 2D multiple-sheet
constrained guillotine cutting problem, with consideration
given to real-world application..

2 Literature Review

When cutting a large stock sheet into smaller pieces, two
issues appear: (1) an assortment problem and (2) a trim
loss problem. The first issue is associated with a
classification problem, while the second is related to
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reducing waste material [1]. These issues make CSP an
NP-hard problem. The cutting domain can vary from one
to n dimensions, yet most studies have focused on
1to3-dimension problems [2,?,?]. In 1964, Gilmore and
Gomory applied a linear programming approach to
associated 1D and 2D cutting problems [5,?]. Their
approach not only solved the 1D problem by treating it as
a knapsack problem, but also treated the 2D problem as a
collection of 1D cases which could also be solved as a
knapsack function. Since then, many 2D applications
have been studied. Based on cutting constraints, 2D CSP
can be roughly classified as guillotine and non-guillotine
cuts. A guillotine cut refers to patterns with uninterrupted
cuts running from one side of the sheet or from previously
cut fragments to an opposite side. In a guillotine cut, an
n-stage cutting implies a cutting pattern is cut in n phases.
Each stage consists of guillotine cuts of the same
direction, with two adjacent stages running in
perpendicular directions. For example, in two-stage
cutting, strips (strip patterns) produced in the first stage
are cut into pieces in the second stage. The term
non-stage refers to the opposite of the n-stage. It does not
specify any stage number in which to cut. If the number
of pieces to be cut from the plate is not constrained, it is
called unconstrained cutting, otherwise, it is considered
constrained cutting.

In 1985, Beasley presented a dynamic programming
recursion method to solve staged cutting and general
guillotine CSP [7]. While this approach obtains several
optimal solutions using a recursion algorithm, it worked
for small-scale cutting problems only. Christofides and
Whitlock applied a tree-search method to solve the 2D
guillotine cutting problem [8]. It overcame the
disadvantages of recursive algorithms and worked for
small scale problems. Following this method, Hifi Ouafi
[9] and Viswanathan Bagchi [10] improved the
tree-search approach by adding a Best-First strategy to
improve efficiency.

Wang presented two combinatorial methods to create
different guillotine cutting patterns and simultaneously
assemble pieces vertically or horizontally to create a
larger rectangular cutting area to form final cutting
patterns [11]. Vasko [12] and Oliberia Ferreira [13] later
presented an improved method based on Wangs approach,
yet efficiency and accuracy issues remained. Following
that, Valdes et al. presented the tabu search algorithm to
solve general cutting problems [14]. A tabu search is a
heuristic search algorithm commonly used for job shop
and path finding problems. They further utilized the
meta-heuristic algorithm known as Greedy Randomized
Adaptive Search Procedure (GRASP) to improve optimal
solutions and reduce the waste ratio over two-stage
guillotine cutting problems [15]. Even though this
algorithm demonstrated better performance, it required
more computation time, again highlighting the tradeoff
between CSP performance and efficiency.

Linear or dynamic programming attempts to search
all possible solutions in feasible search domains. This

approach is capable of finding the best optimal solution
for small-scale problems. However, real-world
application is generally complicated and typically large in
scale. Additionally, these types of algorithms tend to be
too time-consuming for practical use. As for the best-first
search algorithm, there is no guarantee that it can find the
best optimal solution. Thus, heuristic algorithms such as
SA (simulated annealing) or GA (genetic algorithms)
provide feasible candidate approaches and have recently
become commonly adopted for CSP. Much CSP research
has focused on the application of heuristic algorithms
after the dramatic improvements in the computational
capability of personal computers. For example, Lai and
Chan used a simulated annealing algorithm to create a
specific cutting pattern for a non-guillotine cutting
problem [16]. Faina utilized a simulated annealing
algorithm for guillotine and non-guillotine cutting
problems [17]. Parada et al. [18] constructed a binary tree
for particular cutting patterns for the constrained
guillotine cutting problem with a simulated annealing
approach. Since genetic algorithms are particularly
efficient for integer-based problems, they are commonly
applied to cutting stock applications. Wu [19], Goncalves
[20], Pal [21], Liu Teng [22], Jakobs [23], and Babu Babu
[24] provide notable examples.

Research publications often have a different focus
than real-world application. For example, most literature
presents algorithms which pursue the best cutting
measure over a single sheet. However, actual industrial
applications also value manufacturing efficiency. If a raw
material is not particularly expensive, then quickly
implementing a cutting layout becomes particularly
important. In other words, if the cutting ratio is close to
optimal, it is preferable to have as few cuts as possible.
Many applications prefer to have different patterns
tailored over different types of sheets simultaneously. The
multi-sheet CSP is very common in real-world
applications, yet it doubles the complexity and
complicates the computation. For multi-sheet issues,
Gilmore Gomory [5,?] and Beasley [7] presented an
approach which collected all the different single sheets
being used together and treated them as one final large
sheet, then cut the resulting sheet. Unfortunately this
approach is not practical, since different sheets may not
be fully aligned, or because their size does not guarantee
that the final sheet will remain a regular rectangle, and
pieces may be cut over the common borders of two
aligned sheets. Babu Babu presented an improved
algorithm for multi-sheet CSP [24]. GA was used to
handle a chromosome composed of sheets and pieces,
resulting in more feasible solutions. In this study, an
improved multi-phase GA algorithm is used to solve
multi-sheet 2D CSP for constrained guillotine cutting
with a modified objective function. The merits of the GA
heuristic algorithm have been widely discussed in the
literature. This population-based algorithm consists of all
the solutions in the problem domain, and each solution is
referred to as a chromosome. Through GA operations
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such as reproduction, crossover and mutation, new
offspring are generated through multiple generations.
Since this algorithm adopts the concept of natural
selection sometimes referred to as the survival of the
fittest concept, chromosomes which better fit the objective
function of the problem have a higher survival
probability. The mechanism of this algorithm can override
the local optimum and converge to a global optimal
solution. A modified multi-phase GA is used for optimum
solution searching in a 2D constrained guillotine CSP.
Research results confirm that this modified algorithm
produces efficient results and can reach the optimum for
other benchmark problems. Literature has also shown that
the multi-phase approach can improve diversification for
global search and enhance convergence [25]. The search
procedure starts from a population in the specified
domain. Each chromosome contains the required
evolutionary information. Offspring evolve through
reproduction, crossover and mutation procedures. The
objective function is evaluated during each generation,
and global searching obtained the possible optimum
solution for the simulation.

3 Models

As this study focuses on a 2D CSP with constrained and
guillotine cutting, the most common mathematic model is
to minimize the waste area. Parada et al [18] presented a
model for a single sheet case. Let the sheet have a
dimension ofL by W , with piecesP1, P2, ..., Pn with
dimensions ofl1 ×w1, l2 ×w2, ln ×wn. Each Pi can be
cut from the sheet forxi pieces, but no more than bi
pieces (the constraint condition). Thus, the mathematic
model (fitness function) is shown as follows:

Minimize LW −
n

∑
i=1

liwixi.

subject to 0≤ xi ≤ bi, (1)

0≤ i ≤ n integer, ∀i.

This model can also be presented as a normalization form,
divided by the area of the sheet to the original equation so
that the fitness value can be between 0 and 1 (or
represented as a percentage) as shown in the following:

Minimize
LW −

n
∑

i=1
liwixi

LW
. (2)

The formula presented is very straightforward, since it
represents trim loss. However, Goncalves [20] pointed out
that this model poorly captures the potential improvement
for a solution. In his research, two cases with the same
trim loss were presented; his original figures are shown as
Figure 1. From the figure above, one can tell these two
different patterns have the same cutting ratio (both values

Figure 1: Different cutting patterns with the same cutting ratio.

are 5 according to equation (1), or 0.3125 according to
equation (2)). However, the cutting patterns are closer to
each other in Figure 1b than they are in Figure 1a, and the
uncut space sits together. Clearly, if the unused spaces are
widely dispersed, it would be difficult to continue cutting
or for further utilization, even though the trim/loss ratiois
the same. Thus, Goncalves presented a modified trim loss
as follows:

Minimize
LW −

n
∑

i=1
liwixi

LW
−K ×

small piece
LW

×
largest ERS

LW
,

subject to 0≤ xi ≤ bi, (3)

0≤ i ≤ n integer, ∀i.

ERS represents the Empty Rectangular Space, andK is a
constant between[0.01,0.1]. This model takes the layout
of the cutting pattern into consideration, and can better
evaluate continuous unused space. This formula is thus a
better model than the traditional one. However, since
real-world applications generally consist of multiple
sheets, we extended and modified the model to minimize
the following equation:

S

∑
i=1

(

LiWi −∑ j = 1Pl jw jx j

TotalArea

−K×
small piecei

TotalArea
×

largest ERSi

TotalArea

)

whereTotalArea =
S

∑
i=1

LiWi

Subject to 0≤ xi ≤ bi, (4)

0≤ i ≤ n integer, ∀i

In this extended model, the value ofK is set as 0.03 as
Goncalves suggested andsmall piecei is the smallest
piece after rectangle sheets are cut. The largest ERS after
rectangle sheets are cut islargest ERSi, while TotalArea
is the sum of all the rectangular sheets. This model will
also serve as the objective function in our multi-phase
heuristic algorithm.

4 Heuristic Search Algorithm

Research has shown the heuristic search approach is the
best approach for CSP. Heuristic searches are global in
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their approach, most commonly consisting of genetic and
evolutionary algorithms. The parameters used for the
algorithms include population size, number of
generations, solution space, and number of decision
variables. Nevertheless, as stated earlier, a global search
algorithm is usually computationally expensive, requiring
a high population and a large number of generations for
convergence to global optimization. The major weakness
of heuristic algorithms is efficiency, and research into this
issue has become widespread. Many approaches in
genetic algorithms have attempted to improve
convergence and efficiency by providing modified
mutation and crossover operators [26]. Yet it remains
clear that no matter which different operators are utilized,
the essential computation still relies on an evaluation of
an objective function based on a large population size. For
the single sheet case, the algorithm only needs to try
different orders of the pieces for an optimal solution.
However, the cutting order of the sheet needs to be
considered for the multi-sheet case. The combination of
considering the order of sheets and pieces makes this type
of CSP more complex. This is especially true when the
number of sheets and pieces increase, and the complexity
of the search increases accordingly. Obtaining the best
cutting ratio within a reasonable computation time is vital
to many real-world applications. The CSP process
outlined in this research includes the following
procedures: encoding, population initialization, the
guillotine cut processing, fitness function evaluation,
reproduction, crossover and mutation. Each procedure is
described as follows:

A. Encoding
Let setS andP represent the collection of sheets and

pieces respectively, i.e.,S = Si{w,h,ci},P = Pj{w,h,ci}.
For example, letS = {{200, 150, 1}, {200, 200, 1}}
indicate a set that has one sheet 200 by 150, and another
sheet which is 200 by 200.

P = {{100, 50, 2}, {65, 50, 2}, {70, 50, 1}, {50, 50, 4},

{50, 100, 4}, {75, 40, 5}, {25, 50, 4}}

indicating that there are 7 different patterns (2 pieces of
P1, 2 pieces ofP2, 1 piece ofP3, 4 pieces ofP4, 4 pieces of
P5, 5 pieces ofP6 and 4 pieces ofP7 which need to be
trimmed from sheetsS1 andS2). This is demonstrated in
Figure 2. Before the algorithm begins, the encoding

Figure 2: Encoding sample for the sheets and pieces.

procedure will assign code to sheets and pieces to form an

Table 1: Encoding for the sheets
S Dimension count Code
S1 200×150 1 0
S2 200×200 1 1

Table 2: Encoding for the pieces.
P Dimension count Code

P1 100×50 2 0, 1
P2 65×50 2 2, 3
P3 70×50 1 4
P4 50×50 4 5, 6, 7, 8
P5 50×100 4 9, 10, 11, 12
P6 75×40 5 13, 14, 15, 16, 17
P7 25×50 4 18, 19, 20, 21

individual chromosome. The first part of the chromosome
consists of the codes of sheets, and the second part
consists of the codes of the pieces. The code for the initial
sheet or piece begins from 0 and consequently increases
by 1 for the next sheet or piece. The following two tables
illustrate the details. The possible chromosomes can be
illustrated in Figure 3 after the encoding process. Each
different chromosome will yield a different fitness value
accordingly.

Figure 3: A chromosome consisting of sheets and pieces for
simulation.

B. Initial Population
This modified algorithm is derived from the

population-based heuristic approach of the original
genetic algorithm. All the chromosomes consist of the
entire population. Each chromosome is encoded
randomly. Since population size plays an important role
in determining solution quality as well as computational
efficiency, the population size is set as 30∼40 of the
length of a chromosome in this study.

C. Guillotine Cut Process
When a piece is guillotine cut from a sheet, one or

two possible empty spaces will remain. Each empty space
is referred as ERS (Empty Rectangular Space). Based on
different cutting directions (horizontal or vertical), the
newly created ERS can be either vertical or horizontal if
the piece is smaller than the original sheet. If the width
(or length) of the piece is the same as the original sheet,
then the cutting result would be opposite [20].

All the ERS are stored in an ERS list, and the
algorithm will search for suitable ERSs to continue
cutting. If there is more than one candidate ERS to choose
from, priority is determined by which of the candidates is
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closer to area of the cut piece and closer to the lower-left
corner of the sheet (or the desired location the user has
predefined). When the content of a chromosome is
determined, applying this guillotine cut process to the
chromosome will yield a cutting pattern. Figure 4 details
the optimum cutting pattern for the chromosome listed in
Figure 3 as an example.

Figure 4: Optimum cutting pattern.

D. Heuristic Placement Method for Multiple Sheets
The algorithm searches the ERS list to find a proper

ERS for a particular piece which needs to be cut. After
the cut, the ERS list will be updated. Each cut will result
in one or two ERS additions to the list. This process will
continue until all the required pieces are cut or no space
remains. The guillotine cutting algorithm is described in
the following pseudo-code:
Let Si be the sheet to be cut.
Let NS be the number of sheets

FOR i = 1 TO NS REPEAT {
Let Pj be the piece which wants to cut from Si.

Let NP be the number of pieces.

FOR j = 1 to NP REPEAT {
IF Pj doesnt belong to any sheet &

number of ERSlists > 0
{

Let ERS*k be the available ERS of ERSlists,
which Pj fits and the ERS*k is closer to
the Bottom-Left corner of Si.

IF ERS*k is not empty {
Place Pj at the bottom left corner of ERS*k.

Update ERSlists of available ERS using
Guillotine Cut Process.

}
}

}
}

E. Reproduction
The population is evaluated to the objective function

(the mathematic model) after the first initialization. The
GA algorithm will produce a new population by generating
new offspring in each iterations. This study uses the elitist
strategy and selects the top 15

F. Crossover
The crossover selects two chromosomes to produce a

new chromosome which inherits the genes from the
selected chromosomes. One sets a probability to decide
whether the crossover procedure should take place. This
probability is referred to as the crossover rate, and is
generally set between 0.6∼0.9 [24]. Even though the
one-point and two-point crossover are easy to implement,

a uniform crossover operation is adopted in this study [27,
?]. The crossover procedure is individually applied to a
given sheet and piece in the chromosome, and each bit in
the chromosome is referred to as a gene. This crossover
process is described as follows: Suppose there are two
parents Chromosomes A and B are selected to create a
new chromosome. Randomly pick one gene from A or B.
If this selected gene has not been chosen before, put this
gene to the new chromosome. If this gene has already
appeared in the new chromosome, then select a gene from
the other parent chromosome. If this selected gene does
not appear in the crossover chromosome, then assign it to
the crossover chromosome. If not, leave the position of
the gene in the crossover chromosome blank to make sure
the genes in the crossover chromosome will not be
duplicated. This bitwise process continues until all the
genes in the parent chromosomes are processed. Then the
blank positions are filled with those unselected genes to
form the final child chromosome. Figure 5 illustrates this
process.

Figure 5: The uniform crossover procedure for a new
chromosome

G. Mutation
A mutation operator is generally used to change the

gene(s) of a chromosome, and is usually applied to some
individuals to provide diversity for the simulation
population. The probability of mutation is generally set to
a small value. Instead of using a traditional gene-by-gene
mutation approach with a very small probability for each
generation, this study follows the mutation procedure
described in Goncalvess work 0. That is, when the
probability reaches the mutation rate, then the worst 15%
of the fitness value associated with the chromosome will
be regenerated for the next generation.

H. Multi-Phase Genetic Algorithm (MPGA
The literature has discussed the limitations of

heuristic algorithms for several decades. It identifies
several critical factors for an algorithm to converge to the
right solution [27,?]. These include population size,
number of generations, solution space, and number of
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decision variables. Because the complexity of the
problems varies, no particular set of parameters can be
applied to all the problems for optimal results every time.
Poorly chosen parameters can lead the search to a local
optimal solution. This problem compounds when the
number of decision variables increases the solution space
expands dramatically. The idea behind MPGA is to
improve the diversification capability of the basic GA
algorithm. It implements the basic GA algorithmm times
(phases). The bestϕ solutions from the last generation in
a phase will automatically become members in the initial
population for the next phase, and the remaining members
in the initial population will be generated by a GA
crossover operator. This multi-phase design will not only
improve the diversification capability of the basic GA
algorithm, but also guide the search to good solution
regions. The pseudo-code of the multi-phase GA
algorithm is presented below.

For multi-phase=1 to m do
if multi-phase =1

Initialize all populations
else

Reset all parameters to initial conditions
parents = best solutions from previous phase +
randomly generated (-) solutions
For generation :=1 to maxgen do //perform the GA
Evaluate the fitness values for the new population

and save the best solutions
Perform the Selection, Crossover and Mutation to yield new populations
End do

End do
Output the best solution

5 Computational Result

This study presents the multi-phase Genetic Algorithm
(MPGA) and applies it to a 2D guillotine-constrained
CSP problem. The outer iteration number for the MPGA
is set as 5, and the interior iteration is set as 50. The
population size is set as 30 times the length of a
chromosome. The crossover rate is 0.9, 15% of the top
chromosomes are selected for the next generation, and
15% of the remaining chromosomes are selected for
mutation. The stop criteria is set to either when all
iterations are performed or if the best optimal solution is
not updated for 2 outer MPGA iterations. The test cases
presented by Cung are adopted as the test problems for
this study. Cung et al. [29] used branch and bound
methods to test 17 mid-scale and 9 large-scale problems.
The test problems of A1s, A2s, A3, A4 and A5 were from
Hifi [ 30]; STS2s and STS4s were from Tschoke [31];
CHL1s, CHL2s, CHL3s, CHL4s, CHL5, CHL6 and
CHL7 were generated randomly, and Hchl3s, Hchl4s,
Hchl5s, Hchl6s, Hchl7s and Hchl8s were more
complicated and large-scale benchmarks. The
computation results were compared with those of Valdes
[14]. Valdes et al. utilized several approaches to test
guillotine cutting problems. Their first approach was a
constructive algorithm (CONS), followed by a GRASP
(greedy adaptive search procedure) method. A path
relinking approach was then added to GRASP, and the
TABU search algorithm of 500 iterations was performed.

Table 3: Summary of computational results on Cung constrained
instances

Optima
(out of
20)

Average ratio Minimum
ratio

CONS 2 0.956160123 0.858974359
GRASP 6 0.990184623 0.968901117
GRASP/PR 6 0.993078342 0.97873937
TABU500 11 0.998565177 0.992316136
Multi-phase
GA

7 0.992984569 0.979446512

The computational results are shown in Table 4a and
Table 5b.

The first four solutions were presented by Valdes 0.
The results from this study are listed under the
multi-phase GA. Each benchmark was simulated 10
times, five times cutting vertically first, and five times
cutting horizontally first. Best and average results are
listed for each case. The computational results are
summarized in Table 3. Notice that TABU500 had the
best performance, reaching 11 optima simulations, and
the best results for average and minimum ratios. In our
results, multi-phase GPA is ranked as second with 7
optima, with the second best simulation on the average
and minimum ratios, yet it is less computationally
intensive than TABU500.
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6 Conclusions

In this study, we developed an efficient cutting stock
algorithm to handle problems commonly seen in
real-world industrial applications. Heuristic algorithms
have been widely applied to cutting stock problems, and
our study presents modified multiphase genetic algorithm.
Traditional benchmark problems have been used to test
validity and efficiency. The computational results have
shown that this approach is superior to many other
algorithms and requires fewer computational resources.
Cutting stock has many applications; the panel saw
machine is a typical example used in wood, glass or other
industrial production. Since the cost of the stock sheet
may not be extremely expensive, it is important to
understand that long periods of time waiting for only
modest improvement in a cutting ratio will not be
tolerated. This paper presents an efficient algorithm to
achieve fast convergence with high levels of quality.
Additionally, this paper also presents an approach to
handle multi-stock sheets common to real-world
applications. This study has extended the traditional
encoding process and adds processing for multiple sheets
to the evolution process. While most literature uses the
minimized waste area for the objective function for the
heuristic simulation, research has shown that the
traditional objective function for CSP is flawed, and a
modified trim loss equation was presented. Our study also
extended this equation to multi-sheet stock cases. Our
algorithm has been tested with various benchmarks for
constrained guillotine cutting. The results show this

multiphase GA is a robust, accurate and efficient
algorithm.
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