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Abstract: In order to scale video image real-timely, a GPU-aided parallel interpolation algorithm was proposed. Catmull-Rom Spline
algorithm for image zooming was reformed into SIMD (Single instruction, multiple data) mode according to CUDA programming
model. Re-sampling of each pixel was completed by a GPU thread. Hence, time-consuming re-sampling procedure of the whole
zooming process were handled by parallel threads. The proposed algorithm runs hundreds times faster than traditional algorithm in
experiments, and the speed is fast enough for scaling video frames real-timely. In addition, this algorithm can be extended to solve
many other image processing related problems, such as image denosing and image segmentation.
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1. Introduction
With the development of high-definition flat-panel display
technology as well as the popularity visual media (such as
Internet TV and HDTV), the demands for high-definition
images and videos grow rapidly. Usually speaking, to get
high-definition media require more investment for purchas-
ing new shooting equipment. But there exists a large num-
ber of old shooting equipment, and they are still usable.
Hence, if the images or videos captured by old equipment
could be enlarged to suitable resolution by software real-
timely, we would greatly cut the expenses. In order to scale
the video frames real-timely, a GPU-aided (Graphic Pro-
cessing Unit-aided) parallel interpolation algorithm was
proposed.

Spline interpolation is a mainstream method on image
zooming. Non-linear algorithms, such as Neural Spline and
S-Spline, have better zooming results, but they are gen-
erally time-consuming [1,2]. Hence, linear methods are
widely used in the practical applications. Bi-Cubic Spline
and Catmull-Rom Spline are the two most typical linear
methods [3–5]. Through experiment, we found that the
scaled images utilizing Catmull-Rom Spline interpolation
have better resolution than those utilizing Bi-Cubic Spline
interpolation (i.e. preserving more high-frequency infor-

mation). However, Catmull-Rom Spline interpolation is still
not a real-time method to handle the high-resolution im-
ages. So, the speed of interpolation should be improved.
The best way to solve this problem is to use parallel com-
puting.

CUDA (Compute Unified Device Architecture) is the
GPGPU (General Computation on GPU) model developed
by NVIDIA [6–9]. It can realize parallel computing on
graphics cards. Usually, GPU is composed of dozens or
even hundreds of SPs (stream processors). And there are
thousands of parallel threads running in GPU. As every-
one knows, if we want to scale image, gray value of each
pixel on target image should be estimated by inverse map-
ping the pixel to source image. This process is called re-
sampling. For every pixel of target image, the re-sampling
method is identical. So, we may describe the re-sampling
method as a kernel function which can be executed in SIMD
mode under CUDA environment. Under this assumption,
each GPU thread completes the re-sampling of correspond-
ing pixel on target image. For the involvement of paral-
lel computing, the image zooming speed may be increased
dramatically.

CUDA parallel computing research has been carried
out for about four years. In the research area of image
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zooming, Ruijters and Gui combined Bi-Cubic Spline in-
terpolation algorithm with CUDA technology respectively
[10,11]. Using their methods, the zooming speed can be
improved 100-200 times. Xiao proposed a CUDA-aided
Bi-Linear interpolation algorithm [12]. The algorithm re-
sults in a speed-up of 28 times on 2048*2048 images. At
present, there is no report on the research of CUDA-based
parallel Catmull-Rom Spline interpolation. So, this paper
may fill the gap.

2. CUDA architecture

CUDA is NVIDIA version GPGPU model. It is a library
for parallel computing on graphics card. The program lan-
guage is CUDA-C, a special edition of C language. And
the instructions will be converted to GPU-oriented codes
by graphics card driver. Generally, GPU contains dozens
or even hundreds of stream processors. NVIDIA GeForce
9600GT, for example, contains 64 stream processors, and
its computing capacity reaches 312 GFlops.

2.1. Multi-threading model

There are thousands of threads running in GPU. After the
compute-intensive part of application had been transferred
from CPU (Host) to GPU (Device), GPU will house a
large number of threads to work together. All the threads
read and process their own data set individually, but the
procedures they perform are identical. The content exe-
cuted on GPU can be generalized to a specific module
called kernel function (Kernel). That is, kernel function
should be invoked and controlled by Host, and it is ex-
ecuted in Device. A group of threads running the same
kernel function form a block. And block is a basic unit
of management. Fig.1 illustrates the relationship among
thread, block and grid. A number of threads make up a
block (512 threads at most), while some blocks can form a
grid. The device may contain many kernel functions run-
ning simultaneously. Each grid corresponds to a particular
Kernel. Thread within a block can be identified by threa-
dID. Likewise, block within a grid can be identified by
blockID. The size of block and grid should be assigned
before the Kernel can be executed.

2.2. Storage area

The storage area of GPU can be divided into the following
sections: registers, local memory, shared memory, global
memory, constant memory and texture memory. Each thread
has its own register and local memory. Every thread in
the same block shares a common storage space (i.e. share
memory). And all the threads in the same grid share a part
of global memory, constant memory and texture memory.
When a Kernel needs to be executed, CPU will deliver the
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Figure 1: A multi-threading model of CUDA. 32*32 blocks make
up Grid1, and 16*16 threads make up each block. Each thread
in Grid1 executes the same instructions of Kernel1 (in SIMD
mode).

required data from main memory to device memory (such
as global memory and texture memory) at first. Then, CPU
will invoke a great many of threads to execute the Kernel.
Finally, the results will be sent back to main memory for
further processing.

3. Catmull-Rom spline interpolation

Catmull-Rom Splines are a family of cubic interpolating
splines formulated such that the tangent at each point pi is
calculated using the previous and next point on the spline,
τ(pi+1 − pi−1), 0 ≤ τ ≤ 1. Consider a single Catmull-
Rom segment, p(s). Suppose it is defined by four con-
trol points, pi−1, pi, pi+1 and pi+2. And p(s) is the in-
terpolated curve between pi and pi+1.Then p(s) can be
expressed by:

p(s) =
[
1 t t2 t3

]  0 1 0 0
−τ 0 τ 0
2τ τ − 3 3− 2τ −τ
−τ 2− τ τ − 2 τ


pi−1

pi
pi+1

pi+2

 (1)

Fig.2 illustrates the curve segment. Catmull-Rom Splines
have C1 continuity, local control, and interpolation. The
parameter τ is known as ′′tensionfactor′′ and it affects
how sharply the interpolated curve bends at the control
points. To increase the value of τ is to make the curve more
sharply at the control points. It is often set to 1/2.
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Figure 2: A curve segment p(s) between pi and pi+1 interpo-
lated by Catmull-Rom Spline. The tangent at point pi is τ(pi+1−
pi−1), τ = 1/2.

4. Image zooming based on parallel
Catmull-Rom spline interpolation

Image zooming is a process of re-sampling. Suppose the
scaling ratio in horizontal direction and vertical direction
is M and N respectively. Then, any pixel in the target
image (x′, y′) should be inverse mapped into source im-
age. Suppose the corresponding point of (x′, y′) is (x, y),
then x = x′/M , y = y′/N Generally, the value of x
and y are not integer, and the gray value at (x, y) should
be estimated. Assume that P (x, y) is the gray value of
(x, y) on source image. Then, P (x, y) can be estimated by
bidirectional Catmull-Rom Spline interpolation in a 4*4
neighborhood of (x, y). Fig.3 is a schematic diagram of
re-sampling. As shown on Fig.3, the bidirectional interpo-
lation procedure can be divided into two steps: (1) To gen-
erate four curves in horizontal direction by Catmull-Rom
Spline interpolation. Four points with the same horizontal
coordinate with (x, y) on the curves should be recorded;
(2) To generate a curve based on the recorded points by
Catmull-Rom Spline interpolation. And the point with the
same vertical coordinate with (x, y) on the curve is the
target point. The method for re-sampling can also be de-
scribed as follows:

Step 1. For any point on target image (x′, y′), calcu-
late the corresponding point (x, y) on source image by in-
verse mapping: x = x′/M , y = y′/N , M and N are
scaling ratio. Let u = floor(x), v = floor(y), then the
neighborhood of (x, y) is made of 4*4 pixels, denoted by
(u+i, v+j), i and j ∈ [−1, 2]. Let tx = x−u, ty = y−v,
tx and ty ∈ [0, 1].

Step 2. Perform Catmull-Rom Spline interpolation on
{P (u − 1, v − 1), P (u, v − 1), P (u + 1, v − 1), P (u +
2, v−1)}, {P (u−1, v), P (u, v), P (u+1, v), P (u+2, v)},
{P (u − 1, v + 1), P (u, v + 1), P (u + 1, v + 1), P (u +
2, v+1)} and {P (u−1, v+2), P (u, v+2), P (u+1, v+
2), P (u+ 2, v + 2)} respectively. The interpolated curves
are C1, C2, C3 and C4. Then, record the gray values of the
curves when t = tx. The gray values are denoted by: Q1 =
C1(tx), Q2 = C2(tx), Q3 = C3(tx) and Q4 = C4(tx).

Step 3. Perform Catmull-Rom Spline interpolation on
{Q1, Q2, Q3, Q4}, that will generate an interpolated curve
C5. The re-sampling result of (x′, y′) is C5(ty).
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Figure 3: A schematic diagram of re-sampling. The gray value
of (x, y) is the result. (tx, ty) is the relative coordinate of (x, y),
tx = x− floor(x) = x− u, ty = y − floor(y) = y − v. C1,
C2, C3 and C4 are the interpolated curves in horizontal direction,
Qi = Ci(tx). C5 is the interpolated curves in vertical direction.
The result is C5(ty).

For every pixel of target image, the re-sampling method
is identical. So, re-sampling method can be described as
a kernel function which can be executed in SIMD mode
under CUDA environment. In other words, if target im-
ages have N pixels, the kernel function should be exe-
cuted in parallel by N GPU threads. As the communi-
cation latency between main memory and device mem-
ory is very high, it is inefficient to retrieve source im-
age data in main memory during the process of resam-
pling. In addition, thousands of threads run in parallel on
GPU. When the threads frequently access source image
data which were stored in main memory, the overall exe-
cution speed would be dropped greatly. The communica-
tion latency between GPU and device memory is very low.
Therefore, source image data must be pre-stored in device
memory. CUDA-based parallel re-sampling method can be
described as follows:

Step 1. Load the image data (gray values) into main
memory, and transfer the data into a device memory space
of CUDA Array type by cudaMemcpyToArray function
in cudaMemcpyHostToDevicemode.

Step 2. Bind texture memory of GPU to the CUDA ar-
ray by cudaBindTextureToArray function. In this way,
the source image data are put into texture memory. The
source image data are taken as a texture lookup-table dur-
ing the re-sampling process.
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Step 3. Generalize the re-sampling procedure to a ker-
nel function that will be executed in parallel by GPU. Each
GPU thread executes a copy of the kernel function. In ad-
dition, when we want to define a kernel function, an iden-
tifier ′′ global ′′ should be placed on the head of it.

Step 4. Determine the size of block and grid. Accord-
ing to the analysis of CUDA Occupancy calculator, a block
of 16*16 threads is the best choice for our experimental
system. As the number of pixels and threads is same, sup-
pose the image resolution is U ∗ V , then there are U ∗ V
threads in a grid. So, the grid is composed of (U/16) ∗
(V/16) blocks.

Step 5. Invoke the parallel computing. Assume that
name of the kernel function is CatRom Resampling, and
a linear array d output in device memory stores the resam-
pling results. Then, execute the following code will get the
results:

CatRom Resampling <<<gridSize, blockSize>>>
(d output, width, height, scale);

Here, scale is the scaling ratio, width and height is the
size of source image. In the parallel implementation of
the kernel function, we must determine the corresponding
thread index and block index of each pixel on target image.
In this way, a unique thread corresponding to a specific
pixel can be positioned. Then map the point of target im-
age back to source image, and apply Catmull-Rom Spline
interpolation algorithm to estimate the gray values of tar-
get points.

5. Experiments and analysis

The experimental system was developed by Microsoft Vi-
sual Studio 2008, NVIDIA CUDA Toolkit 3.2 and GPU
Computing SDK 3.2. The last two tools can be downloaded
from NVIDIA website freely, and the source code is open.
The graphics card is NVIDIA 9600GT which has 512M
device memory with 57.6GB/s bandwidth and 8 stream
multiprocessors (i.e. 64 stream processors). Main support-
ing hardware include Intel Core2 E8400@4.0G (over-clocked),
4G DDR2-800 Memory and Intel P45 Motherboard. The
testing platform is Windows 7. Driver version of the graph-
ics card is 270.81.

The original resolution of the source images is 128*128,
and the data size is 16K pixels. Fig.5 illustrates the results
of three image zooming algorithms. Catmull-Rom Spline
interpolation generates more clear and sharp results. The
source images were scaled by 2X to 14X (i.e. the data size
very from 32K pixels to 224K pixels). Tab.1 shows the de-
tail performance on CPU and GPU. The zooming proce-
dure running on GPU was divided into two steps: (1) Send
source image data to texture memory from main memory
(called texture fetching); (2) Take the texture as a lookup
table for interpolation. As the data size of source image
is constant, execution time of texture fetching is constant
too. In experiment, execution time of texture fetching on
images of 128*128 pixels is 0.131ms. Time cost of the two
steps mentioned above makes up the actual execution time

on GPU. As shown in Fig.4, the zooming speed of GPU is
significantly faster than CPU. And the relative speed grows
with the increment of image data size. That is because
when the image is small, the computation of re-sampling
is so small that the time cost of texture fetching takes up
a large proportion of total execution time. Namely, the ad-
vantage of parallel processing is unobvious when data size
is small. With the increase of the image data size, time cost
of re-sampling gradually becomes the dominant part of to-
tal execution time. In addition, the scaled images generated
by GPU and CPU are almost same. As NVIDIA 9600GT
has no support for native double-precision calculations, in-
terpolation accuracy of GPU is not as good as CPU.

The proposed GPU-aided parallel image zooming al-
gorithm can real-timely change resolution while maintain-
ing acceptable quality. This algorithm can be directly ap-
plied to many real-time video processing systems, such
as video-surveillance and IPTV (network TV). In addi-
tion, this algorithm can be extended to many other im-
age processing-related issues, such as Levelset-based im-
age segmentation method[13]: each GPU thread handles
the iterative computing of an image pixel, which may dra-
matically improve the speed of curve evolution.

Table 1: Comparison of image zooming speed between CPU and
GPU

Scale Data Size CPU GPU (ms) Speed up
(pixels) (ms) Texture

Fetching
Resampling Total (times)

2X 32K 31.2 0.131 0.206 0.337 92.6
3X 48K 62.4 0.131 0.316 0.447 139.6
4X 64K 93.6 0.131 0.465 0.596 157
5X 80K 140 0.131 0.661 0.792 176.8
6X 96K 203 0.131 0.889 1.02 199
7X 112K 280 0.131 1.185 1.316 212.8
8X 128K 363 0.131 1.517 1.648 220.3
9X 144K 436 0.131 1.804 1.935 225.3
10X 160K 546 0.131 1.992 2.123 257.2
11X 176K 639 0.131 2.18 2.311 276.5
12X 192K 780 0.131 2.369 2.5 312
13X 208K 889 0.131 2.561 2.692 330.2
14X 224K 1029 0.131 2.661 2.792 368.6

6. Conclusion

A GPU-accelerated image zooming algorithm based on
Catmull-Rom interpolation was proposed. With the strong
computing power of GPU and the parallel computing func-
tion of NVIDIA CUDA, the zooming procedure was com-
pleted at high speed in graphics card. The speed is fast
enough for zooming video frames real-timely. In the mean-
time, its zooming effect remains favorable for practical
applications. Experimental results show that the parallel
computing in SIMD mode can greatly improve the effi-
ciency of Catmull-Rom Spline interpolation. And the speed
grows with the increase of image data size. In addition, the
proposed algorithm can be extended to solve other image
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Figure 4: Relative speed of image zooming (GPU/CPU) in-
creases with increasing image data size. The increment of image
data size is 32K pixels.

processing-related problems, such as image denosing and
image segmentation. To further enhance the performance
of image zooming, non-linear image zooming algorithms
should also be reformed to SIMD mode.

Acknowledgement

This work is supported by the Natural Science Founda-
tion of China (No.11005081, 60873179), Natural Science
Foundation of Zhejiang Province (No.Y1110322), Scien-
tific Research Project of Zhejiang Education Department
(No.Y201016244) , Scientific Research Project of Wen-
zhou (No.G20110004) and the Scientific Research Project
of Wenzhou Medical College (No.QTJ09009).

References

[1] I.G. Tsoulos, I.E. Lagrais and A. Likas, Journal Neural, Par-
allel & Scientific Computations 13, 161 (2005).

[2] Q. Zhang, S.H. Zhou and X.P. Wei, Applied Mathematics &
Information Sciences 5, 445 (2011).

[3] R. Keys, IEEE Transactions on Acoustics, Speech, and Sig-
nal Processing 29, 1153 (1981).

[4] D. Ruijters, B.H. Romeny and P. Suetens, Journal of Graph-
ics Tools 13, 61 (2009).

[5] C. Yuksel, S. Schaefer and J. Keyser, Computer-Aided De-
sign 43, 747 (2011).

[6] Y. Liu, B. Schmidt, W. Liu and D.L. Maskell, Pattern Recog-
nition Letters 31, 2170 (2010).

[7] S. Singh, Communications of the ACM 54, 46 (2011).
[8] H. Park and P.A. Fishwick, ACM Transactions on Modeling

and Computer Simulation 21, 18 (2011).

16X 8X

(a) Nearest

(b) BiCubic

(c) Catmull-

Rom

Figure 5: Comparison among three image zooming algorithms
under CUDA environment. Catmull-Rom Spline interpolation
generates more clear and sharp results.

[9] X.B. Gan, Z.Y. Wang, L. Shen and Q. Zhu, Applied Mathe-
matics & Information Sciences 5, 129S (2011).

[10] D. Ruijters and P. Thevenaz, The Computer Journal 55, 15
(2012).

[11] Y.C. Gui, Q.J. Feng, L. Liu and W.F. Chen, Chinese Journal
of Computer Engineering and Applications 45, 183 (2009).

[12] H. Xiao, Chinese Journal of Computer Systems 32, 2241
(2010).

[13] T.F. Chan and L.A. Vese, IEEE Transactions on Image Pro-
cessing 10, 266 (2001).

Dr. Tunhua Wu received
his Ph.D from Xiamen Univer-
sity in 2008. His research in-
terests lie in the areas of dig-
ital image analysis, pattern recog-
nition and computer graphics.
Email: wth@zjut.edu.cn.

c⃝ 2013 NSP
Natural Sciences Publishing Cor.


