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Abstract: Information systems are often incomplete in object world. This paper puts forward a new rough set model in incomplete
information system. The concepts of comparable degree and reliability are proposed, and a dual-limited symmetric similarity relation is
constructed. Then a new rough set model based on dual-limited symmetric similarity relation is designed, which determines the upper
approximation, lower approximation and boundary. Meanwhile, classification granularity and accuracy of knowledge are studied. An
example presented illustrates the effectiveness and practicality of the rough set model based on the dual-limited symmetric similarity
relation.
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1 Introduction

Since rough set theory[1] was proposed, the theoretical
models of rough set have gone through continuous
improvement and development, and penetrated into many
disciplines. Rough set has been the basis for the data
mining, knowledge reduction and granular computing
theory. As a mathematical tool of dealing with uncertain,
imprecise and incomplete information, it has been widely
used in the artificial intelligence and cognitive science,
especially in the intelligent information processing and
other fields.

However, the classical rough set theory is based on
equivalent classification to research information systems.
If the object’ value in some attribute is not determined
(i.e., a null value), rough set cannot be utilized to process
these objects. The classical rough set theory cannot deal
with null values in incomplete information system. In
order to improve the capacity of rough set data
processing, some classification and proposed similarity
relation and tolerance relation instead of equivalence
relation as the basis of rough set. Slowinski and
Vanderpooten[2,3] put forward similarity relation, which
meet the reflexive similarity. Similarity relation ignores

minor differences in attribute values. Greco[4] put
forward binary relation to meet transitivity for the
analysis of incomplete information table. The extensions
of the method maintained all characteristics of the
classical model. When the information table has no null
value, it is equivalent to the classical model.
Kryszkiewicz[5,6] presented a similarity relation to
satisfy both reflexivity and symmetry to acquire decision
rules in completely information table. Skowron and
Stepaniuk[7] presented a tolerance relation to satisfy
reflexivity and symmetry. These models extend the
application of rough set theory in the uncertain
information processing.

Among them, rough set based on symmetric similarity
relation instead of equivalence relation can effectively
solve the problem of null value in incomplete information
system and make the classification of knowledge in
incomplete information system. There are some defects of
symmetric similarity relation in the processing in
incomplete information system. The knowledge partition
granularity from rough set based on symmetric similarity
relation is too coarse. Precision and accuracy of
symmetric similarity classification are declined.
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Symmetric similarity relation regards that a null value
of attribute can be equal to any known attribute value,
which possibly causes the defects of less similarity
between objects and low partition granularity. The defects
are prone to the miscarriage of justice to a similar class in
a false condition, which is bound to affect the application
of rough set model based on symmetric similarity
relation. For example, there are two objects
X = {1,1,1,1,1,1} and Y = {0,0,0,0,0,0}. Obviously,
any attribute values of X and Y are not equal. Therefore,
X and y do not satisfy the equivalence relation; neither do
the symmetric similarity relation. However, for some
reason, some attribute value of X and Y is missing,
X = {1,1,1,∗,∗,∗} and Y = {∗,∗,∗,0,0,0} (“*”
indicates a null value ). According to Kryszkiewicz’s [8]
definition of similarity relation, then the symmetry X and
Y is symmetric similarity and belong to the same
symmetrical similarity class. This is obviously a
miscarriage of justice. In some cases, the similarity
degrees between objects vary greatly. Maybe some
completely equal (i.e. equivalence relation). Maybe while
some individual attribute values are equal, and most of
the rest attributes are null, such as
X = {1,2,1,0,1,0}, Y 0 = {1,2,1,0,1,0}, Y 1 =
{1,2,1,0,1,∗}, Y 2 = {1,2,1,∗,∗,∗}, Y 3 =
{1,∗,∗,∗,∗,∗}, Y 4 = {∗,∗,∗,∗,∗,∗}. Based on the
definition of symmetric similarity relation, Y0, Y1, Y2,
Y3 and Y4 similar symmetrically to X. But the similarity
degrees are greatly different. Y0 and X are similar and
satisfy the equivalence relation. Y4 and X have similarity
relation for all attributes values of Y4 are null.

In order to make the knowledge classification in
incomplete information systems based on rough set more
accurate, the reference [8] studied the tolerance relation
and non- symmetric similarity relation. And [8] pointed
out that the requirement of tolerance relation (symmetric
similarity relation) was too loose. In order to solve the
problem, limited tolerance relation [8] was proposed and
its related models were discussed. However, limited
tolerance relation has not classified the unknown attribute
values. To deal with two unknown attributes values in
incomplete information system by utilizing rough set
theory, Grzymala-Buse presented characteristic relation
[9]. At present, the extensions of rough set model in
incomplete information system have studied much and
their applications have been popular in real life[10,11].

When we classify knowledge utilizing symmetric
similarity relations, we often face with these problems.

(1) If the objects compared contain of null value, the
comparability declines, even not comparable.

(2) If some attribute value range is large, and the
attribute values of the objects compared contain a null
value in these properties comparison of the object (when
at least one of the attribute values is a null value), it is
necessary to study the reliability of the comparison.

This paper presents the concept of comparability and
credibility to limit the symmetric similarity relations. In
order to refine the granularity of knowledge classification

and improve the accuracy of the classification, rough set
model based on dual-limited symmetric similarity relation
is built to determine the upper approximate, lower
approximation and boundary. In order to gain a higher
quality of classification, examples are put forward to
verify the above theory. From two aspects, the theoretical
proof and practice results verify the validity and
practicality of the rough set model based on dual-limited
symmetric similarity relation.

2 Basic Theory of Rough Set Theory

2.1 Rough Set Theory

Definition 2.1 [1] An information system is defined as S =
(U,A,V,F), where

(1) U = {x1,x2, · · · ,xn} is a set of objects of finite
nonempty set, which is also called universe.

(2) A is a finite nonempty set attributes, subset C and D
respectively are called condition attribute set and decision
attribute set. A =C∪D and C∩D = /0.

(3) V = ∪
a∈A

Va indicates a set of the attribute values,

where value scope of attribute.
(4) f : U ×R → V represents a information function,

and it specifies the attribute value of each object of x .
Each attribute subset P ⊆ Cdetermines a binary

indiscernibility relation:
IND(P) = {(x,y) ∈ U × U |∀a ∈ P, f (x,a) = f (y,a)}
Relation IND(P)is a division of U, denoted as
U/IND(P). U/IND(P)is denoted as U/P for short.
U/P = {P1,P2, · · · ,Pk}, where

Pi = [x]pi = {y|∀a ∈ Pi, f (x,a) = f (y,a)}is an
equivalence class.

Definition 2.2 [1] In information system S = (U,A,V, f ),
A =C∪Dand ∀P ⊆C. U/P = {P1,P2, · · · ,Pk} is partition
of U based on P. ∀X ⊆U , define

P(X) = ∪{Y ∈U/P|Y ⊆ X} (1)

and

P(X) = ∪{Y ∈U/P|Y ∩X ̸= /0} (2)

P(X) and P(X) are lower and upper approximation of X
respectively.

Definition 2.3 [12] In information system S = (U,A,V,F),
A =C∪D. Let P ⊆C and Q ⊆ D. The P dependency based
on Q is defined as K = γP(Q) = POSP(Q)

|U | , where 0≤k<1.
We use P⇒

K
Q to show Q is induced from P with K

dependency. When k = 1, Q is dependent on P completely.
when 0 < K < 1, Q is in secondary dependency to P. When
k = 0, Q is completely induced from the P.
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2.2 Similarity Relation

Pawlak rough set classifies objects through equivalence
relation. Many scholars extend rough set model by
replacing the equivalence relation with similarity relation.
So the rough set can deal with incomplete information
systems. Similarity relation is divided into symmetric
similarity relation and non symmetric similarity relation.
Definition 2.4 [12] In incomplete information
systemS = (U,C ∪ D,V,F), B ⊆ C and a ∈ B. Define
symmetric similarity relation as follows.

T (B) = {(x,y) ∈U ×U |( f (x,a) = ∗
∨ f (y,a) = ∗∨ f (x,a) = f (y,a)} (3)

For anyX ⊆U , define

TB(X) = ∪{Y ∈U/T (B)|Y ⊆ X} (4)

and
TB(X) = ∪{Y ∈U/T (B)|Y ∩X ̸= /0} (5)

where [x]TB = {y ∈U |(x,y) ∈ T (B)}.
TB(X) and TB(X) called the lower approximation and

upper approximation of X in incomplete information
system S = (U,C∪D,V,F).
Definition 2.5 [13,14] In incomplete information
systemS = (U,C∪D,V,F), B ⊆C. Define non-symmetric
similarity relation as follows.

∀x,y ∈U(SB(x,y)⇔∀c j ∈ B(c j(x) = ∗∨ c j(x) = c j(y)))
(6)

Symmetric similarity class (referred as similarity classes,
i.e. symmetric similarity resembles to the set of object x)
is SB(x) = [x]S = (y ∈ U |(y,x) ∈ S(B)), while the set of
object symmetrically similar with x is S−1

B (x) = [x]−1
S =

(y ∈U |(x,y) ∈ S(B)).
For any X ⊆U , define

SB(X) = ∪{Y ∈U/S(B)|Y ⊆ X} (7)

and
SB(X) = ∪{Y ∈U/S(B)|Y ∩X ̸= /0} (8)

where [x]SB = {y ∈U |(x,y) ∈ S(B)}.
SB(X) and SB(X) are called the lower approximation

and upper approximation of X in incomplete information
system S = (U,C∪D,V,F).

2.3 Limited Tolerance Relation

Compared with tolerance relation and non symmetric
similarity relation, limited tolerance relation is proposed
by scholars, which inherits the merits of tolerance relation
and non symmetric similarity relation.

Missing value in information system is denoted as ‘*’.
Limited tolerance relation is defined as follows.

Definition 2.6 In incomplete information system
S = (U,C ∪ D,V,F), L ⊆ U ∗U is a limited tolerance
relation. Let B ⊆ A, and PB(x) = {b|b ∈ B∧b(x) ̸= ∗}.

∀x,y ∈ (LB(x,y)⇔∀b ∈ B(b(x) = b(y) = ∗)∨
((PB(x)∩P(y) ̸= /0)∧∀b ∈ B((b(x) ̸= ∗)
∧ (b(y) ̸= ∗)→ (b(x) = b(y)))))

(9)

Obviously, limited tolerance relation L contains
reflexivity and symmetry. However, limited tolerance
relation(L) does not contain transitivity.

Definition 2.7 In incomplete information system
S = (U,C ∪D,V,F), IL

B = {y|y ∈ U ∧ LB(x,y)} is a class
based on limited tolerance relation L. Approximations
based on limited tolerance relation L are defined as
follows.

DB
L = {x|x ∈U ∧ IL

B(x)∩D ̸= /0} (10)

DL
B = {x|x ∈U ∧ IL

B(x)⊆ D} (11)

In the view of symmetric similarity relation, a null value
of attribute can be equal to any known attribute value and
cause the defects of less similarity between objects and
low partition granularity possibly. The defects are prone
to the miscarriage of justice to a similar class in a false
condition, which is bound to affect the application of
rough set model based on symmetric similarity relation.
For example, there are two objects X = {1,1,1,1,1,1}
and Y = {0,0,0,0,0,0}. Obviously, any attribute values
of X and Y are not equal. Therefore, X and Y do not
satisfy the equivalence relation; neither do the symmetric
similarity relation. However, for some reason, some
attribute value of X and Y is missing, X = {1,1,1,∗,∗,∗}
and Y = {∗,∗,∗,0,0,0} (“*” indicates a null value ).
According to Kryszkiewicz’s definition of symmetric
similarity relation[8], the symmetry X and Y is similar
and belong to the same symmetrical similarity class. This
is obviously a miscarriage of justice. In some cases, the
degrees of similarity between objects maybe vary greatly.
For example, some completely equal (i.e. equivalence
relation), while some individual attribute values are equal,
and most of the rest attributes are nullable. Such as
X = {1,2,1,0,1,0}, Y 0 = {1,2,1,0,1,0},
Y 1 = {1,2,1,0,1,∗}, Y 2 = {1,2,1,∗,∗,∗},
Y 3 = {1,∗,∗,∗,∗,∗}, Y 4 = {∗,∗,∗,∗,∗,∗}. Based on the
definition of symmetric similarity relation, Y0, Y1, Y2,
Y3 and Y4 have similarly symmetry to X. But the
similarity degrees are greatly different. Y0 and X are
similar and satisfy the equivalence relation. Y4 and X
similarity relation is based on the all attributes values of
Y4 are null. Non-symmetric similarity relation
classification is not only stricter than symmetric similarity
relation, but also shares the defect. So we propose a new
dual-limited symmetric similarity relation.
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3 Rough Set Model Based on the
Dual-limited Symmetric Similarity Relation

Definition 3.1 In incomplete information system
S = (U,C ∪ D,V,F), an unknown attribute value is
marked as ∗. Define

F(x,y,a,∗) =
⟨

1, f (x,a) = ∗∨ f (y,a) = ∗
0, f (x,a) ̸= ∗∧ f (y,a) ̸= ∗ (12)

F(x,y,a,∗) is used to determine whether there are at least
a null concerning the attribute of the object x and y.

ForB ⊆ C, F(x,y,B,∗) = ∑
a∈B

F(x,y,a,∗) shows that

there is at least a attribute number of an unknown value at
set B of object x and y.
Definition 3.2 In incomplete information
systemS = (U,C ∪D,V,F), B ⊆ C. Symmetric similarity
relation reliability can be defined as

SR(x,y,a) =
|B|− ∑

a∈B
F(x,y,a,∗)

|B|
(13)

SR(x,y,a) can be used to represent the similarity reliability
degree between two objects at the attribute set B. When
SR = 0, the similar reliability degree is minimum. When
SR = 1, the similarity reliability degree is maximum.
Definition 3.3 In incomplete information system
S = (U,C ∪ D,V,F), B ⊆ AT and a ∈ B. Va is the value
range of attribute a. Let x ∈U and y ∈U . Define the equal
probability of x and y as follows.

p(x,y,a,∗) =



1
|Va| , f (x,a) = ∗∧ f (y,a) ̸= ∗
∨ f (x,a) ̸= ∗∧ f (y,a) = ∗
1

|Va|2
, f (x,a) = ∗∧ f (y,a) = ∗

1, f (x,a) ̸= ∗∧ f (y,a) ̸= ∗
∧ f (x,a) ̸= ∗∧ f (y,a)

(14)

The similarity reliability of x and y can be defined as
P(x,y) = min

a∈B
(p(x,y,a,∗))and 0< P(x,y)≤1.

Definition 3.4 In incomplete information system
S = (U,C ∪ D,V,F), B ⊆ AT and a ∈ B. Va is the value
range of attribute. The dual-limited symmetric similarity
relation is defined as

T α,β (B) = {(x,y) ∈U ×U |(( f (x,a) = ∗
∨ f (y,a) = ∗∨ f (x,a) = f (y,a))
∧SR ≥ α ∧P(x,y)≥ β )∨ IU ,a ∈ B}

(15)

where
(1) IU = {(x,x)|x ∈U}.
(2) 0≤ α ≤1 is constants, which shows the minimum

threshold to control the similar degree and reliability.
0≤ α ≤1 is constants, which increase the judgment of
comparable degree and reliability in the definition refines
the knowledge classification granularity.

(3) When SR = 1, the similarity relation reaches its
highest comparable degree. Each attribute value at
attribute a in attribute set B of object x and y do not
contain “*”. At this time, the similarity relation is
strengthened as equivalence relation. Therefore,
equivalence relation is a special case of symmetric
similarity relation.

(4) Symmetric equivalence relation T (B) is α reliable.
Otherwise, T (B) is not reliable, and then x is not similar
to y.

It is possible to enhance the ability of class by
introducing similarity comparative and similarity
reliability. From Definition 3.4, x and y are similarity and
must satisfy a condition:

The proportion of attributes under which x and y are
equivalence from all attributes considered is no less than
α .
Remark 3.1 Dual-symmetric similarity relation satisfies
reflexivity and symmetric. However, dual-symmetric
similarity relation does not satisfy transitive.

From Definition 3.4, if x is symmetrically similar to y,
the following conditions must be met.

(1) Attribute set of a ∈ B, the number of the attributes
of the equal value(and not null value) for object x and y
in all attributes must be no less than the proportion of α
constant.

(2) The minimum probability of equal value of x and y
at each attribute is not less than β .

(3) And based on this, if x has is of null value or y has
null value, or value of x and y is equal but there is not null
value, then x and y has symmetric similarity relation.

The symmetric similarity relation has reflectivity and
symmetry , but not transitivity.
Definition 3.5 In incomplete information system
S = (U,C ∪ D,V,F), symmetric similarity class
(similarity class for short, i.e. a set of objects
symmetrically similar to x) is
TB(x) = [x]T B = (y ∈ U |(y,x) ∈ T (B)). In incomplete
information system S = (U,C ∪ D,V,F), B ⊆ C. The
lower approximation set TB(X)of X and the upper
approximation set TB(X)are defined as follows:

TB(X) = ∪{Y ∈U/T (B)|Y ⊆ X}= {x ∈U |[x]TB ⊆ X}
TB(X) = ∪{Y ∈U/T (B)|Y ∩X ̸= /0}= {x ∈U |[x]TB ∩X ̸= /0}

where [x]TB = {y ∈U |(x,y) ∈ T (B)}shows a set of objects
of TB with symmetric similarity relation in U, i.e. a
symmetric similarity class defined by X. U/T (B)
indicates a U division by binary relation.

In fact TB(X) is the maximum set of the definite
objects of X based on existing knowledge, but TB(X) is
the minimum set of the possible objects of X based on
existing knowledge could belong to the object of X of the
set.

POSTB(X) = TB(X) is X’s positive domain, which is a
set of all members belonging entirely to X.

NEGTB(X) = U − TB(X) is X’s negative domain,
which is a set of all members definitely not belonging
entirely to X.
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BNTB(X) = TB(X)− TB(X) is X’s boundary domain,
which is a set of members neither being to X according to
the symmetric similarity relation TB nor being classified
toXC. Here XC is complement of C.
Example 3.1 In incomplete information systems
S1 = (U,C ∪ D,V,F) let
U = {x1,x2,x3,x4,x5}andC = {a1,a2,a3,a4,a5}. The
value of each attribute domain is{0,1}, {0,1,2},
{0,1,2,3}, {0,1} and {0,1,2} respectively. Let
x1={1,1,0,*,2}, x2={*,1,*,*,2}, x3={*,1,0,1,2},
x4={1,0,*,1,0}, x5={*,0,*,1,0}.

Suppose α=0.6 and α=0.25 then
p(x4,x5,a3,∗) = 1

|a3|2
= 1

16 , P(x4,x5) =

min
i=1∼5

(p(x4,x5,ai,∗)) = 1
16 < 0.25, F(x1,x2,AT,∗) =

∑
a∈AT

F(x,y,a,∗) = 3, SR(x1,x2) = |B|−F(x,y,AT,∗)
|B| =

5−3
5 = 0.4.U/T B = {{x1,x2,x3},{x4,x5}}.

If neither comparable degree nor reliability is
considered, then U/T (B) = {{x1,x2,x3},{x4,x5}}.

If not reliability, but comparable degree is considered,
then U/T (B) = {{x1,x3},{x2},{x4,x5}}.

If both comparable degree and reliability are
considered, then U/T (B) = {{x1,x3},{x2},{x4},{x5}}.

From Example 3.1, the indiscernible x1 and x2 can be
distinguished considering the comparability and
reliability. So do x4 and x5. Example 3.1 indicates that
the introduction of reliability and its concept makes
knowledge classification granularity finer and more
accurate in the symmetric similarity relation.

4 Acquisition of Attribute Weight
In the decision-making process, the importance of each
different attribute is different, which should be considered
by us. To obtain the degree of importance, rough set
theory follows the basic principle.

(1) On the basis of the classification from the
symmetric similarity relation, some attributes need to be
eliminated.

(2) The change of attribute dependence needs to be
analyzed without certain attributes.

(3) If the removal of an attribute brings great change to
the corresponding attribute dependency, the importance of
this attribute is high.

(4) Otherwise, the importance of this attribute is low.
Definition 4.1 In the incomplete information system

S = (U,C∪D,V,F)P ⊆C and Q ⊆ D. Define
POSP(Q) = ∪

X⊆U/Q
P(X), where P(X) = TP(X).

POSP(Q)means the a set of objects from U assigned
accurately by the similarity classification U/T (P) to the
symmetric similarity set Q.

Definition 4.2 In the incomplete information system
S = (U,C∪D,V,F) P ⊆C and Q ⊆ D. Define

K = γP(Q) =
|POSP(Q)|

|U |
.

Kshows that knowledge Q is dependent on knowledge P to
degree K, denoted as P⇒

K
Q.

Definition 4.3[12] (The relative importance of
attributes) In the incomplete information system
S = (U,C ∪ D,V,F)the importance of attribute subset
Ai ⊆ A to D is defined as σD(Ai) = γA(D)− γA−Ai(D),
while σD(Ai) means the importance of attribute Ai to
decision attribute set D. The higher the value is, the more
importance of its corresponding attribute is and vice
versa.

In the incomplete information system
S = (U,C ∪ D,V,F), U = {xi|i = 1,2, · · · ,n} and
A = {a1,a2, · · · ,am}. Then |AT|=m-0, |D|=m 1 and
|U|=n.

5 A Case of Application

In incomplete decision information system like table 1,
there are condition attributes A1, A2, A3, A4, A5 and
decision attribute D. “*” denotes missing value in Table
5.1. This decision table gets a chore through the attribute
reduction. The method of last section is used to calculate
attributes weights of all the conditions in order to obtain
the importance of each the condition attributes for
decision-making. Suppose α=0.6 and β=0.25, use limit

Table.5.1 IIS decision-making after reduced
No. A1 A2 A3 A4 A5 D
1 1 1 1 0 1 1
2 0 * 1 0 1 1
3 * * 0 1 0 0
4 1 * 1 1 1 1
5 * * 1 1 1 2
6 0 1 1 * * 1
7 * 1 1 1 0 0

symmetric similarity relation T to classify the above data
domain according to the condition attribute and the
decision attribute.

U/AT = {{1},{2},{3},{4,5},{6},{7}},
U/D = {{1,2,4,6},{3,7},{5}},
And each gets rid of a condition attribute to compute

the distribution and get:
U/(AT −A1) = {{1,2},{3},{4,5},{6,7}},
U/(AT −A2) = {{1},{2,6},{3},{4,5},{7}},
U/(AT −A3) = {{1},{2},{3,7},{4,5},{6}},
U/(AT −A4) = {{1,4,5},{2,5},{3},{6,7}},
U/(AT −A5) = {{1},{2,6},{3},{4,5,7}}.
Analysis the importance of each condition attribute to

the decision making:
POSA(D) = {1,2,3,6,7},
POSAT−A1(D) = {1,2,3},
POSAT−A2(D) = {1,2,3,6,7},
POSAT−A3(D) = {1,2,3,6,7},

c⃝ 2013 NSP
Natural Sciences Publishing Cor.



16 Y. Zhai et al. : Rough Set Model Based on the Dual-limited...

POSAT−A4(D) = {3},
POSAT−A5(D) = {1,2,3,6},
γAT (D) = POSAT (D)

|U | = 5/7,

γAT−A1(D) =
POSAT−A1 (D)

|U | = 3/7,
γAT−A2(D) = 5/7,
γAT−A3(D) = 5/7,
γAT−A4(D) = 1/7,
γAT−A5(D) = 4/7,
σD(A1) = γAT (D)− γAT−A1(D) = 2/7,
σD(A2) = 0/7,
σD(A3) = 0/7,
σD(A4) = 4/7,
σD(A5) = 1/7.
After the standardized treatment, the weights of the

five condition attribute are 0.2857, 0.0000, 0.0000, 0.5714
and 0.1429. The result shows that the order of attribute
weight is A4, A1, A5, A3 and A2. That is the attribute A4
has the greatest influence. A3 and A2 have the least
influence.

6 Conclusion

In order to solve the problem of lack of accuracy, large
granularity knowledge as well as the increase of error in
knowledge classification in symmetric similarity relation,
this paper puts forward a comparable degree and
reliability to limit the symmetrical relationship. A rough
set model based on dual-limited symmetric similarity
relation is set up. The model proposed in this paper
inherits the advantages of dealing with incomplete
information system utilize symmetric similarity relation,
which especially limits the comparison of null attribute
value ”*” and make up for the defects of the symmetric
similarity relation. This method makes sample object
classification in the incomplete information system more
reasonable, reduces the error rate of classification in the
original model and improves the accuracy and granularity
of knowledge classification.
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