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Abstract: This study proposes a four-step numerical scheme with one off-grid point to improve the order of accuracy by incorporating
optimized points into the algorithm’s formulation. This study explores a four-step hybrid block method designed to solve first-order
ordinary differential equations with a constant step size. The method employs interpolation techniques capable of evaluating terms that
have not been defined at the grid points. It is shown to be consistent, zero-stable, and convergent. The numerical results obtained are
competing with existing methods and performed better.
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1 Introduction

Block hybrid methods are numerical techniques that
integrate multistep linear methods with power series
through the use of interpolation. Originally introduced by
[1] and later refined by [2], these methods include an
additional point at each step of the formula, leading to
more accurate approximations of the solutions to
differential equations and improved convergence rates.
Since the groundbreaking work of [3], block methods
have gained significant attention in the literature for their
effectiveness in solving both initial value problems (IVP)
and boundary value problems (BVPs), due to their
flexibility, high accuracy, and computational efficiency in
handling complex systems. [4] proposed a hybrid
overlapping grid block method that combines equally
spaced and optimally selected grid points to solve both
linear and nonlinear first-order initial value problems
(IVP). His results demonstrated that this approach of the
overlapping grid significantly reduces the local truncation
error, outperforming traditional non-overlapping grid
methods. Similarly, [5] applied a block hybrid method
with equally spaced grid points to solve first-order linear

and non-linear IVPs. He reported that equally spaced grid
points yielded high rates of convergence, surpassing those
of the fourth-order Runge–Kutta method. [6] developed
an implicit block hybrid method for solving first-, second-
and third-order initial value problems (IVP). He explored
the convergence rates, accuracy, and robustness of these
implicit block hybrid algorithms, and further examined
their performance when various countable off-points were
introduced between grid points during the derivation
process. [7] introduced spline functions with four
collocation points to address second-order initial value
problems (IVP). Their work demonstrated that the spline
collocation scheme converges with an order of seven,
provided certain conditions on the collocation point
parameters are met. The analysis included a detailed
investigation of the method’s stability properties and the
identification of regions of absolute stability, which
depend on the values of the parameters. In addition,
various iterative techniques were explored for solving
both initial value and boundary value problems in
ordinary and partial differential equations, where
solutions or approximations are obtained through
successive iterations. For IVPs, these iterative methods
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can be formulated in either integral or differential form.
They linearize the non-linear governing equations around
the previous iteration, resulting in linear differential
equations at each step. However, since the coefficients of
these equations may vary with the independent variable,
numerical methods are required to approximate the
solutions.

2 Methodology

Numerical analysis involves the study of algorithms that
use numerical approximations to solve mathematical
problems encountered in various fields such as
engineering, physical sciences, life sciences, social
sciences, medicine, and business. Many of these problems
are dynamic in nature and involve time, space, and other
physical quantities, which are often modeled by ordinary
differential equations (ODEs). Examine the following
equation:

k

∑
j

α jyn+ j =
k

∑
j=0

β j fn+ j, (1)

For driving continuous systems, [8] method is employed.
A k-step linear multi-step method (LMM) obtained by:

y(x) =
T−1

∑
j=0

α j(x)y(xI,n+1) (2)

Note α j(x) and β j(x) make up the continuous coefficients
of the method, where α j(x) and β j(x) are defined as

α j(x) =
T+m−1

∑
j=0

α j,i+1xi
I , (3)

β j(x) =
T+m−1

∑
j=0

β j,i+1xi
I , (4)

The points The points

xI,n+ j for j = 0,1,2, . . . ,T −1 (0 ≤ T ≤ k)

in equation (4) above are arbitrarily chosen T -interpolation
points taken from

{xI,n,xI,n+1, . . . ,xI,n+k},

and the points

xC, j for j = 0,1,2, . . . ,m−1

are the m collocation points that belong to the set

{xC,n,xC,n+1, . . . ,xC,n+k}.

As an example, for T = 1, where xI,0 = xn, we have

xI,n+1 for j = 0,1,2, . . . ,T −1.

m = 6,
xc,0 = xn,

xc,1 = xn+1,

xc,2 = xn+2,

xc,3 = xn+3,

xc,4 = xn+4,

xc,5 = xn+5

(5)

[8] established a matrix equation of the form;

DC = I (6)

where D and C are matrices defined as I is a matrix of the
same dimension (T+m)×(T+m). Consider the following
equations:

y(x) =
T−1

∑
j=0

y(xI,n+ j)

(
T+m−1

∑
i=0

α j,i+1xi
I

)

+
m−1

∑
j=0

f (xc, jy(xc, j))

(
T+m−1

∑
i=0

β j,i+1xi
I

) (7)

D =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 xI,0 x2
I,0 · · · xT+m−1

I,0
1 xI,1 x2

I,0 · · · xT+m−1
I,1

...
...

...
...

...
1 xI,n+T−1 x2

I,n+T−1 · · · xT+m−1
I,n+T−1

0 1 2xc,0 · · · (T +m−1)xT+m−2
c,0

...
...

...
...

...
0 1 2xc,m−1 · · · (T +m−1)xT+m−1

c,m−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(8)

C =

∣∣∣∣∣∣∣∣
α0,1 α1,1 αT−1,1 β0,1 · · · βm−1,1
α0,2 α1,2 αT−1,2 β0,2 · · · βm−1,2

...
...

...
...

. . .
...

α0,T+m α1,T+m αT−1,T+m β0,T+m · · · βm−1,T+m

∣∣∣∣∣∣∣∣
(9)

To approximate the generic equation (4), power series are
employed, where T and m represent the number of
interpolation points and the corresponding collocation
points, respectively. The functions α j(x) and β j(x) are
parameters to be determined. The matrix C = D−1 has
columns that yield the continuous coefficients. Both α j(x)
and β j(x), j = 1,2, . . . ,k−1, are combined.

In this section, our objective is to develop a new block
hybrid method using the idea of multistep collocation
from [8]. From equation (3), we develop a continuous
scheme for the four-step block hybrid method,
incorporating one off-grid point, xn+1/3.
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We shall apply the above technique to derive block
hybrid methods, specifically a four-step block hybrid
method with one off-point within the interval between xn
and xn+4.

We obtain our matrices D and C = D−1 from
equations (8) and (9), respectively, as follows:

D =

∣∣∣∣∣∣∣∣∣
1 xn+v−1 x2

n+v−1 x3
n+v−1 x4

n+v−1 · · · xm
n+v−1

0 1 2x0 3x2
0 4x3

0 · · · mxm−1
0

...
...

...
...

...
...

...
0 1 2xn+v 3x2

n+v 4x3
n+v · · · mxm−1

n+v

∣∣∣∣∣∣∣∣∣ (10)

and

C =

∣∣∣∣∣∣∣∣
α01 α11 · · · αx−1,1 hβ01 · · · hβv+1,1
α02 α12 · · · αx−1,2 hβ02 · · · hβv+1,2

...
...

. . .
...

...
...

...
α0,v+1 α1,v+1 · · · αx−1,v+1 hβ0,v+1 · · · hβx+1,v+1

∣∣∣∣∣∣∣∣
(11)

From equations (10) and (11) above, DC = I, we get C =
D−1, and from equation (3) above, we get:

y(x) = α0(x)yn

+h
[
β0(x) fn +β1/3(x) fn+1/3 +β1(x) fn+1

+β2(x) fn+2 +β3(x) fn+3 +β4(x) fn+4
] (12)

From

D =

∣∣∣∣∣∣∣∣∣∣∣∣

1 xn x2
n x3

n x4
n x5

n x6
n

0 1 2xn 3x2
n 4x3

n 5x4
n 6x5

n
0 1 2xn+1 3x2

n+1 4x3
n+1 5x4

n+1 6x5
n+1

0 1 2xn+2 3x2
n+2 4x3

n+2 5x4
n+2 6x5

n+2
0 1 2xn+3 3x2

n+3 4x3
n+3 5x4

n+3 6x5
n+3

0 1 2xn+4 3x2
n+4 4x3

n+4 5x4
n+4 6x5

n+4

∣∣∣∣∣∣∣∣∣∣∣∣
(13)

C =

∣∣∣∣∣∣∣∣∣∣

α0 α1 hβ0 hβ1 hβ2 hβ3 hβ4
α0 α1 hβ0 hβ1 hβ2 hβ3 hβ4
α0 α1 hβ0 hβ1 hβ2 hβ3 hβ4
...

...
...

...
...

...
...

α0 α1 hβ0 hβ1 hβ2 hβ3 hβ4

∣∣∣∣∣∣∣∣∣∣
(14)

Using the element C = D−1, we have

α0(x) = (x− xn) (15)

β0(x) =
1

1440h5

[
−2(x− xn)

6 +36(x− xn)
5h−

255(x− xn)
4h2 +900(x− xn)

3h3 −1644(x− xn)
2h4+

1440(x− xn)h5
]

(16)

β1(x) =
1

1440h5

[
10(x− xn)

6 −168(x− xn)
5h

+1065(x− xn)
4h2

−3080(x− xn)
3h3 +3600(x− xn)

2h4
] (17)

β2(x) =
1

720h5

−10(x− xn)
6 +156(x− xn)

5

h−885(x− xn)
4h2

+2140(x− xn)
3h3 −1800(x− xn)

2h4


(18)

β3(x) =
1

720h5

10(x− xn)
6 −144(x− xn)

5

h+735(x− xn)
4h2

−1560(x− xn)
3h3 +1200(x− xn)

2h4


(19)

β4(x) =
1

1440h5

−10(x− xn)
6 +132(x− xn)

5

h−615(x− xn)
4h2

+1200(x− xn)
3h3 −900(x− xn)

2h4


(20)

Substituting α0,β0,β1,β2,β3, and β4 into;.

y(x) = α0(x)yn

+h
[
β0(x) fn +β1(x) fn+1 +β2(x) fn+2

+β3(x) fn+3 +β4(x) fn+4
] (21)

The continuous scheme is obtained as follows.

y(x) = (x− xn)yn

+
1

1440h5

−2(x− xn)
6 +36(x− xn)

5h−
255(x− xn)

4h2 +900(x− xn)
3h3

−1644(x− xn)
2h4 +1440(x− xn)h5

 fn

+
1

1440h5

10(x− xn)
6 −168(x− xn)

5h+
1065(x− xn)

4h2 −3080(x− xn)
3h3

+3600(x− xn)
2h4

 fn+1

+
1

720h5

−10(x− xn)
6 +156(x− xn)

5h−
885(x− xn)

4h2 +2140(x− xn)
3h3

−1800(x− xn)
2h4

 fn+2

+
1

720h5

10(x− xn)
6 −144(x− xn)

5h+
735(x− xn)

4h2 −1560(x− xn)
3h3

+1200(x− xn)
2h4

 fn+3

+
1

1440h5

−10(x− xn)
6 +132(x− xn)

5h−
615(x− xn)

4h2 +1200(x− xn)
3h3

−900(x− xn)
2h4

 fn+4

(22)
Evaluate equation (22) at the nodes to obtain

yn+ 1
3
− yn = h

[13667
58320

fn +
5051

29160
fn+1 −

277
2430

fn+2

+
1421

29160
fn+3 −

523
58320

fn+4

] (23)

© 2026 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


4 I.Dibal and S. Yeak: Four-Step Block Hybrid Scheme...

yn+1 − yn = h
[251

720
fn +

323
360

fn+1 −
11
30

fn+2

+
53
360

fn+3 −
19

720
fn+4

] (24)

yn+2 − yn = h
[29

90
fn +

62
45

fn+1 +
4

15
fn+2

+
2
45

fn+3 −
1

90
fn+4

] (25)

yn+3 − yn = h
[27

80
fn +

51
40

fn+1 +
9

10
fn+2

+
21
40

fn+3 −
3

80
fn+4

] (26)

yn+4 − yn = h
[14

45
fn +

64
45

fn+1 +
8

15
fn+2

+
64
45

fn+3 −
14
45

fn+4

] (27)

Equation (23) – (27) can be written as in the form.

yn+ 1
3
− yn =

h
58320

(
13667 fn +10102 fn+1−

6648 fn+2 +2842 fn+3 −523 fn+4

)
yn+1 − yn =

h
720

(
351 fn +646 fn+1 −264 fn+2

+106 fn+3 −19 fn+4

)
yn+2 − yn =

h
90

(
29 fn +126 fn+1 +24 fn+2

+4 fn+3 − fn+4

)
yn+3 − yn =

h
80

(
27 fn +102 fn+1 +72 fn+2

+42 fn+3 −3 fn+4

)
yn+4 − yn =

h
45

(
14 fn +64 fn+1 +24 fn+2

+64 fn+3 +14 fn+4

)

(28)

3 Order and Error Constant of the Method

The derived finite difference scheme, given in equation
(28) are discrete schemes that fall within the class of
Linear Multistep Methods (LMMs).

k

∑
i=0

αiy(xn+i) =
k

∑
i=0

βi f (xn+i) (29)

y′ = d
dx y = f (x,y), h = ∆x

This technique is connected to a linear difference operator.

L[y(x);h] =
k

∑
i=0

[
αi(x)y(x+ ih)+hβi(x)y′(x+ ih)

]
(30)

An arbitrary function that is continuously differentiable on
the interval [a,b] is denoted by y(x). The extension of the
Taylor series around the point x,

L[y(x);h] = c0 y(x)+ c1 hy′(x)+ c2 hy′′(x)

+ · · ·+ cq hq y(q)(x)
(31)

The linear multistep method given in equation (3) above
is said to have order p if, for

c0 = c1 = c2 = · · ·= cp = 0 and
cp+1 ̸= 0 is the error constant,

c0 = α0 +α1 +α2 + · · ·+αk,

c1 = (α0 +α1 +2α2 + · · ·+ kαk)− (β0 +β1 +β2 + · · ·+βk)

cp =
1
q!

(α1 +2q
α2 + · · ·+ kq

αk)

− 1
(q−1)!

(
β1 +2q−1

β2 + · · ·+ kq−1
βk
)
,

q = 2,3, . . . ,N

(32)

Let h = ∆x = ωH = ω∆T

yn+ 1
3
= y
(

xn +
1
3

∆x
)
= y
(

xn +
1
3

ω∆T
)
= yn+ 1

3 ω

y
(

xn+ 1
3

)
= y
(

xn +
1
3

∆x
)
= y
(

xn +
1
3

ω∆T
)

∑
j

α jyn+ 1
3
= ∆x∑

j
β j fn+ 1

3

⇒ ∑
j

α jyn+ 1
3 ω

= ω∆T ∑
j

β j fn+ 1
3 ω

Let J = ω j, where j is a fraction, we get:

∑
J

α
n
J yn+ 1

3
= ∆T ∑

J
β

n
J fn+ 1

3

By transforming αn
J = αJ , β n

J = ωβJ , the
aforementioned methodology may be used to determine
the truncation error of the linear multiscale block method.

1
3

∆x = ∆T ⇒ ω = 3, h = ∆x = ω∆T

Definition 3.1: According to [9], technique (28) is of
order P if the error constant is Cp+1 ̸= 0 and C0 = C1 =
C2 = · · ·=CP = 0.
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Using this definition in block method (28), it is
confirmed that each of the five difference schemes has
error constants and is of order

P =


5
5
5
5
5
6


T

C7 =


−1.43×10−2

−9.79×10−2

−1.29×10−2

−8.47×10−2

−2.27×10−2


T

3.1 The Consistency of the Method

Definition 3.2: An LMM of type (28) is regarded
consistent if its order is p ≥ 1. The discrete schemes
generated in (28) are consistent as they are of order 6 ≥ 1
according to Definition (3.1).

3.2 Zero Stability of the Method

A1 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 A0 =


0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1

 (33)


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




yn+ 1
3

yn+1
yn+2
yn+3
yn+4

−


0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1




yn− 14
3

yn−3
yn−2
yn−1
yn

=

h


0 39937

65610 − 14629
32805

9031
32805 − 3269

32805
0 1427

1440 − 133
240

241
720 − 173

1440
0 43

30 − 7
45

7
45 − 1

15
0 219

160 − 57
80

57
80 − 21

160
0 64

45 − 8
15

64
45 − 14

45




fn+ 2
3

fn+1
fn+2
fn+3
fn+4

+


0 0 0 0 10256
32805

0 0 0 0 95
288

0 0 0 0 14
45

0 0 0 0 51
160

0 0 0 0 14
45




fn− 13
3

fn−3
fn−2
fn−1
fn



A(0)


yn+ 1

3
yn+1
yn+2
yn+3
yn+4

−A(1)


yn− 14

3
yn−3
yn−2
yn−1
yn

= hB(0)


fn+ 2

3
fn+1
fn+2
fn+3
fn+4

+

hB(1)


fn− 13

3
fn−3
fn−2
fn−1
fn

=


0
0
0
0
0


Let yn = rn so that we get

Yn =



rn+ 1
3

rn+1

rn+2

rn+3

rn+4


, Yn−1 =



rn+ 14
3

rn+3

rn+2

rn+1

rn


A(0)Yn −A(1)Yn−1 = 0

A(0)r



rn+ 1
3

rn+1

rn+2

rn+3

rn+4


−A(1)



rn+ 14
3

rn+3

rn+2

rn+1

rn


= 0

⇒ ABYn−1 = 0
For the nontrivial solution, we require
|AB|=

∣∣∣A(0)r−A(1)
∣∣∣= 0

A(0) =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 , A(1) =


0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1


and

B(0) =


0 39937

65610 − 14629
32805

9031
32805 − 3269

32805
0 1427

1440 − 133
240

241
720 − 173

1440
0 43

30 − 7
45

7
45 − 1

15
0 219

160 − 57
80

57
80 − 21

160
0 64

45 − 8
15

64
45 − 14

45

 ,

B(1) =


0 0 0 0 10256

32805
0 0 0 0 95

288
0 0 0 0 14

45
0 0 0 0 51

160
0 0 0 0 14

45


where A(0),A(1),B(0),B(1) are 5 × 5 matrices.ρ(r) =

det
(
rA(0)−A(1)

)
Substituting A(0) and A(1)

into the characteristic polynomial, it gives

ρ(r) =
∣∣∣rA(0)−A(1)

∣∣∣ (34)

Therefore, the method in equation (28) is zero-stable if the
zeros of the characteristic polynomial’s initial roots ρ(r)
satisfy |r| ≤ 1, and it is consistent since it is of order ρ > 1
for ri = [0,0,0,0,1] where i = 1,2, . . . ,k + 1. Therefore,
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according to [9] and [10], the technique in equation (28) is
convergent, since it is both zero-stable and consistent.

3.3 Absolute Stability Region

If, for a given λ̄ , all roots rs of the stability polynomial
π(λ̄ ) of equation (28) satisfy |rs| ≤ 1, s = 0,1, . . . ,k, then
the LMM (28) is stable; if not, it is unstable for that λ̄ .

y′ =
d
dx

y(x) = f (x,y) = λyn (35)

⇒ A(0)


yn+ 1

3
yn+1
yn+2
yn+3
yn+4

−A(1)


yn− 14

3
yn−3
yn−2
yn−1
yn

=

λhB(0)


fn+ 1

3
fn+1
fn+2
fn+3
fn+4

+λhB(1)


fn− 14

3
fn−3
fn−2
fn−1
fn

=


0
0
0
0
0



⇒
(

A(0)−λhB(0)
)


yn+ 1
3

yn+1
yn+2
yn+3
yn+4

−

(
A(1)+λhB(1)

)


yn− 14
3

yn−3
yn−2
yn−1
yn

=


0
0
0
0
0


Leaving yn = rn, we get

[(
A(0)−λhB(0)

)
r−
(

A(1)+λhB(1)
)]


rn− 14
3

rn−3

rn−2

rn−1

rn

=


0
0
0
0
0


For a non-trivial solution, we set the characteristic

equation to zero:

det
[(

A(0)−λhB(0)
)

r−
(

A(1)+λhB(1)
)]

= 0.

Let λ̄ = λh, then we get:

det
[(

A(0)− λ̄B(0)
)

r−
(

A(1)+ λ̄B(1)
)]

= 0.

r = p(λ̄ ), |r|= |p(λ̄ )|< 1 (36)

As shown in Figure 1 below, the region of absolute
stability of the new block technique is created after
substituting the values from equation (29) into the
stability matrix. The computation is carried out using the
MATLAB environment. Note that the stability region is
only plotted in the domain x ∈ (−4,0), y ∈ (−2,2).

Fig. 1: Absolute stability region

4 Result and Discussion

The performance of our unique block approach is
evaluated through a series of numerical tests presented in
this section. The following test problems are considered.
This technique, known as the multistep collocation
method (MC), is based on the continuous finite difference
approximation approach with the collocation criterion.
We used the block technique to verify that the approach is
more effective than the existing methods. All calculations
were performed with MATLAB, and the results were
both precise and accurate. In the numerical experiments,
we used a step size of h = 0.01.

4.1 Numerical Experiment

4.1.1 Problem 1

y′ = F(x,y) = 2x, h = 0.01, 0 ≤ x ≤ 1 (37)

The exact solution is given as:

y(x) = x2 (38)

[Source : [11]&[12]]
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4.1.2 Problem 2

y′ = F(x,y) = xy, h = 0.01, 0 ≤ x ≤ 1 (39)

The exact solution is as follows.

y(x) = e
x2
2 (40)

[Source : [13]

4.1.3 Problem 3

Numerical example (SIR model) [13]
The SIR model is a fundamental epidemiological
framework that is used to estimate the theoretical number
of individuals infected with a contagious disease within a
closed population over time. Its name, SIR, derives from
the three key compartments it tracks: the number of
susceptible individuals S(t), infected individuals I(t), and
recovered individuals R(t), respectively. These
compartments are governed by a set of coupled
differential equations. Despite its simplicity, the SIR
model effectively describes the spread of many infectious
diseases, such as measles, mumps, and rubella. The
model is represented by the following system of three
coupled equations.

dS
dt

= µ(I −S)−β IS (41)

dI
dt

= µI − γI +β IS (42)

dR
dt

= µR− γI (43)

where µ , γ , and β are positive parameters. Define y as:

Y = S+ I +R (44)

and adding equations (43)–(45), we obtain the following
evolution equation:

y′ = µ(1− y) (45)

Taking µ = 0.5, y(0) = 0.5, and applying an initial
condition, we obtain:

y′(x) = 0.5(1−y), y(0) = 0.5, h = 0.01, 0 ≤ x ≤ 1
(46)

with exact solution:

y(x) = 1−0.5e−0.5x (47)

4.1.4 Problem 4

Consider the following first-order linear ordinary
differential equation:

y′ = F(x,y) = x+ y, y(0) = 1, h = 0.01, 0 ≤ x ≤ 1
(48)

The exact solution is;

y(x) = 2ex − x−1 (49)

[Source : [14]]

4.1.5 Problem 5

Consider the following first-order nonlinear ordinary
differential equation;

y′ = F(x,y) = x2+y2, y(0) = 1, h = 0.01, 0 ≤ x ≤ 1
(50)

The exact solution is given by;

1+ x+ x2 +
4x3

3
+

5x4

3
+

16x5

15
(51)

[Source: See [15]]
The tables below compare the absolute errors for

Problems 1–5 with the method of [16], respectively.

Table 1: Absolute Error for Problem 1

h [16] Method Present Method
Err1: 2.7105×10−20 Err1: −1.6941×10−21

0.01 Err2: 2.7105×10−20 Err2: −1.6941×10−21

Table 2: Absolute Error for Problem 2

h [16] Method Present Method
Err1: −1.6326×10−10 Err1: −5.0768×10−11

0.01 Err2: −1.6326×10−10 Err2: −5.0768×10−11

Table 3: Absolute Error for Problem 3

h [16] Method Present Method
Err1: 5.5970×10−5 Err1: 6.9406×10−7

0.01 Err2: 5.5970×10−5 Err2: 6.9406×10−7
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Table 4: Absolute Error for Problem 4

h [16] Method Present Method
Err1: 2.0178×10−5 Err1: 2.1524×10−6

0.01 Err2: 2.0178×10−5 Err2: 2.1524×10−6

Table 5: Absolute Error for Problem 5

h [16] Method Present Method
Err1: 4.1354×10−5 Err1: 4.3560×10−6

0.01 Err2: 4.1354×10−5 Err2: 4.3560×10−6

5 Conclusion

In this work, a four-step block hybrid algorithm for
solving first order ordinary differential equations is
derived and presented. The strategy is based on a hybrid
block method incorporating one off-grid point, developed
for the numerical solution of first-order ordinary
differential equations (ODEs). The fundamental
properties of the method, including consistency, zero
stability, convergence, stability region, and local
truncation errors, have been analysed. After
computations, the results have been validated which
shows the accuracy of the present method.
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