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Abstract: We apply Walborn’s Shannon Entropic Entanglement Criterion (SEEC) [S.P. Walborn, B.G. Taketani, A. Salles, F. Toscano,

R.L. de Matos Filho, Physical Review Letters 103, 160505 (2009)], to simple harmonic oscillators. In particular, we investigate the

entanglement of a system of coupled harmonic oscillators. A simple form of the entanglement criterion in terms of their interaction

is found. It is shown that a pair of interacting ground state coupled oscillators are more likely to be entangled for weaker coupling

strengths while coupled oscillators in excited states entangle at higher coupling strengths. Interacting oscillators are more likely to be

entangled as their interaction increases.

Keywords: Shannon entropy, entanglement, harmonic oscillator

1 Introduction

In quantum mechanics, entanglement can be thought as a
correlation between different states with more than one
degree of freedom or between particles [2]. It is a field of
active research both theoretically and experimentally. The
concept of entanglement is usually introduced via the spin
entanglement of fundamental particles [2]. However,
entanglement in terms of continuous variables x (or q)
and p. [1, 3–8] have also been studied.

Various methods of quantifying entanglement [9]
have been used such as the positive partial transpose
criterion [3], inseparability criterion using variance form
of local uncertainty principle [6], and using the entropic
functions such as the Shannon, Renyi and von Neumann
entropies [1, 4, 10, 11]. The present work will use the
entropic uncertainty relation (EUR) statement of
entanglement. We specifically choose the Shannon EUR
because of its fundamental nature and due to the vast
applications of the Shannon entropy [12, 13].

In this paper, we apply the Shannon entropic
uncertainty criterion to a system of coupled harmonic
oscillators. The entanglement in a system of coupled
harmonic oscillators has been studied thoroughly in the
literature. For instance, the von Neumann and Renyi

entanglement entropies and Schmidt modes have been
used to quantify the degree of entanglement for different
energies/temperatures [14–16]. Entanglement dynamics
(time-dependent interaction strength, sudden death,
revival, etc.) have been examined under varying
conditions such as initial temperature, damping factors
and squeezing of the system and/or its surrounding
environment using coupled harmonic oscillators [17–20].
Other applications of the coupled harmonic oscillator
among many others include the following. A
mathematical formalism that unifies quantum mechanics
and special relativity for Lorentz-covariant states was
developed through the group symmetries of coupled
harmonic oscillators to show that the quark model and
Feynman’s parton picture can work together to explain
the properties of hadrons in high-energy
laboratories [21–25]. In [26], the authors used a system of
quantum mechanical coupled oscillators to study the
effects on a system of interest which can be measured
(first oscillator) when one sums over variables of the
external system whose variables are not measured
(second oscillator which then is “Feynman’s rest of the
universe”) by calculating the entropy using the density
matrix formalism.
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In a recent paper, the Shannon entropy has been
calculated for a single D-dimensional simple harmonic
oscillator [13]. The present work calculates the Shannon
entropy for a bipartite system of coupled harmonic
oscillators to quantify the entanglement of the ground and
excited states of this system.

The paper is organized as follows. In section 2, we
review the coordinate space and momentum space
solutions of a system of coupled oscillators. The new
results using the Shannon entanglement criterion are
derived in section 3. We give our conclusions in section 4.

2 Coupled Simple Harmonic Oscillator

In this paper, we consider two masses whose interaction
is given by the simple harmonic oscillator (SHO)
Hamiltonian

H =
P2

1

2m1

+
P2

2

2m2

+
A

2
X2

1 +
B

2
X2

2 +
C

2
X1X2 (1)

Equation (1), which describes a coupled simple harmonic
oscillator, has a wide variety of applications in physics [18,
26, 27, 33–43].

Let us work out carefully how to transform the
Hamiltonian of the SHO, to involve dimensionless
variables to enable us to calculate the Shannon entropies.
Consider the Hamiltonian H of one oscillator given by

H =
P2

2m
+

1

2
kX2 =

P2

2m
+

1

2
mω2X2

, (2)

where ω =
√

k
m

with energies En = (n + 1
2
)ℏω ,

n = 0,1,2... in which [X ,P] = iℏ. Dividing the
Hamiltonian by ℏω , we get

H =
1

2
(p)2 +

1

2
(y)2

, (3)

where we have the dimensionless variables H ≡ H
ℏω ,

p ≡ P

(mℏ2k)
1
4

= P√
mℏω

, and y ≡ X
(

ℏ2

mk

)
1
4

= X
√

ℏ

mω

. Clearly,

p =−i d
dy

and one can easily show that

[y, p] = i. (4)

In the literature, the above results are often
equivalently obtained by setting ℏ, m, k and ω to 1.

Let us reconsider equation (1), the Hamiltonian of two
masses interacting as coupled harmonic oscillators, with
Pj =−iℏ d

dX j
. One can diagonalize this to give [14, 26]

H =
1

2M

(

[

P
′
1

]2

+
[

P
′
2

]2
)

+
1

2
K

(

e2η
[

X
′
1

]2

+ e−2η
[

X
′
2

]2
)

, (5)

where M =
√

m1m2, P
′
j = −iℏ d

dX
′
j

, j = 1,2,

K =
√

AB− C2

4
,

e2η =
A+B+ A−B

|A−B|

√

(A−B)2 +C2

√
4AB−C2

, (6)

and

X
′
1 =X1cosα −X2sinα,

X
′
2 =X1sinα +X2cosα (7)

with

tan(2α) =
C

B−A
. (8)

We carefully changed our notation with the primed
coordinates to explicitly exhibit the transformations to
diagonalize the original Hamiltonian H. The details can
be found in [26].

Similar to equation (3), which came from equation
(2), we can rewrite equation (5) in terms of dimensionless
variables p1, p2, y1, and y2.

H =
1

2
p2

1 +
1

2
p2

2 +
1

2
e2ηy2

1 +
1

2
e−2ηy2

2 (9)

with [y j, pk] = iδ jk, H = H
ℏω , p j ≡

P
′
j

(Mℏ2K)
1
4

, y j ≡
X
′
j

(

ℏ2

MK

)
1
4

,

and ω =
√

K
M

, or equivalently as mentioned before, let ℏ,

M, K, and ω equal 1. Defining the dimensionless variable

x j =
X j

(

ℏ2

MK

)
1
4

, equation (7) becomes

y1 =x1cosα − x2sinα,

y2 =x1sinα + x2cosα. (10)

We can infer from reference [14] the solution of the
Schrodinger equation with the Hamiltonian given by
equation (9).

Ψnm =ψnψm

=c
(1)
n c

(2)
m e

(

− eη

2 y2
1

)

e

(

− e−η

2 y2
2

)

Hn

(

e
η
2 y1

)

Hm

(

e
−η
2 y2

)

,

(11)

where

c
(1)
n =

1
√√

πn!2n
and c

(2)
m =

1
√√

πm!2m
. (12)

The Hn and Hm are the Hermite polynomials. The
corresponding eigenvalues are

Enm = eη

(

n+
1

2

)

+ e−η

(

m+
1

2

)

. (13)
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Similarly, one can either solve the momentum space
wave functions by finding the Fourier transform of

equation (11) or simply replacing e
η
2 y1 with e

−η
2 p1 and

e
−η
2 y2 with e

η
2 p2 in equation (11) similar to [13].

Φnm =φnφm

=c
(1)
n c

(2)
m e−

e−η

2 p2
1e−

eη

2 p2
2Hn

(

e
−η
2 p1

)

Hm

(

e
η
2 p2

)

.

(14)

3 Shannon Entropic Entanglement Criterion

for the SHO

EURs were introduced as an alternative way to express
the Heisenberg uncertainty principle, to address some
shortcomings of the variance statement
∆x∆ p ≥ ℏ

2
[12, 28]. One of the advantages of using the

EUR is that it is an excellent mathematical framework to
quantify uncertainties for correlated systems such as
entangled systems [28]. The first measure of uncertainty
in terms of entropy given by Hartley (which he called
“information”) was U(n) = k logn, where U is the
uncertainty of n outcomes of a random experiment. For
the case in which the probabilities of the outcomes are
unequal, this is generalized to Ui = k ∑n

i Pi log 1
Pi

, where Pi

is the probability of the ith outcome. For k = 1, we get the
Shannon entropy S = −∑n

i=1 P(xi) lnP(xi) with x as a
discrete random variable. It can be shown that the
preceding equation can be generalized to

S =−
∫ ∞

−∞
p(x) ln p(x)dx (15)

for a continuous variable x with p(x) as the probability
density function. We will refer to equation (15) as the
Shannon entropy. We refer the reader to [12] for more
details.

To study the entanglement of coupled harmonic
oscillators using the Shannon entropy, consider a bipartite
system which we label as system 1 and system 2. In the
succeeding discussions, subscripts 1 and 2 correspond to
systems 1 and 2 respectively. As in [1, 10], we define the
dimensionless variables as

x± = x1 ± x2 and p± = p1 ± p2 (16)

with [x j, pk] = iδ jk as in equation (4). A pure state of the

system is described by the wavefunctions

Ψ (x1,x2) = ψ1 (x1)ψ2 (x2) in coordinate space and

P (p1, p2) = φ1 (p1)φ2 (p2) in momentum space. A

change in variables using equation (16), gives

Ψ (x+,x−) = 1√
2
ψ1

(

x++x−
2

)

ψ2

(

x+−x−
2

)

and

P (p+, p−) = 1√
2
φ1

(

p++p−
2

)

φ2

(

p+−p−
2

)

.

The Shannon entropic entanglement criterion is given
by

H [w±]+H [v∓]< ln(2πe) or

H [w±]+H [v∓]− ln(2πe)< 0, (17)

where the Shannon entropies are given by

H [w±] =−
∫ ∞

−∞
dx±w± (x±) ln(w± (x±)) and

H [v±] =−
∫ ∞

−∞
d p±v± (p±) ln(v± (p±)) (18)

with

w±(x±) =
∫ ∞

−∞
dx∓|Ψ(x+,x−)|2 =

1

2

∫ ∞

−∞
dx∓|ψ1|2|ψ2|2,

v±(p±) =
∫ ∞

−∞
d p∓|P(p+, p−)|2 =

1

2

∫ ∞

−∞
d p∓|φ1|2|φ2|2.

(19)

Strictly speaking in equation (6), the case A = B is not
defined. However, to facilitate a simpler calculation, we
will look at the case in which A ≈ B. Let us look at the
two cases in which A→B for values A > B and for values
A < B. For the case A > B, equation (6) becomes e2η =
A+B+

√
(A−B)2+C2√

4AB−C2
, and A→B yields

e2η ≈
√

2A+ |C|
2A−|C| > 1 (20)

for non-zeroC. This implies that η > 0. For the case A<B,

equation (6) becomes e2η =
A+B−

√
(A−B)2+C2√

4AB−C2
, and A→B

yields e2η ≈
√

2A−|C|
2A+|C| > 1 for nonzero C. This implies η <

0. As will later be seen in this section, entanglement occurs
only for η > 0. Let us consider the case when A> B. Since
the value of η in section 2 above is independent of the sign
of C, let us assume for the moment that C < 01. Equation
(8) gives α = 45◦ and, from equation (7), y1 = x1√

2
− x2√

2
,

y2 =
x1√

2
+ x2√

2
. With equation (16), we get

y1 =
x−√

2
and y2 =

x+√
2

(21)

and similarly

p1 =
p−√

2
and p2 =

p+√
2
. (22)

1 The case C > 0 results in α =−45◦ with the same qualitative

results. In providing the details, we chose to use C < 0 to get

the α = 45◦ instead which has been discussed in many of the

applications mentioned in [26] and which makes the calculations

more straightforward without bothering about the extra negative

sign introduced by α =−45◦.
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From equations (21) and (22), we can rewrite the solutions
in equations (11) and (14) as

Ψnm =

c
(1)
n c

(2)
m e

(

− eη

4 x2
−
)

e

(

− e−η

4 x2
+

)

Hn

(

e
η
2

√
2

x−

)

Hm

(

e
−η
2

√
2

x+

)

(23)

and

Φnm =

c
(1)
n c

(2)
m e

(

− e−η

4 p2
−
)

e

(

− eη

4 p2
+

)

Hn

(

e
−η
2

√
2

p−

)

Hm

(

e
η
2

√
2

p+

)

.

(24)

Let us now outline the calculation of the Shannon
entropic entanglement criterion by calculating the
function

f (η) = H[w−]+H[v+]− ln(2πe). (25)

Using instead H[w+] +H[v−]− ln(2πe) yields the same
results. We start with H[w−]. Letting equation (26) equal































a)t ≡ e
η
2√
2

b)z1 ≡ tx− =

(

e
η
2√
2

)

x−

c)z2 ≡ x+
2t

=

(

e
−η
2√
2

)

x+ ,

(26)

equation (23) becomes (note equation (11) too)

Ψnm = ψnψm = c
(1)
n c

(2)
m e−

(z2
1)
2 e−

(z2
2)
2 Hn(z1)Hm(z2). (27)

From equation (19), we get w− = 1
2

∫ ∞
−∞ dx+|ψn|2|ψm|2

and with the change in variables in equation (26), we get
using equation (27)

w− = qnme−z2
1H2

n (z1) with qnm =
tI0

πn!m!2n2m
(28)

where the integral

I0 ≡
∫ ∞

−∞
e−z2

2H2
m(z2)dz2. (29)

From equation (18), H[w−] = −∫ ∞
−∞ dx−w− lnw−. Using

equation (28) and expanding gives

H[w−] =−1

t
qnm{(lnqnm)I1 + I2 + I3} (30)

where















a)I1 ≡
∫ ∞
−∞ e−z2

1H2
n (z1)dz1

b)I2 ≡−∫ ∞
−∞ z2

1e−z2
1H2

n (z1)dz1

c)I3 ≡
∫ ∞
−∞ e−z2

1H2
n (z1) ln

(

H2
n (z1)

)

dz1.

(31)

From [13] we get analytic expressions for the integrals in
equations (29) and (31).























a)I0 = 2mm!
√

π

b)I1 = 2nn!
√

π

c)I2 =−2nn!
√

π
(

n+ 1
2

)

d)I3 = 2nn!
√

π ln22n − 2∑n
k=1 Vn

(

xn,k

)

,

(32)

where xn,k are the roots of Hn(z1) and Vn, called the
logarithmic potential of the Hermite polynomial Hn, is
given by

Vn(xn,k) =

2nn!
√

π

[

ln2+
γ

2
− x2

n,k 2F2

(

1,1;
3

2
,2;−x2

n,k

)

+
1

2

n

∑
i=1

(

n

k

)

(−1)k2k

k 1F1

(

1;
1

2
;−x2

n,k

)]

with γ ≈ 0.577 as the Euler constant, and 1F1 and 2F2 are
the hypergeometric functions.

Next we calculate H[v+]. Similar to equation (26), we
let equation (33) equal































a)t ≡ e
η
2√
2

b)p1 ≡ p−
2t

=

(

e
−η
2√
2

)

p−

c)p2 ≡ t p+ =

(

e
η
2√
2

)

p+.

(33)

Equation (24) becomes (note equation (14), too)

Φnm =φnφm

=c
(1)
n c

(2)
m e

(

−p2
1

2

)

e

(

−p2
2

2

)

Hn(p1)Hm(p2). (34)

From equation (19), we get v+ = 1
2

∫ ∞
−∞ d p−|φn|2|φm|2.

With the change in variables in equation (33) and using
equation (34), we get

v+ = rnme−p2
2 H2

m(p2) with rnm =
tJ0

πn!m!2n2m
, (35)

where the integral J0 ≡ ∫ ∞
−∞ e−p2

1 H2
n (p1)dp1. From

equation (18), H[v+] =−∫ ∞
−∞ d p+v+ ln(v+).

Using equation (35) and expanding, we get

H[v+] =−1

t
rnm{(lnrnm)J1 + J2 + J3}, (36)

where J1 ≡
∫ ∞
−∞ e−p2

2 H2
m(p2)dp2 ,

J2 ≡−∫ ∞
−∞p2

2 e−p2
2 H2

n (p2)dp2 and

J3 ≡
∫ ∞
−∞ e−p2

2 H2
n (p2) ln

(

H2
n (p2)

)

dp2. With a proper
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change in variables, one can easily evaluate J0, J1, J2, and
J3 similar to the evaluation of the integrals in equations
(29) and (31), as given by equation (32). The above
discussion of the integrals facilitates the Maple
calculation of f (η) in equation (25) using equations (30)
and (36) for different values of n and m. In general, the
f (η) has the form

f (η) = η0 −η , (37)

where η0 is a constant (threshold value) which is the η-
intercept (horizontal axis intercept).

In Figure 1, we plot f (η) in equation (25). For
instance, f (η) = −η for (n = m = 0); f (η) ≈ 0.541−η
for (n = m = 1); f (η) ≈ 0.852 − η for (n = m = 2);
f (η) ≈ 1.07−η for (n = m = 3), etc. Similar graphs can
be plotted for states with unequal values of n and m. From
equation (17), we note that entanglement occurs when
f (η) < 0. The graph shows the strong dependence of
entanglement on the quantum numbers (n,m).

Fig. 1: Plot of f (η) = H[w−] +H[v+]− ln(2πe) of the ground

state and some excited states.

For the case we are considering in equation (20), for
no interaction, C = 0, implies η = 0. As mentioned
earlier, indeed entanglement occurs for η > η0 ≥ 0. As
expected when there is no interaction (η = 0), there is no
entanglement. A higher value of |C| (and thus η) implies
a stronger coupling. For a particular state (given n and m),
stronger interactions (higher η values) result in higher
degrees of entanglement (more negative f (η)). Ground
state (n = m = 0) interacting oscillators are entangled for
η > η0 = 0. For a given η (given couplings A and C)
however, oscillators in excited states (n > 0 or m > 0) are
entangled at a nonzero threshold value of η0 in equation
(37). For example, as given above, for the state
(n = m = 3), the threshold value is η0 = 1.07. The next

higher energy state from the ground state, n = 1, m = 0 or
n = 0, m = 1 give a threshold of η0 = 0.270. Excited
states generally have a higher threshold than the ground
state because as shown in [29] excited states have higher
entropy than the ground state. In addition, excited states
will need stronger interactions (corresponding to higher
η0) to lead to entanglement. By using different values of
n and m one can check that the value of the threshold η0

is the same for ψnm and ψmn, although these are different
states with different eigenvalues as can be seen from
equations (11) and (13). In other words, the SEEC is
symmetric in the quantum numbers n and m. Figure 2
shows an increase in entropy as shown by an increase in
the threshold η0 and also exhibits the tendency of
entanglement at a higher interaction threshold for
increasing quantum numbers (n,m).

Fig. 2: Plot of the threshold values η0 given values of n and m.

4 Conclusions

Using the Shannon Entropic Entanglement Criterion
(SEEC), we study the entanglement of coupled harmonic
oscillators. A simple entanglement criterion is found in
terms of the interaction parameter η , given by
f (η) = H[w]+H[v]− ln(2πe) = η0 −η < 0 where η0 is
a threshold value depending on the state (n,m). It is found
that coupled harmonic oscillators in the ground state have
a lower threshold for entanglement than excited states.
More interaction is needed for the higher energy states to
“share” information and hence entangle due to the
increased number of possible states. In addition, the
SEEC is shown to be symmetric in the quantum numbers
n and m. For a given state, increasing the interaction
increases the entanglement as expected since a higher
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interaction results in more information between the
coupled oscillators leading to more entanglement. The
SEEC can also be applied to quantum wells and
preliminary calculations seem to indicate similar results.
However, unlike the SHO, in which the integrals involve
well known special functions which can be evaluated and
expressed in analytic form, all the integrals involved in
quantum wells can only be evaluated
numerically [12, 30–32].
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