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Abstract: In this paper, a new initial value method for solving a class of nonlinear singularly perturbed boundary value problems
with a boundary layer at one end is proposed. The method is designed for the practicing engineer or applied mathematician who needs
a practical tool for these problems (easy to use, modest problem preparation and ready computer implementation). Using singular
perturbation analysis the method is distinguished by the following fact: the original problem is replaced by a pair of first order initial
value problems; namely, a reduced problem and a boundary layer correction problem. These initial value problems are solved using
classical fourth order Runge–Kutta method. Numerical examples are given to illustrate the method. It is observed that the present
method approximates the exact solution very well.
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1 Introduction

Singularly perturbed boundary value problems (SPBVPs)
are common in applied sciences and engineering. They
often occur in, for example, fluid dynamics, quantum
mechanics, chemical reactions, electrical networks, etc. A
well known fact is that the solution of such problems has
a multiscale character, i.e. there are thin transition layers
where the solution varies very rapidly, while away from
the layers the solution behaves regularly and varies
slowly. For a detailed discussion on the analytical and
numerical treatment of such problems one may refer to
the books of O’Malley [1]; Doolan et al. [2]; Roos et al.
[3]; and Miller et al. [4]. Numerically, the presence of the
perturbation parameter leads to difficulties when classical
numerical techniques are used to solve such problems,
this is due to the presence of the boundary layers in these
problems; see for example O’Malley [1,5]. Even in the
case when only the approximate solution is required,
finite difference schemes and finite element methods
produced unsatisfactory results; see Samarski [6]. It was
shown in [7,8] that the results of using classical methods
are also unsatisfactory even when a very fine grid is used.
Therefore, the numerical treatment of singular

perturbation problems presents some major
computational difficulties. In fact, some numerical
techniques employed for solving SPBVPs are based on
the idea of replacing a two-point boundary-value problem
by two suitable initial-value problems. For example,
Kadalbajoo and Reddy [9] considered a class of nonlinear
SPBVP which was replaced by an asymptotically
equivalent first-order problem and was solved as an
initial-value problem. Gasparo and Macconi [10]
considered a semilinear SPBVP which was integrated to
obtain a first-order IVP, and considered both the inner and
outer solutions. A similar matching idea combining the
reduced problem and a WKB approximation for the full
problem has also been employed by Gasparo and
Macconi [11,12] for linear, semilinear and quasilinear
problems. These matching ideas are based on the method
of asymptotic expansions and on the work of Roberts [13]
who considered the matching between inner and outer
solutions at an unknown location which was determined
iteratively, and referred to his method as a boundary value
technique. Robert’s idea has been extended by Valanarasu
and Ramanujam [14] for boundary-value problems of
singularly-perturbed systems of ODEs and used
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exponentially-fitted methods for solving the singularly-
perturbed initial-value problem.

A similar approach was followed by Reddy and
Chakravarthy [15] who considered the full problem in the
inner and outer regions, albeit they determined the
boundary condition at the matching point from the
solution of the reduced problem. Reddy and Chakravarthy
[16] presented a method of reduction of order for solving
linear and a class of nonlinear SPBVPs. Then Reddy and
Chakravarthy [17] presented three initial-value problems
instead of the linear second-order SPBVP. Habib and
El-Zahar [18] considered a class of nonlinear SPBVP
which was replaced by an asymptotically equivalent first
order IVP and was solved using locally exact integration.
Wang [19] and Attili [33] presented a boundary value
method for a class of nonlinear SPBVPs and used series
method and Pade’ approximation to obtain a series
solution.

In this paper, an initial value method which is simple to
use and easy to implement is introduced, for solving a
class of nonlinear SPBVPs with a boundary layer at one
end. Using singular perturbation analysis the method is
distinguished by the following fact: the original problem
is replaced by a pair of first order initial value problems;
namely, a reduced problem and a boundary layer
correction problem. These initial value problems are
solved using classical fourth order Runge–Kutta method.
Numerical examples are given to illustrate the method.
Also, the well-known third order Blasius’ viscous flow
problem is considered for large suction/injection case and
an approximate analytic solution is obtained. It is
observed that the present method approximates the exact
solution very well.

2 The linear problem

Consider the two point singularly perturbed boundary
value problem

ε
d2y
dx2 + p(x)

dy
dx

+q(x)y = 0, x ∈ [a,b], (1)

with the boundary conditions

y(a) = α and y(b) = β , (2)

where ε is a small positive parameter 0 < ε ≪ 1 α and β
are given constants, p(x) and q(x) are assumed to be
sufficiently continuously differentiable functions, and
p(x) ≥ M > 0 for every x ∈ [a,b] where M is some
positive constant. Under these assumptions, (1) has a
solution which, in general, displays a boundary layer of
width O(ε) at x = a. Equation (1) can be written as

ε
d2y
dx2 +

d
dx

(p(x), y) = F(x,y), x ∈ [a,b], (3)

where
F(x,y) = p′(x)y−q(x)y.

Now, let u(x) be the solution of the reduced problem

p(x)
du
dx

+q(x)u = 0 with u(b) = β . (4)

Then an asymptotically approximation to the given Eq.
(3) as follows:

ε
d2y
dx2 +

d
dx

(p(x)y) = F(x,u)+O(ε), x ∈ [a,b], (5)

with the boundary conditions

y(a) = α and y(b) = β . (6)

By integrating Eq. 5, we obtain

ε
dy
dx

+ p(x)y =
∫

F(x,u)dx+O(ε), (7)

where∫
F(x,u)dx =

∫ (
p′(x)u−q(x)u

)
dx.

Using Eq. (4), we get∫
F(x,u)dx =

∫ (
p′(x)u+ p(x)u′

)
dx = p(x)u+ k.

Then Eq. (7) will be

ε
dy
dx

+ p(x)y = p(x)u+ k+O(ε), (8)

where k is an integration constant. In order to determine
k, we introduce the condition that the reduced equation of
(8) should satisfy the boundary condition at x = b. Thus
we get k = 0.

Hence, a first order initial value problem which is
asymptotically equivalent to the second order boundary
value problem (1) was obtained.

ε
dw
dx

+ p(x)w = p(x)u, (9)

with initial condition

w(a) = α.

Over most of the interval, the solution of Eq. (4) behaves
like the solution of (9) but at the end x= a, there is a region
in which the solution varies greatly from the solution of
(9). To portray the solution over this region, we will use
the substitution x− a = εt, the stretching transformation
which means dx = εdt. This transforms (9) into

dw
dt

+ p(a+ εt)w = p(a+ εt)u(a+ εt). (10)
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Taking ε = 0 in (10) leads to

dw
dt

+ p(a)w = p(a)u(a). (11)

If we require the solution to (11) to compensate for the
fact that the solution of the reduce problem (4) does not
satisfy the boundary condition at x = a, and further that
this solution goes to zero as t → ∞, then we obtain the
boundary layer correction problem

dW
dt

+ p(a)W = 0 with W (0) = α −u(a). (12)

Then, from standard singular perturbation theory it
follows that the solution of (9) admits the representation
in terms of the solutions of the reduced and boundary
layer correction problems; that is,

y(x) = u(x)+W
(

x−a
ε

)
+O(ε). (13)

Remark 1. The reduced problem (4) and the resulting
problem (12) are easily solvable since they are separable
and thus (13) results in an asymptotic analytical solution
to the original problem (1) given by

y(x) = βe
∫ x

b
−q(x)
p(x) ds

+(α −u(a))e
−p(a)(x−a)

ε +O(ε). (14)

Note that both the Eq. (4) and Eq. (12) are independent of
ε and this means if the problem is nonlinear, as we will
discuss in the next section, we can easily get the numerical
solutions by method for one-order initial value differential
equation such as the Runge-Kutta method.

3 The nonlinear case

Consider the nonlinear singularly perturbed boundary
value problem

ε
d2y
dx2 + p(x,y)

dy
dx

+q(x,y) = 0, x ∈ [a,b], (15)

with boundary conditions

y(a) = α and y(b) = β . (16)

where 0 < ε ≪ 1, α and β are given constants, p(x,y)
and q(x,y) are assumed to be sufficiently continuously
differentiable functions, and p(x,y) ≥ M > 0 for every
x ∈ [a,b].

Again if we set ε = 0 we obtain the reduced problem

p(x,u)
du
dx

+q(x,u) = 0 with u(b) = β . (17)

The solution of this problem satisfies (15) on most of the
interval [a,b] and away from x = a. If this problem is

separable then it can be integrated easily and if not any
initial value solver like fourth order Runge–Kutta method
will be used to approximate the solution.

Equation (15) can be written as

ε
d2y
dx2 +

d f
dx

(x,y) = G(x,y), (18)

where

d f
dx

(x,y) =
∂ f
∂x

(x,y)+ p(x,y)
dy
dx

,

G(x,y) =
∂ f
∂x

(x,y)−q(x,y).
(19)

Also, Eq. (17) can be written as

d f
dx

(x,u) = G(x,u) with u(b) = β , (20)

where

d f
dx

(x,u) =
∂ f
∂x

(x,u)+ p(x,u)
du
dx

,

G(x,u) =
∂ f
∂x

(x,u)−q(x,u).
(21)

Subtracting Eq.(20) from Eq.(18) and integrating the
resulting equation, we get

∫ x

b

(
ε

d2y(s)
ds2 +

d f
ds

(s,y(s))
)

ds =∫ x

b

(
d f
ds

(s,u(s))
)

ds+E(x),
(22)

where

E =
∫ x

b
(G(s,y(s))−G(s,u(s)))ds, y(a) = u(a) = β .

(23)
Thus

ε
dy
dx

+ f (x,y) = f (x,u)+E(x)+K, y(a) = α, (24)

where

K =

(
ε

dy
ds

(s)+ f (s,y(s))− f (s,u(s))
)

s=b
= εy′(b).

In what follows we construct approximate solution of Eq.
(24).

Lemma 3.1. Let y(x) and u(x) be respectively the
solutions of the BVP (15) and the reduced problem (17).
Then,

|y(x)−u(x)| ≤C
(

ε + e−M(x−a)/ε
)
, x ∈ [a, b]

Proof.See ( Lorenz [20, Theorem 3]).
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Lemma 3.2. Let y(x) be the solution of the BVP (15).
Then, ∣∣∣y(m)(x)

∣∣∣≤C
(

1+ ε−me−M(x−a)/ε
)
,

x ∈ [a, b], m = 0,1, . . .

Proof.See ( Vulanovic [21, Theorem 1]).

With the help of these lemmas we can prove the following
theorem.

Theorem 3.1. Let y(x), u(x) and w(x) be respectively
the solutions of the BVP (15), the reduced problem (17)
and the following initial-value problem

ε
dw
dx

+ f (x,w) = f (x,u) with w(a) = α. (25)

Then,
|y(x)−w(x)| ≤Cε.

Proof. From Eq. (23) and by using Lemma 3.1 we get
the following bounded error

E =
∫ x

b
(G(s,y(s))−G(s,u(s)))ds

≤
∫ x

b

(∣∣∣∣∂G
∂y

(s,ξ )
∣∣∣∣ |y(s)−u(s)|

)
ds

≤Cε,

(26)

where, ξ lies between y(x) and u(x). Let m = 1 in Lemma
3.2, we get the following bounded error

|K|=
∣∣εy′(b)

∣∣≤Cε. (27)

Therefore, Eq. (24) becomes

ε
dy
dx

+ f (x,y) = f (x,u)+O(ε), y(a) = α , (28)

To estimate the error involved in the solution w(x) of Eq.
(25) we proceed as follows:

Let z(x) = y(x)−w(x). Then z(x) satisfies the following
IVP

ε
dz
dx

+
∂ f
∂y

(x,ζ )z = O(ε), z(a) = 0, (29)

where, ζ lies between y(x) and w(x).

By integrating Eq. (29) it can be shown that

|z(x)|= |y(x)−w(x)| ≤Cε.

The proof of Theorem 3.1 is completed.

Thus, by Theorem 3.1 the solution of the two-point
boundary value problem (15) is approximated by that of
the first order initial value problem (25).

Close to the boundary layer problem, we use as before the
substitution x−a = εt, which transforms (25) into

dw
dt

+ f (a+ εt,w) = f (a+ εt,u(a+ εt)). (30)

Setting ε = 0 and remembering that we require the
solution to (30) to compensate for the fact that the
solution of the reduce problem (20) does not satisfy the
boundary condition at x = a, and further that this solution
goes to zero as t → ∞, then we obtain the boundary layer
correction problem

dW
dt

+ f (a,W +u(a)) = f (a,u(a)), W (0) = α −u(a).
(31)

As a result the solution to the original problem (15) will
be a combination of the reduced and the boundary layer
correction problems; that is,

y(x) = u(x)+W
(

x−a
ε

)
+O(ε). (32)

4 The error analysis

The numerical error of the present method has two
sources: one from the asymptotic approximation and the
other from the numerical approximation. Let ho and hin
be the mesh spacing on the non-boundary layer and on
the boundary layer domain respectively.

4.1 Error on the non-boundary layer domain

Let y be the exact solution of the original problem, u be
the exact solution of the reduced problem, and uN be the
numerical solution of the reduced problem. Assume uN is
obtained from the fourth- order Runge-Kutta method. On
the non-boundary layer domain, the error is

∥u−uN∥= max
i=1...N−1

{|u(xi)−uN(xi)|} .

By the triangle inequality, we conclude

∥y−uN∥ ≤ ∥y−u∥+∥u−uN∥= O(ε)+O(h4
o).

In more times, the exact solution of the reduced problem
can be easily obtained and the second term of the above
error inequality is vanished.

4.2 Error on the boundary layer domain

On the boundary layer domain, the asymptotic
approximation error is generated from the reduction of
order method and the numerical approximation error from
the numerical methods.
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Let W be the exact solution of the Eq. (31), and WN be the
numerical solution of Eq. (31). Assume WN is obtained
from the fourth- order Runge-Kutta method. On the
boundary layer domain, the error is

∥y− (WN +uN)∥ ≤ ∥y− (W +u)∥+∥(W +u)− (WN +uN)∥
= O(ε)+O(h4

in).

The new method works well for singular perturbation
problems since the singular perturbation parameter ε is
extremely small.

5 Numerical results

To demonstrate the applicability of the method we have
applied it on three nonlinear singular perturbation
problems. These examples have been chosen because they
have been widely discussed in literature and because
approximate solutions are available for comparison. Also,
the well-known third order Blasius’ viscous flow problem
is considered for large suction/injection case and an
approximate analytic solution is obtained.

Example 5.1. Consider the second-order nonlinear
equation

ε
d2y
dx2 +2

dy
dx

+ ey = 0;x ∈ [0,1], (33)

where y(0) = y(1) = 0. The reduced problem is

2
du
dx

+ eu = 0,

with u(1) = 0, which has the solution u(x) = − ln
( x+1

2

)
.

Hence, the corresponding initial value problem is given by

ε
dw
dx

+2w =−2ln
(

x+1
2

)
; w(0) = 0.

And the boundary layer correction problem is given by

dW
dt

+2(W + ln2) = 2ln2;W (0) = ln
(

1
2

)
,

or simply

dW
dt

+2W = 0;W (0) = ln
(

1
2

)
. (34)

The solution is W (t) = ln
( 1

2

)
e−2t with t = x

ε . Hence the
solution of (33) is approximated by

y(x) =− ln
(

x+1
2

)
+ ln

(
1
2

)
e
−2x

ε , (35)

which is the asymptotic approximate solution obtained by
Bender and Orszag [22]. As shown from the previous
example, the present method offers a relatively simple
and easy tool for obtaining asymptotic approximate
analytical solution for singular perturbation problems.
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Fig. 5.1: Graphs of the solutions of Example 5.1 and its
reduced problem.

Example 5.2. See Kevorkian and Cole [23], and Roberts
[24]. The quasilinear problem

ε
d2y
dx2 + y

dy
dx

= y, (36)

where y(0) = A, y(1) = B, 0 ≤ |A| < B− 1. The problem
has a uniformly valid approximation for comparison [23]

y = x + (B−1) tanh((B−1)(x/ε)/2
+ (1/2) log((B−1+A)/(B−1−A))).

The reduced problem is u du
dx −u = 0 with u(1) = B which

has the solution u(x)= x+B−1. Hence, the corresponding
initial value problem is given by

ε
dw
dx

+
1
2

w2 =
1
2
(x+B−1)2, w(0) = A.

And the boundary layer correction problem is given by

dW
dt

+
1
2
(W +B−1)2 =

1
2
(B−1)2, (37)

where
w(0) = A−B+1.

The results for A = −1 and B = 3.9995 are presented in
Fig. 5.2 for ε = 0.01 and in Fig. 5.3 for ε = 0.0001 using
classical fourth order Rung-Kutta method at hin = 0.1 over
the boundary region [0, tp], where

∣∣W (tp)
∣∣ < δ , and δ is a

user specified tolerance. In our computations we take δ =
10−4.

We compare the numerical results of the present method
with different values of the step size hin (different number
of grid points, N) as shown in Table 5.1. The numerical
results indicate that as the step size decreases, the error
decreases. Moreover, with a constant number of mesh
points, the numerical error is maintained at the same level
for a family of singular perturbation problems.
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Table 5.1: Maximal error comparison with different values of the step size hin for Example 5.2.
A =−1, B = 3.9995 Maximal error

ε = 10−3 ε = 10−5 ε = 10−8 ε = 10−10

hin = 0.1 N = 40 2.7457e-005 2.7457e-005 2.7457e-005 2.7457e-005
hin = 0.2 N = 21 5.0144e-004 5.0144e-004 5.0144e-004 5.0144e-004
hin = 0.3 N = 15 3.0000e-003 3.0000e-003 3.0000e-003 3.0000e-003
hin = 0.4 N = 12 1.1300e-002 1.1300e-002 1.1300e-002 1.1300e-002
hin = 0.5 N = 10 2.8800e-002 2.8800e-002 2.8800e-002 2.8800e-002

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Fig. 5.2: Kevorkian solution [23] and the obtained
approximate solution of Example 5.2 at ε = 0.01.
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Fig. 5.3: Kevorkian solution [23] and the obtained
approximate solution of Example 5.2 at ε = 0.0001.

The numerical results of the present method and the
initial value method in [12] are compared for different
boundary condition values. As shown in Table 5.2, the
present method gives more accurate results.

Example 5.3. Consider the second-order nonlinear
example from O’Malley [5]

ε
d2y
dx2 + ey dy

dx
− π

2
sin

(πx
2

)
e2y = 0;

y(0) = y(1) = 0.
(38)

The problem has a uniformly valid approximation for
comparison [5]

y =− ln
[
(1+ cos(πx/2))(1−0.5e−x/2ε)

]
.

The reduced problem is du
dx − π

2 sin
(πx

2

)
eu = 0 , with

u(1) = 0, which has the solution
u(x) = − ln(1+ cos(πx/2)) . Hence, the corresponding
initial value problem is given by

ε
dw
dx

+ ew =

(
1

1+ cos(πx/2)

)
;w(0) = 0.

And the boundary layer correction problem is given by

dW
dt

+
1
2

eW =
1
2

; W (0) = ln2. (39)
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Fig. 5.4: O’Malley solution [5] and the obtained
approximate solution of Example 5.3 at ε = 0.01.
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Table 5.2: Maximal error comparison when ε = 10−12 for Example 5.2.
Method Boundary conditions

A = 2, B = 6 A =−2, B = 6 A =−1, B = 3.9995
Gasparo and Maconi [12] 8.e-001 1.e-001 3.e-001
The present method 4.e-004 4.e-004 3.e-005

Table 5.3: Maximal error comparison with different values of the step size hin for Example 5.3.
Maximal error

ε = 10−3 ε = 10−5 ε = 10−8 ε = 10−10

hin = 0.1 N = 172 3.8347e-008 3.8347e-008 3.8347e-008 3.8347e-008
hin = 0.2 N = 87 6.3420e-007 6.3420e-007 6.3420e-007 6.3420e-007
hin = 0.3 N = 58 3.2899e-006 3.2899e-006 3.2899e-006 3.2899e-006
hin = 0.4 N = 44 1.0700e-005 1.0700e-005 1.0700e-005 1.0700e-005
hin = 0.5 N = 36 2.6786e-005 2.6786e-005 2.6786e-005 2.6786e-005

Table 5.4: Maximal error comparison when hin = 0.1 for Example 5.3.
Method ε = 10−3 ε = 10−5

Iterative method by Gasparo and Maconi [11] 5.962e-002 5.962e-002
Iterative method by Jayakumar and Ramanujam [25] 4.869e-003 7.584e-004

The present method with third order Rung kutta method 6.504e-006 6.504e-006
The present method with fourth order Rung kutta method 3.834e-008 3.834e-008
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Fig. 5.5: O’Malley solution [5] and the obtained
approximate solution of Example 5.3 at ε = 0.0001.

We compare the present method with the iterative
methods using Newton’s method of quasilinearization
from [11,25]. In [11] the approximate solution of the
resultant linear problems is obtained by solving two
initial-value problems using the variable step size
initial-value integrator LSODA with local error tolerances
10−12. In [25] the resultant linear problems are solved by
the numerical method suggested in [26] which is a
combination of an exponentially-fitted finite difference
method and a classical numerical method.

As shown in Table 5.4, the present method gives more
accurate results compared to the methods in [11,25].
Table 5.3 and Table 5.4 show the advantage of the present
method in using high order methods for one-order initial
value differential equation such as the Runge–Kutta

methods to obtain more accurate results without any new
restriction on the step size.

Note that, the boundary layer correction problem (39) has
a solution W (t) = − ln

(
−0.5+ et/2

)
with t = x

ε and
hence an approximate analytical solution can be obtained
and given by

y(x) =− ln(1+ cos(πx/2))− ln
(
−0.5+ ex/2ε

)
.

Example 5.4. Consider the well-known third order
Blasius Equation in the following general form

f ′′′(η)+ f (η) f ′′(η) = 0;
η ∈ [0,∞),

f (0) =−α , f ′(0) =−β , lim
η→∞

f ′(η) = γ,
(40)

where α , β and γ are constants. According to Guedda
[27], in the event of f (0) = −α , α represents a
suction/injection parameter where −α > 0 represents
suction and −α < 0 corresponds to injection of the fluid.
The initial condition, f ′(0) = −β , indicates the slip
condition at the wall [28]. The case where β = 0
represents no-slip. In practice we can find numerical
solutions only on a finite interval. For this reason, we
introduce a one-parameter family of problems related to
Blasius problem on the finite interval (0,L) where the
length L of the interval is taken as the parameter of the
family. The typical problem in this family is defined for
each value of L in the range 1 ≤ L ≤ ∞ by

f ′′′L (η)+ fL(η) f ′′L (η) = 0;
η ∈ [0,L),

fL(0) =−α, f ′L(0) =−β , f ′L(L) = γ .
(41)
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When we reformulate (41) as a singularly perturbed
problem, it transpires that 1

L is the singular perturbation
parameter and so it is appropriate to introduce the
temporary notation δ = 1

L . Then the problem (41) can be
written in the form

f ′′′δ (η)+ fδ (η) f ′′δ (η) = 0;

fδ (0) =−α, fδ (0) =−β , fδ (
1
δ
) = γ,

(42)

Putting g(η) = f ′δ (η), this problem becomes

g′′(η)+ fδ (η)g′(η) = 0; g(0) =−β ,g(
1
δ
) = γ , (43)

Changing variables from η to x = δη , and writing y(x) =
g(η) and h(x) = fδ (η), we obtain

εy′′(x)+ p(x)y′(x) = 0;y(0) =−β ,y(1) = γ, (44)

where ε = −δ/α , p(x) = −h(x)/α and p(0) = 1. For
moderate-to-large values of suction/injection parameter
α , Eq. (44) is a singularly perturbed problem for y(x)
with a boundary layer of width O(ε) at x = 0 or x = 1.

–Solution for large suction case

The reduced problem of (44) is given by p(x)u′(x) = 0,
with u(1) = γ which has the solution u(x) = γ . Hence, the
corresponding initial value problem is given by

ε
dw
dx

+ p(x)w = p(x);w(0) =−β .

And the boundary layer correction problem is given by

dW
dt

+ p(0)(W + γ) = p(0)γ;W (0) =−β − γ,

or simply

dW
dt

+W = 0;W (0) =−β − γ. (45)

The solution is W (t) =−(β +γ)e−t with t = x
ε . Hence the

solution of (44) is

y(x) = f ′δ (η) = γ − (β + γ)eαη , fδ (0) =−α , (46)

which results in

fδ (η) =−α + γη +
β + γ

α
(1− eαη),α ̸= 0, (47)

f ′′δ (η) =−α(β + γ)eαη . (48)

Thus we have obtained an asymptotic approximate
solution for Blasius’ viscous flow problem for large
suction case.

In the following figures, we compare the obtained
numerical solutions of the problem (40), in MATLAB
environment using the function bvp4c
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Fig. 5.6: Solution comparison, numerical solution (dotted
lines) and Eq. (47) solution (solid lines) at β = 0, γ = 1.
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Fig. 5.7: Solution comparison, numerical solution (dotted
lines) and Eq. (46) solution (dashed lines) at β = 0, γ = 1.

(atol = 10−6,rtol = 10−3), with the results from Eqs.
(46) to (48) at α ̸= 0, β = 0, γ = 1.
According to Weyl [29], “the value [ f ′′(0)] is the
essential factor in the formula for the skin friction along
the immersed plate”. Due to its importance, we compare
the results of the present method and Adomian
Decomposition Method (ADM) in [30]. As shown in
Table 5.5, the present method gives more accurate results
compared to the results in [30] for large suction case.
Moreover, as the suction value increases, the numerical
error decreases.

Fig 5.9 presents a comparison of the results obtained on the
differential analyser, at Manchester University [31] at α =
2σ , σ =−5,−10, β = 0, γ = 2, and the results obtained by
the present method to show the effectiveness of the present
method in approximating the solution of Blasuis problem
for large suction case.
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Table 5.5: The present method and ADM values of f ′′(0) for α ̸= 0, β = 0, γ = 1.
α Numerical (bvp4c) ADM [30] Relative error % present method Relative error %

-1.5 1.7319 2.50943 44.9 1.5 13.4
-2.0 2.1945 3.00028 36.7 2.0 08.9
-2.5 2.6666 1.49962 43.8 2.5 06.2
-3.0 3.1451 - - 3 04.6
-6.0 6.0799 - - 6 01.3
-12 12.0412 - - 12 00.3

The sign ’-’ means not available.
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Fig. 5.8: Solution values of f ′′(0), numerical solution
(dotted) and Eq. (48) solution (circles) at β = 0, γ = 1.

6 Extension to higher order problems

The present method can be applied on problems of higher
order, for example, on fourth-order singularly perturbed
boundary value problems. A model example which can be
solved is [32]

−εyiv −a(x)y′′′+b(x)y′′− c(x)y =− f (x), (49)

y(0) = p, y(1) = q, y′′(0) =−r, y′′(1) =−s. (50)

The fourth order problem (49) and (50) will be
transformed into a system of weakly coupled system of
two second order ODEs, one without the parameter and
the other with the parameter ε , multiplying the highest
derivative, and with their suitable boundary conditions as
follows

y′′ = z, y(0) = p, y(1) = q,

εz′′+a(x)z′−b(x)z+ c(x)y = f (x), z(0) =−r, z(1) =−s.
(51)

The reduced system of (51) is given by

y′′0 = z0, y0(0) = p, y0(1) = q,

a(x)z′0 −b(x)z0 + c(x)y0 = f (x), z0(1) =−s.
(52)

Using Remark 1 (in section 2 for linear problems), we have

z = z0 +
(
(−r− z0(0))e

−a(0)x
ε

)
+O(ε). (53)
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Fig. 5.9: Relative error comparison between, Eq. (46)
solution (blue line) and the solution in [31] (red line).

Integrating (53) twice with the boundary conditions
y(0) = p, y(1) = q, we get an approximate solution for y.
For example, consider the fourth order singularly
perturbed problem [32]

−ε
d4y
dx4 −4

d3y
dx3 = 1, x ∈ (0,1), (54)

where y(0) = y(1) = 1,y′′(0) = y′′(1) =−1. The problem
has an exact solution given by

y =
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{
1+

ε2

64(1− e−4/ε)
+

[
1
24

− ε2

64
− (4(1− e−4/ε)+1)

(8(1− e−4/ε))

]
x

+

[
4(1− e−4/ε)+1
(8(1− e−4/ε))

]
x2 − ε2e−4x/ε

64(1− e−4/ε)
− x3

24

}

+

{
1+

(4(1− e−4/ε)+1)
(4(1− e−4/ε))

+
e−4x/ε

4(1− e−4/ε)
− x

4

}
.

The equivalent system of problem (54) is given by

y′′ = z, y(0) = y(1) = 1,

εz′′+4z′ =−1, z(0) = z(1) =−1.
(55)

The reduced system of (55) is given by

y′′0 = z0, y0(0) = y0(1) = 1,
4z0 =−1, z0(1) =−1.

(56)

which has a solution given by

y0 =− x3

24
− 3x2

8
+

5x
12

+1,

z0 =− x
4
− 3

4
.

(57)

Using Remark 1, we have

z =− x
4
− 3

4
− 1

4
e−4x/ε . (58)

And thus, we have

y′′ =− x
4
− 3

4
− 1

4
e−4x/ε , y(0) = y(1) = 1, (59)

which results in

y =− x3

24
− 3x2

8
+

5x
12

+1+
ε2

64
(1−e−4x/ε −x(1−e−4/ε)).

(60)
The results obtained using Eqs. (58) and (60) compare very
well with the exact solutions.

7 Conclusions

In this article, an initial value method is presented for
solving quasilinear singularly perturbed boundary value
problems with a boundary layer at one end. The method is
similar in some respect to the asymptotic expansion
methods, but differs in detail. The method differs in how
we use the available data. The solution of the given
problem is computed numerically by solving two initial
value problems easily deduced from the original problem.
The two initial value problems, the reduced problem and
the boundary layer correction problem, are independent
of the perturbation parameter ε and therefore we get
easily the numerical solution using classical fourth order
Runge–Kutta method. In fact, any standard asymptotic or

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.95

−0.9

−0.85

−0.8

−0.75

x

y" (x)

Fig. 6.1: Solution comparison, exact derivative solution
(solid line) and Eq.(58) solution (doted line) at ε = 0.05.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.05

1.1

x

y ( x )

Fig. 6.2: Solution comparison, exact solution (solid line)
and Eq. (60) solution (doted line) at ε = 0.05.

numerical method for first order ODEs can be used. The
method is simple to use, very easy to implement on any
computer with minimum problem preparation and offers a
relatively simple tool for obtaining approximate
asymptotic solution for singular perturbation problems.
We have implemented it on three nonlinear problems by
taking different values of ε and have presented the
computational results as well as the results obtained by
other methods, in figures and tables. Moreover, we have
applied the method on the well-known third order
Blasius’ viscous flow problem and have obtained
approximate asymptotic solutions for large suction case.
The method can be applied to higher order singular
perturbation problems, possibly easier than other
approaches. It can be observed from the tables and figures
that the present method approximates the solution of
singular perturbation problems very well.
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