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1 Introduction

In the last few decades, Fractional calculus remains one of the most important and popular subject in many mathematical
research works. Certainly, the fractional order differential equations (FDEs) have been extensively studied by many
authors in theoretical form as well as in applications. Fractional differential equations have been proved to be an
excellent tool in various fields of Physics, Engineering, Bio-Engineering, Control theory, Material viscoelastic theory,
Aerodynamics and other applied sciences, see [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16] and references therein.

Since coupled systems of integer or fractional order differential equations are useful to obtain the mathematical
modeling of physical phenomena, many authors have started paying attention towards the study of such problems. For
some recent development in the study of coupled system of FDEs, one can see [17,18,19,20,21,22] and references
therein.

Being inspired by the aforementioned work, this paper establishes existence results for the solutions of a coupled
system of fractional differential equations involving the generalized Katugampola derivative:

ngrvllxl(t>:f1 ([,M([),V(f)), (1)
PDMVy (1) = i (1,u (1) v (1)), @
with the following nonlocal initial conditions
]7ﬁ m
PL Pu(a) =Y Miu (o), (3)
i=1
m
@)= 3 e () @
i=1
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where p > 0, u; € (0,1),v; € [0,1] with u; < Bj = pj+v; —ujv; < 1,j =12 and B < B

fit(a,b) x EXE — E, j = 1,2 are given functions, where (E,||-||;) are real Banach spaces. The operators
pDZi’V'f , J = 1,2 are the so called generalized Katugampola fractional derivatives of order u; and type v;,j = 1,2 and

the operators pI;ﬁ 7 are the Katugampola fractional integrals of order 1 — Bj, j = 1,2 with a > 0.

; € (a,b], i = 1,2,...,m are prefixed points such that a < @0 < @ < ... < @, < b. A;; >0 and Ay; > 0 for all
i=1,2,....m
We used Krasnoselskii fixed point theorem to establish our main existence results for the coupled system (1) — (4).

2 Preliminary results

Let 0 < a < b < oo be a finite interval on R™ and let C|[a, b] be the Banach space of all continuous functions 4 : [a,b] — R
with associated norm
1hlle = max {|h (#)] ;1 € [a,b]}-

For0 < B; <1, j=1,2 and the parameter p > 0, we indicate the weighted space of continuous functions % on (a,b] by

P —aP\Pi
Cﬁij [a,b] = {h: (a,b] = R: ( P ) h(l)EC[a,b]}; j=12

p_ o\Bi p_ o\ Bi
Hhm@pH<t p“) a0 (t p“) ho%. )

Observe that Cy p [a,b] = Ca,b], for any p > 0.

Let p > 0 and consider the parameters (1;,V;, ¢;, B; such that B; = p;+v; — u;v; for 0 < u;,v;,fj < land 0 < aj <
1, j=1,2.

Moreover, We define the following weighted spaces

with associated norm

= max
te€la,b)

v
CI“JB @ [aab] = {g € leﬁj,p [avb]a ngfr Jg € COC_,',P [aab]}

and
Bj Bj
Cl ,[3 o [aab] = {g € leﬁj,p [avb] ) pDaig € leﬁj,p [aab]} )
with the norm given in (5).
Next, we consider the product weighted space C“ " [‘; e Z’EZ with the norm
u,v . v, = ||u v+ v V.
II( )”Cflﬁvl' “ci [ ”Cflﬁvf [ ch’fﬁvj

As in [11], for ¢ € R and 1 < p < oo consider the space zr (a,b) of those complex valued Lebesgue measurable
functions f on [a, b] for which || f|| ,» < eo, where

/p

b
dt
Il = | [l @S| <o ceri<p<o

and for p = oo
[ fllzz = ess sup [“|f ()], (c€R).

t€la,b)
Definition 1./8] (Katugampola fractional integral) Let 1,a,b,c € R with t >0 and 0 < a < b. Let u € ZF (a,b). The
left-sided Katugampola fractional integral of order | is defined by the formula

t

l p— lu
pI / o dx, (t>a), 6
( ) o) (t>a) ©)

where I (+) is the Euler’s Gamma function.
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Definition 2./9] (Katugampola fractional derivative) Let 1, p € R be such that L,p >0, u ¢ N and let n = [u] + 1, where
[u] is the integer part of W. The left-sided Katugampola fractional derivative of order o is defined by

_ I=ntp L, d\" / X u(x)
il _snpm—U _ b I-p
(PD", u) (1) fsp( T u) 0= <, dt) /(tpxp)lwdx, (7

provided that the integral exists and with & = (t"p %)n.

Definition 3./13] (Generalized Katugampola fractional derivative) Let the order [ and the type v be such that 0 < u <1
and 0 < v < 1. The generalized Katugampola fractional derivative with respect to t with p >0 andu € Cy_g [0,1] is
defined by the formula

(PDLLJ’FVM) (t) — {Pla"ilu) (IIP%)PI‘ELV)“#)M} (t) _ {PI:JEI*“) SPPISF*V)(I*/J)M} (t) , (8)

where PI%_is the generalized fractional integral defined in (6).

Remark.[13] For f = u+ v — uv the generalized Katugampola fractional derivative operator P D(’; ©V can be expressed as

s 1—- — 1-
PD(/;‘!:P];( “).5P.P[;+ﬁ:l)[(‘l’£ “)'pr;. )
Lemma 1./13] If u > 0,0 < B < 1 and u € Cg , [a,b], then

(pD5+p15+u) (t)=u(t), forall t€ (a,b].

Lemma 2.[13] (Semigroup property) Let it > 0,v > 0,1 < g <o, Let a,b € (0,00) be such that a < b and let p,c € R,
with p > c. Then for any u € Z{ (a,b) the following property holds:

(PI*.PTu) (1) = (szjvu) (1).

Lemma 3./13] For anyt > a, 4 > 0 and v > 0 we have

lpl,ﬁi (xP;ap)vll ) = l{u(i)v) (xp;ap)#ﬂl’

Lemma 4./13] Let u,p >0,0< B < 1 and let a,b € (0,%) be such that a < b and u € Cg , [a,b]. Then,

(P u) (a) = lim (PI%.u) (1) =0

t—at
and (pI(’;+u) is continuous on [a,b] if B < UL.

Lemma 5./13] Let pi € (0,1), v € [0,1] and B = u+v —puv. ifu € C°_;[a,b], then

p
PIP PDP y=PP* PDYy

and p v(i-4)
PDY PN u=PD My,

Lemma 6./13] Let ju € (0,1), 0 < B < 1. If u € Cg [a,b] and P1,_"'u € C} [a,b], then

lfuu u B
(PLyPDigru) (1) = u (1) = (pla;(ug( )<tp_pap)“ )

forallt € (a,b].
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Lemma 7./13] Letu € L! (a,b). prDﬁqu is of class L' (a,b), then
pD,uaVPI“ _Plv(lfﬂ)PDV(l*/J)
at At = g at u.

Lemma 8./13] Let f : (a,b] x R — R be a function where f (-,u(-)) € Cy_g [a,b]. A function u € Clﬁ,ﬁ [a,b] is a solution
of fractional IVP:

PDEYu(t) = f(t,u(r)), pe(0,1),vel0,1]and p >0,
pI;;ﬁu(a+):uo, B=u+v—uv,upcR

if and only if u satisfies the integral equation of Volterra type:

u(t) = FLE%) (#)Bl - F(lu) / (t" ;xp)#lxp]f(x’u(x))dx'

From the above fundamental lemma, we establish the following important Corollary which gives an equivalent mixed
type Volterra integral equation for the FDE (1) with the initial condition (3).

Corollary 1.Let fi : (a,b] x EXE — R, (t,u,v) ~ fi (t,u(t),v(t)) be a function such that for any u,v € C,_g,, f1 € Ci_p,

where B = W+ vy — vy withO< py <1, 0< vy < 1. A functionu € C{31B is a solution of FDE (1) with initial condition
—P1

(3) if and only if it satisfies the following mixed type Volterra integral equation

) = 7 (tpp“p)ﬁ"i'iau/wi{ <wf”px”>“"xp1fl <x,u<x>,v(x)>}dx

a

l — =1
+r(lul)/{<tpp p) A (x,u(x),v(x))}dx, (10)

a

m ﬁI,I -1
here Ky = {0 (B1) — ¥ A (@24 } |
where K, { (B1) L 1( 5 )

ProofLetu € Clﬁ1 8 [a,D] be a solution of the fractional differential equation (1) with the initial condition (3). Then by the
Pl
Lemma 8 this solution can be written as,

- ];ﬁ‘u a ! P\ M
“(”<tppap>ﬁ l(plaﬂﬁl?( )+r<1u1>/<tpp p)u 7 () v ()d (11)

Now substitute = @; in the above equation

- 1;[311/[ a o; Py -
u(o;) = (Lppap>ﬁ 1(’)16}([312( )JFF(lul) / <a),Pp p)ﬂ le*IfI (x,u(x),v(x))dx.

a
Multiplying by A,; both sides of the above equation we get

- IIB]M a @ P 1=
lliu(a’i>k”<wippap)ﬁ ]<plal"(ﬁ13( )+F)(Ll];1)/<wlpp p>u ]xpilfl (x,u(x),v(x))dx.

a

Thus, we have

P Pu(a) = Y du (@)
i=1

Piy) (a) m P _ P\ Bi- m U oP — P\ M
_ (P[a;(ﬁlg( );k”<w'pp p>B lJrﬁZ)L”a/(wlp P>H ]xp,lf] (x,u(x),v(x))dx.
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Bi—
By choosing @; in such a way that I" (8;) — Z l],( of = “p) # 0, we have

(pI;:B]u) (a) = ?Eﬁlglﬁ illi./{ (wipp_xp)“llxp]-fl (x,u(x) ,v(x))}dx. (12)

Substituting (12) in (11) we get (10), which proves that u satisfies the integral equation (10) when it solves FDE (1) with
the initial condition (3). This proves the necessity.

. - pylB . . .
. +
Next we prove the sufficiency. By applying P1 . ™ to both sides of the integral equation (10) we get

(pI;;ﬁlu) (1) = pd:ﬁl (zP —paP)B]l FI((:LI) ilu/wi{ (a)jpp—xp)lillxp]fl (x,u(x),v(x))}dx

LR f (e (x) v (x)).

Using Lemma 1, Lemma 2 and Lemma 3 we have

N DB, (ef e\ -
(p1a1+ ”)(t)ml(llzlllia/{< P ) xP 1fl(x,u(x),v(x))}d)ﬁLpIal+ l’ufl(x,u(x),v(x)).

Since 1 — vy (1 — ;) > 1 — By then, by taking the limit as # — a and using Lemma 4, we get

(pI;;ﬁ‘u) (a) = %Iﬁ illi/wi{ (wip _xp)“]lxp]fl (x,u(x),v(x))}dx. (13)

P

Now, substituting t = ®; in (10), we obtain

=

;i

*r(in)!{( ppxp>ul | P (x,u(x),v(x))}dx.

Therefore, we have

iilk”u(a)i) _ i‘: (a)lpp gP>l311 i":lk”jj{ (a)ippxp>#11xplfl (x,u (x) ,v(x))}dx

m w’ oy u—1
Z] {<a),P P Py (X,M(X),V(x))}dx

i {((op M le*'fl(x,u(x) } {KIZM[( —aP)Bll+]}

wl
p_ p =1
1 a) X
K1ZM;/
i=1
a

P (x,u(x),v(x))}dx. (14)

From (13) and (14) it follows that
m
I Pu(a) = Y A ().
i=1
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From the definition of Cﬁ ! 1o, [a,b], we have that PDP € Cﬁ ' [a,b]. Then, thanks to Lemma 5 (with § = 1 and

6 [
w=1-—v;(1—uy)) we deduce thatpDZ‘fF“])f PD- PI] Vi f1 € Cy_p, a,b]. Now, by applying Dﬁi to equation
(10) and using Lemma 3 and Lemma 5 we get

PDPLU () = PO Y (1w () v (1)) (15)

It is obvious that for any f € Cy_g, [a,b], P [0 e g _p, la,b], then PII vi=m) g ¢ c [a,b]. Thus, both f

and p1;+ vit=m) f1 satisfies the conditions of Lemma 6. Now, from Lemma 6 (with u =1 —v; (1 — H1)), by applying
Pllfv‘(lfu') on both sides of (15), we obtain that

a

p[l:w(l*ll])fl (a) (tp_ap)w(lM)I 6

(o) () = fil6u@)v ) - o a7

Finally, Lemma 4 it implies that ° I, ovi-m) /1 (a) = 0. Consequently, equation (16) reduces to
(PDI ) (1) = fi (r,u(r) v (1))
This completes the proof.

By repeating the process of Corollary 1 for the FDE (2) with initial condition (4) the equivalent mixed type Volterra
integral equation can be obtained.

Corollary 2.Let f>: (a,b] x EXE — R, (t,u,v) = fa (t,u(t),v(t)) be a function such that for any u,v € Cy_g,, f> € Ci_p,

where By = L+ Vo — o Va with 0 < tp < 1, 0 < v, < 1. A function v € CFZB is a solution of FDE (2) with initial condition
—P2

(4) if and only if it satisfies the following mixed type Volterra integral equation

=

f —x tp—1
+r(luz)/{<tpp p> xplfz(x,u(x),v(x))}dx, an

whereKzz{F(ﬁz) 2/12,( oF — “")BZ '}1.

3 Main result

In the sequel, let us introduce the following hypotheses:

Ql:Let fj: (a,b] x EXE — R, j=1,2 be continuous functions, such that for all u,v,%,v € E there exists positive
constants J;;,Jj2 > 0 for j = 1,2 such that

5 (00 v (1))~ (1) 9 (0)] < Ty | (0) = 50|+ lv (1) = 50)], j=1.2.

Q2:For j = 1,2 we define the constants ¢; by

B( P — P wi+p—1 P _ gP\ M
Gj:—ZJ N/aﬁ/ {’ ]‘szjl(w a ) +(b a ) 7 (18)

P

where J; = max {J;1,J;2} and B(-,-) is the Beta function defined by
I
B(u,B)= /t’“‘*'(l —0)P1ar,
0

Kj and K; are defined as in Corollary 1 and Corollary 2 respectively. Moreover, we observe that 6; < 1.
Now, we will establish our main existence result for the coupled system (1)—(4) using Krasnoselskii fixed point
theorem.
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Theorem 1.Assume that the hypothesis Q1 and Q2 are satisfied. Then, the coupled system (1)—(4) has at least one solution

. Hi,Vi H2,V2
X .
in Cl*ﬁl Cl*[b

Proof.According to Corollary 1 and Corollary 2, it is sufficient to prove the existence of solutions to Volterra integral
equations of mixed type (10) and (17).
Fixed v, we define the operator Ay : Cy_g — C;_p, by

l — =1
+ﬁ/{(¥) PlA (X,u(x),v(x))}dx. (19)

Fixed u, we define the operator A : Cy_g, — Cy_p, by

(A2v) (1) = 8 (tp_ap)ﬁzli)»zl'.7j{(M)u2]xp'fz(x,u(x),v(x))}dx

F(m)\ p = p
o (tp_xp)“ﬂ Pl (o (x) v () pd (20)
+ / xF~ x,u(x),v(x X.
I (1) J P ’
Consider the continuous operator A : C{“‘ l’l;)l] X C{“‘ EEZZ — C{“‘ l’l;)l] X C{“‘ EEZZ defined by
(A (u,v)) (1) = ((Aru) (1), (A2v) (1)) - 21

It is obvious that the operators A;, j = 1,2 are well defined and map C,_g, into C;_g,. Hence, the operator A is also
well defined and maps Cﬂgl‘ X Cff[;; into Cﬂgl‘ X Cff[‘;j Clearly, the fixed points of the operator A are solutions of the
coupled system (1)—(4).

For j =1,2,let f; (x) = fj(x,0,0) and

B([,Lj,ﬁj) i ;P —af Mt bP —aP\ i A
=2———-<¢ |K; Aii| —— ; . 22
M= ) | ”i; e T Iiler, =
Consider a ball
B;:=B(0,s) = {(u,v) € Cll“ll[‘;ll X C’{?’E; : H(u’v)”Cflgll XC]MEB;Z < s}
with ,’jfc',j <s, (0;<1),j=1.2.
Now, let us subdivide the operator A; into two operators F; and Gy as follows,
;
K P —aP\Pr-1m g ;P —xP p-l _1
(Fuu) (1) = < ) A / OF =N 1 (e (), v (x) bdx 23)
ru)\ p ,:21 l-a p
and
! -1
(G) () = = /{(tp’“‘))m (e () >>}d e
1u = X 1 (xu(x),v(x X.
r
(1) ) p
Similarly, subdivide the operator A; into two operators F, and G, as follows,
(F) (1) = =2 (”)“’p)ﬁz]ia L2 =2) " oty ey i Va 05)
) (t) = —— 2~/ <7) X (vu(x),v(x X
F(“Z) p i=1 la P
© 2023 NSP
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and

L — ur—1

(@)= 575 | {(IP ) x"‘fz<x,u<x>,v<x>>}dx. 26)
Consequently, from equation (21) we have
(A (u,v)) (1) = ((Aru) (1), (A2v) (1))

=((Fi+G)(u),(F2+G2)(v))

= ((F)u+(G1)u,(R)v+(Ga)v)

= ((F)u,(F2)v) + ((G1)u,(G2)v)

=F (u,v) +G (u,v), (27)

where F (u,v) = ((Fy)u, (F>)v) and G (u,v) = ((G1)u,(G2)v).

The proof is subdivided into following steps. .

Step I: A maps the ball By into itself, that is, F (u,v) + G (u,v) € By, for all (u,v) € By.
Now, for each ¢ € (a,b] we have

(Fnu)(t)<¥>]ﬁl ) Z 1/{< Xp)“]lxplfl (x,u(x),v(x))}dx

Then

<F1u><r>(”)p“p)lﬁl < rag i | {(“”pp ’“p)wxpwfl (x,u<x>,v(x>>|}dx
<ro f of - xp) (s e (0),v(9) — r (5,0,0)] 1 (5,0,0) e
< m,/( SO Gl 01+ 7 0

p

Here we use the fact that

a/(tppxp)ul]xpl<|u<x>|+|v(x>|>dxs {/t<tppxp)ml<xppap>ﬁ]lxpldx} (el + 1M, )

(P g\ Hithi-t
< “ ) BB (el , +Hivlg, . )- (8)

Thus, we have

Ew 0 (5 o

K m p_p ui+pr—1
< K ZM’{(COI ~) B(ul,m}(a (lall, , +vle, ;. )+HlAle, )

where J; = max {J,Ji2} which gives

|K1|B(”lvﬁl) L o —aP w+pr—1
HF'”)'C‘BISW,ZIA”“ p ) (0 (Il g, + ¥l ) + WAl ) - @9

Similarly, it can be shown that

KB 7 (DP— P W+pB—1
1EDle, , < #U{( )Y (e, + e, ) Il ) o G0
i—1

© 2023 NSP
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where J, = max {J»1,J2}.
For t € (a,b] we have

(Glu)(t)(tp;ap)]ﬁl:ﬁ(ﬂ);ap)lﬁ]/t{(tp;xp)mlxp'fl(x,u(x),v(x))}dx.

Then
@0 (550) < (50) (55 e et o
< () () o 4 ) - 0.0

Again, using (28), we have

tp—ap)lB]

(Glu) (t) ( = ﬁ (#) -’ { (tp /_)ap)u]JrﬁllB(ul,ﬁl) (Jl (HMHCFM * Hchlfﬁz)

+fille,y, ) }

B , bP — gP\ M
B o )

which gives

H(Glu)HC|,ﬁ] < B (u1,B1) (bP —aP

Hi
B (E2 (Wl e, ) + Al ) a1

Similarly, we get

B(12,5) (b”ap

H
BB (22N (e e ) 80 )

162l , <

Thus, for every (u,v) € By,
14 o)l oo = 8l + 142,
=1+ Gl , + B+,
< (IR ule, , + G0 ule, , )+ (IEVle, , +1(G2)vg, , )

Using equations (29), (30), (31) and (32) we obtain

—_

203} + {3 3)

2
o15+M n s+ M2
2 2

14 @) e <

IN

I
N v ~AN —

+

which implies that A (u,v) € By. Therefore, we have proved that A maps the ball B into itself.

© 2023 NSP
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Step II: The operator F is a contraction mapping.
For any (u,v), (#,V) € By and the operator F| we have

—a 1= m @i P — x u—1
(e 0 - ) 0} (=) Ffﬁl)zlx”/{C’pp ) e
(i (o) () = fi (5 () v ()} e
Then,
. PP\ 1B K| o Trop —xP\M—1
()0~ (ra 0} () | < 2Rk Y S (%5 )
(i (e (), ()~ i (0, 2) ()
|Kl | m e wlp xP -1 . L
Sr(ul)l;l], ( 5 ) P (I |u(x) —u(x)|) dx

K m oP —aP u+pr—1 -
< Kl Zali(—) B(uiB) (Nulu=lle, , ). (33)

Similarly, it can be shown that

Is of —ab

)| & m+pi—1 B
T () iZ]lZi(ip ) B(w,B1) (JZZHV—VHC],I;Z) . (3%

P —ap\' P
<

P

(E) (1) — (F) (1)) (

Thus, by the hypothesis 02 we have

7 o) = F @)t oo = [Fru— Fisle, o+ 1Fv = Foble,

O] — 02 _
< =l }+2{Iv=7lc,, }
<o{llu=le, , +Iv=7lc, , |-

where 6 = max{0,0,}.

Hence, the operator F is a contraction mapping.

Step III: The operator G is compact and continuous.

Let {(un,va)},_, be a sequence in By such that (un,vs) — (u,v). Then, from the definitions of the spaces Cy g, ,, we
have

Ha(umvn) —6(%")”@‘1”1 w2 = HGlun - G1M||C#1~V1 + HGZVn - G2V|‘Cﬂ2~"2
1= “ 1B 1-p 1-p;

—a 1-B
(tp p) <<G1un><r><clu><r>>|

= max
te€la,b) p
tP —aP 1=h
+ max < > ((Gavy) (1) — (Gav) (1)) (35)
t€la,b] 1%

Next,

4 1B
‘(”) - p) (Gritn) (1) — (Gru) (1))

(tp—ap)lﬁl I /’(tp—xp)“'l o
< xP
p I(w) ) p

(11 ey (x) v (%)) = fi (0, (x) v (%)) ]) dx

: (tp;ap)lﬁlr(in)ft(tp;xpyll’“pl(]”'“”(’“)”(’“)')d’“'
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Again, using (30), we have

—a 1-B
‘(’p - p) (Grn) (1) — (Grut) (1)

< <tppgp)lﬁlr(1ul) {(tppap>u]+ﬁllB([J,],ﬁ|)
1l =l ) }

SR )

that tends to 0 as n — oo.

Thus, max
te€la,b)

,e[a‘);] (%) P ((Gawy) (1) — (G2v) (1))

Thus, from (35) we obtain H@(u,,‘v,,) —G(u,v) Hc’"‘"vl i tends to 0 as n — eo.
) 1= “71-B

1-B
(%) I((Glu,,)(t)f(G]u) (t))‘ tends to O as n — oo. Similarly, it can be shown that

tends to 0 as n — oo.

This proves the continuity of G. Next, we prove the compactness of G. For any a < t; < t» < b, we have

1 h tf—x” ! _
|(Giu) (1) — (Giu) (1) = F(M)/ 5 P (o (x) v (x)) dx

a

-

1 fa p H—1
_ 2 X P () v () dx
F(Nl)/( P ) P7 i (nu(x) v (x))d

a

t -1 -
_ ||fl||cl,51 / 1 —xP X —aP\P lxp’ldx
- Ty | P P
L/ p -l Bi—1
,/ it (xp“p) P lax
J\ P p

”fl”Cl P ap ui+pr—1 P b ui+pr—1

-B 1 a tz a

< — P B(u, - ; 36
=T (1, B1) < P ) ( o ) (36)

that tends to 0 as t, — t1, whether y; + By — 1 > 0 or gy + B; — 1 < 0. Thus, G| is equicontinuous.
Also, we have that

HfZH | p_p Hot+Pa—1 P p Ho+pr—1
[(Gav) (11) — (Gov) ()] < ﬁB(ﬂz,ﬁz) <t1 pa ) B <t2 pa ) | a7

that goes to 0 as #, — t, whether ty + 8, — 1 > 0 or tr + B, — 1 < 0. Thus G; is equicontinuous.

Now, from the definition of the spaces C; —Bj.p> G (u,v) and using (36) and (37) we get that
|G (u,v) (11) =G (u,v) (f2)||cflg' xci2y = [(Gru) (t1) — (Giu) (t2)||c§"g1 +[[(Gav) (t1) — (Gav) (fz)Hszbvzz
! —P2 —P1 -

which tends to 0 as #, — #,. Therefore, G is equicontinuous. From equation (31) and (32) we deduce that G i, j=1,2are
uniformly bounded. Consequently, G is uniformly bounded. Hence, by Arzela—Ascoli theorem the operator G is compact
on By.

It follows from Krasnoselskii fixed point theorem that the operator A has at least on fixed point in By which is a
solution of system (1)—(4).
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3.1 Examples

Example 1.Consider the following coupled system of fractional differential equation of the form

+v(®)l
lell Vi u(t) = |u(t)] 7
756 (14 u (0] + ) .
PD’“‘Z"’ZV(;) — |u( |Smt |V(t)|
o 100 1002+ v (1)])’
with the initial conditions
_ 1 3
PIo P (0) = 8u (5) + 5u (Z) ;o Br=mAvi— v,
s 5 39)
Pllfﬁzv(o) =9y (6) +15v (5) v Ba=ta+Vvo— oy,
where iy =2, vi=2. 8= Lando =L, v, =32 B, = 2.
Set fi (t,u,v) = % and f5 (,u,v) = st | 7100(‘2L‘v‘) for 7 € (0,1]. It is obvious that the functions f; and f>

v)
are continuous. For any u,v,%,7 € R and ¢ € (0, 1], we have

1 1
|f1 (tvuvv)_fl (l,ﬁ,?ﬂ < ﬁ'u_ﬁ|+ﬁ|v_v|

and | |
|f2 (l,M,V)_fz(t,ﬁ,V)l < m |u—ﬁ|+%|v—5|

Thus, the condition Q; of Theorem 1 is satisfied for f; with Ji; = Jjp = # and for f> with Jp; = Wlo and Jy = %.
Moreover, with some elementary computation, for p > 0 we have

3 31

s () () () e
S p() |

=

oGPy

o) () ey

2 B(1/2,5/6) [ (5/6)° —0P 3 (2/3)P — 0P 3 1P 0P\ 4
o ) (22) o)

Hence, the condition Q; of Theorem 1 is satisfied. It follows from Theorem 1 that the coupled system (38)—(39) has at
least one solution defined on [0, 1].

and

4 Conclusion

In the present work, the sufficient conditions for the existence of solutions to a coupled system of fractional differential
equations involving generalized Katugampola derivative with non local initial conditions were obtained. We have used
Krasnoselskii fixed point theorem to develop the existence results. Finally, as an application, a suitable example is given
to demonstrate our main results.
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