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Abstract: The objective of this paper is to introduce a quantitativeisuee of dynamical complexity of a multispecies ecosysteth a
to present mathematical characterization of differentadyical behaviors of the ecosystems around the steadyesttite ecosystem.
The dynamical complexity based on the local form of geneealiLyapunov-function provides a critical analysis of tlymamical
concepts of stability, instability, periodicity and bi@ation, limit-cycle etc. with some illustrative model egsems.
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1 Introduction The objective of the present paper is to introduce a
quantitative measure of dynamical complexity and to

A multispecies ecosystem consisting of many variedprrlzsrggtter.agt.or?b;trg?erergﬂje n:r;'céellsk;seh;naot?sergfa:ﬁ:l
interacting species or components connected in a more of 1zatl : y : Vi

less complicated fashion is a complex dynamical systemeCOSyStemS around a stationary state. The measure of

: : o ; dynamical complexity is based on the local form
[1,2] Dynamical behaviors exhibited by many species Of-generalized Lyapunov-function and has similarity with

lants, insects and animals has stimulated great interest i ;
b N other measures of dynamical entropy or complexéy’|

the development of dynamical (both deterministic andand the measure of thermodynamic complex&g]. We

stochastic) models of complex ecosystems. Theh q itical Vs f stability. instabilit
deterministic dynamical models are used to explain ave made critical analysis or stability, instabiity,
bifurcation, periodicity etc. in the perspective of this

system property, for example, stability, instability, . ) ) : .
y property P Y Y measure of dynamical complexity with some illustrative

bifurcation, catastrophic change of state. In this analysi : .
attentions are focused on the change of state with timemOdeI ecosystems. In the Appendix we have studied the

stability of steady states and change of steady Sta,ngquivalence between generalized Lyapunov-function and

through parametric change (bifurcation) etc. The stabilit generalized cross-entropy, which plays a significant role

is a vital concept in the study of ecosystems. A variety of" the development of the theory.

ecologically interacting cases can be and have been,

attached to the term instabilit@]} It plays significant role . . .

in the study structure and function of ecosystems. Like2 Multispecies Ecosystem: Dynamical Model
stability complexity is an other vital concept of and Mathematical Structure

ecosystems. The dynamical complexity is associated with

the different dynamical behaviors such as stability, Let us consider a multispecies population ecosystem
instability, bifurcation, periodicity etc. The complexits ~ consisting ofn components or species governed by the
an inseparable part of the world of dynamical system.system of non-linear differential equatiori€)]

Henri Poincare, the great mathematician of the twentieth N

of the century, invented the.mo_dern theory of d_ynamlcal o fi(Ng,Na, ...... Nn,a),(i=1,2,.....n) (2.1)
systems and set as an objective the exploration of the dt

types of behaviors that can be expected from the systemwhere the vectoN(t) = (Ny(t),Nz(t),....,Nn(t)) lies in
described by coupled non-linear equatioh%]. the positive quadrant of the Euclidean sp&ck i.e.,the
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domain of the state-space in which the state-variablesvherec; are constants of integration andare constant
Ni(i = 1,2,....,n) are non-negative. This is a general column vectors.
system of equations describing the ecological objects, the
state-variabled\; are either biomass or population of the Let us now investigate the stability of the stationary state
corresponding speciesi = 1,2,,...,n). a is a parameter on the basis of the solution (2.6). The stability is one of
(or set of parameters) which describes either the state athe fundamental concepts of the dynamical systems. It is
environment or characterizes the exchange between théhe response of the system to the perturbation or
system with its environment. The set of equations (2.1) isfluctuation acting on the stationary (or reference) state. A
in general, non-linear and it is very difficult to solve the basic result of stability theory states that the asymptotic
equations in closed form. It is customary to study such astability or instability of the stationary state of the syrst
system close to stationary(or reference) state. Le{2.1) are identical to those obtained from the linearized
N* = (N;,N3,.....,N;) be a stationary state of the system version (2.3) or its solution (2.6). The stability of the
for a certain value(or a range of values) of the parametesystem in this way reduces to a linear problem. This is the
o of the system. Let us consider small deviation principle of linearized stability 4]. The criteria of
stability of the stationary state can be investigated from
ONi(t) = xi(t) = Ni(t) — Nf (2.2)  the nature of the eigenvaludsappearing in the solution
. o (2.6). It follows from (2.6) that iRe(A;) <0V i, thenxis
about the stationary stafd”. The deviations{xi(t)} are  an exponentially decreasing function(with or without
the perturbations or fluctuations acting on the stationarypscillatory modulation according to whethen;
stateNi*.. Linearising the system of equations (2.1) about(i:1,2,_._,n) is non-vanishing or vanishing). Hence the
the stationary stat®l* = (Nj,N3,....,N7), we have the  solutionx = 0 is reached in the limit — «, in other
system of linear equations words,x = 0 is asymptotically stable. If on the other hand
dx(t) 0 At if Re(Aj) > 0, the pertu(bations are growing exponentially
Y _ z (S52) x(t), (j=1,2,..,n) (2.3) @and therefore the stationary state= 0 (or N = N) is

dt =R R J unstable. These two regions, for which the principle of
linearized stability applies and are separated by the
or in matrix form regions whereRe(A;) = 0 applies are separated by the
regions whereRe(A;) = 0. We call the broadline case
dx_(t): AX(t) (2.4) between asymptotic stability and instability as the
dt marginal stability which signals the threshold of

instability of the stationary state = 0 (or N(t) = N¥).

where the Jacobiarh is the community matrix with This analysis is, however, restrictive in the sense that the

element determination of the eigenvalues is possible only if the
oafi(t) . ecosystem consists of few number of species. For a
aj = ( aN; ) (,i=12,.,n) (2.5)  community of arbitrary number of species, we may

N resort to the method of Lyapunov-function. In the next

The elements{a;j} of the community matrixA plays section we s'hall illustrate the general form 'of
significant role in the dynamical behaviors of the Lyapunov-function for the model system(2.1) along with
ecosystem. The community matrix comprising of the  its physical significance for the further development of
elements{a;(N*)} represents the mathematical structure the theory.
of the system near the stationary sthte It represents
the pattern of species interaction independently of the rat Let us now consider the importance of the concept of the
of growth or decay9]. May [3] in his discussion on the environmental parametesr. Indeed, a variation ofu
stability verses complexity, has studied the properties ofinduces a variation of the community mata) and
the community matrixA = [{a;j}(N*)] for the study of through it, of the eigenvalue§Ai,Az,....,An). The
the stability of the ecosystem. It plays significant role in existence of a transition between two qualitatively
the study of interrelation between stability and different regions will then be reflected by the fact that at
complexity of the muIt_ispecies ecosystem to be discusseqhast one of the eigenvaluds(i = 1,2, ...,n) will change
next. To find the sqlutlon qf the matrix equation (2.4), we 55 3 function ofr in the form depicted in the Fig-1. The
assume thaA is diagonalizable as almost always turns 5ye o, of a at which Re(A) will change sign is the
gut t?. be tlhe_ cglse mdecologly[lO]. Lét,i = 1, 2""7”}d. critical value beyond which an instability is beyond to
toet?welg?;égvg:uggerj\ ent f\:o)UOTPhZi‘g?f{%gﬁ;{?fﬂpﬁﬂxmgoccur B,5]. The importance of the linear stability
A, then the solutiolﬁ czn"“tHenmatrix equation(2.4) can beanaly3|s IS to S.hOW Fhat a qualltat!ve change .Of behavior
written as L1, 12] may occur W|th|n a single, well-defined dyna.m|cal system
beyond the critical valuea. of the environmental
ON(t) = x(t) = ZCief‘itvi (2.6) parameter a at which the system switches from
! asymptotic stability to instability. However, as soon as
or more explicitly, oNi(t)=dN;(0)eM (i=1,2,..n) (2.7) one enters the domain of instability, the linearized
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fer considered as a measure of generalized
o cross-entropy-functior5(N|N*) (say) defined over the
yd non-probabilistic positive-additive distribution (PAD)
« N = (Nz,Nz,...,Ny) [9,13] (See the Appendix). The
e entropic character of the generalized Lyapunov-function
i would be of significant importance for the generalized
Lyapunov-function to provide a measure of dynamical
complexity. Before we go to the measure of dynamical
complexity we need to explain the concept of complexity
in ecology. The complexity in ecological context is
connected with the total number of participating species
and the connectances that is, the number of non-zero
elements{a;j}(N*) # 0 in the community matrix 3]
stated otherwise, the complexity of the ecosystem is
characterized by the interaction pattern (which involves

equations become inadequate, as they predict run away $°th the number of participating species and the
infinity. In order to investigate the existence of new connectances) that is, by the community or interaction
physically acceptable solution, which emerge beyond theéhatrix A describing the internal structure of the system
threshold of instability, non-linear equations will haee t [3]- How to measure the complexity? There are different
be analyzed §]. This is a difficult problem. We are @pproaches to the concept of complexity. The entropy
however, interested in the study of the behaviors ofwhich is at the heart of the statistical mechanics and
non-linear equations (2.1) for values of the environmentafnformation theory plays a significant role in the
parametenr in a certain neighborhood af.. In the case ~ characterization of complexityL§, 15]. For the ecosystem
of a simple eigenvalue under the assumptions thath€ entropic measure of complexity should be associated
Re(A)g—q. = O and the transversibility condition with the community matriA of the ecosystem. This can
dRe(A) . . be based on the measure of entropy of non-probabilistic
e )?ig ter|1(é zaéfli%ittzecllllaog'r-?r:gjfrei‘ttilcogl tr;?gemroa\\/ri\éje;he matrix A consistent with Von-Neumann quantum-entropy.
significant informat)i/on for values of tﬁe e%\?ironmental Jumarie f] was the first tq_p(owde SUCh an entropy
parameten in a certain neighborhood af, [4,5] measure of a non'—probab|llst|c matrix for dynamical
L system. Chakrabarti and GhosH have developed the
theory for the study of interrelation between the concept
. L of stability and complexity of an ecosystem. Here we
3 Genaa!'zed Lyapunpv-functlon :Measure shall present a different approach on the basis of the
of Dynamical Complexity generalized Lyapunov-function (3.1). For this,
generalized Lyapunov-function (3.1) must satisfy two
A powerful method in the stability theory for differential basic characteristic properties:
equation is the direct method of Lyapunov-function. A (i) The first is that the generalized Lyapunov-function
function with  particular  properties known as must be an entropy-function which is a measure of
Lyapunov-function is constructed to prove stability, complexity. It is, infact, true as we have studied earlier
asymptotic stability and instability in a given region. The and proved in an earlier pap&j[
method based on Lyapunov-function can be applied tOEii) The second characteristic property is that the
both autonomous and non-autonomous system ofyapunov-function should be associated with the
differential equations. It is an energy-like function that community matrixA which characterizes the dynamical

increases or decreases along the trajectories. For thgehaviors of the system in the neighborhood of the
system of non-linear differential equations (2.1) a stationary poiniN*.

Fig. 1. Dependence of the real part of the stability
exponentA on the environmental parameter The value
of a = a; makes the transition from asymptotic stability
(a < ac) to instability (a > ac).

generalized Lyapunov-functionis given b Both the above characteristic properties are satisfied by
n N the local form of the Lyapunov-function (3.1) in the
V(N|N¥) = ZNi*(p(_'*) (3.1) vicinity of the stationary poiniN*. In view of the above
i= N observations we consider the second-variation of the

_ Lyapunov-functiond?V (N) as the basis for the measure
where(p(%) is a continuously twice-differentiable convex of dynamical complexity.
function of the argument satisfying the conditions[12]: ~ The first variation ofV(N|N*) in the vicinity of the
stationary poiniN* is given by
()=¢(1)=0 L for &= >0 (3.2)
Q@ =@ — Y, dfiz ) = Ni* = .

The expression of Lyapunov-function (3.1) has oV — c 5_V5N_ (3.3)
important entropic significance. It can, infact, be i;dNi ! '
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then 8V(N,) = O for any arbitrary variatiodN;. The  (A1,A2,....,An) are purely imaginary i.e.Aj = =ib;j,
second variation is then given by bj >0, (j =1,2,....,m2m = n). The system is then
W n . ) periodic. The application of the Lyapunov function to this
1 oV 1 v, o (ON;) fails in this case. If a Lyapunov function exists, then
2 _ = v . - i ,
OV(N) = zi;glaNi N; ONiON;j = zi;(p (&) Ny >0 closed orbits are forbidden[7,16]. The criteria of closed
T B (3.4) orbit of the system the reduces to the vanishing of the
for any non-zero variatio®N;. Using (2.6) the second- (ime-average (over a perio@®,2m) ) of the dynamical

order variation52V (N) reduces to the form complexity [7]:
18 (6Ni(0))? 5, H= L [274{52V(N)}dt = £ [ZTH (A1, Ag, ... Amt)dt = & [2750  kAePtdt = 0
52\/ N) = = e2)\|t )o@ 7rJo 1,42, An o 2i=oKidi
(N) 2;90 (€ )7,\]? (3.8)
1 n
=3 zihe”i‘ (3.5) y . .
2.5 C, The positive value of the dynamical complexity

5 (H > 0) implies the instability of the system. By
wherek; = ¢ (&)@ s a positive constant. complexity we mean only the instability, the zero
We now proceed to measure the complexity associate§omplexity (H = 0) implies the asymptotic stable
with the evolution of the system. The complexity which @pproaches to the stationary or fixed pdititand finally
we shall call dynamical complexity is a property of the vanishing of the time-average of the dynamical
evolution of a state and not of the state itself[8,14]. We complexity(H = 0) implies the existence of closed orbits
therefore define the dynamical complexity as the rate ofof the periodic system.
change of the entropy that is, of the second-order
variationd2V (N)

4 Applications: Illustrative M odel

H(/\l,)\z,....,)\n;t):%{52V(N)}:_iki)\ie2)‘it (3.6) [Ecosystems

In this section we shall study the role of the measure of
The expression (3.6) has similarity with other measures ofjynamical complexity (3.6) in the characterization of
dynamical and thermodynamic complexi® §]. On the  different dynamical behaviors such as stability, instapil

and instability are given by ecosystems.
) d 2 _ 4 oy it
H(Az A2, Anit) = G {BWV(N)} = i;m.e”
<0 for asymptotic stability
-0 for ingability 3.7) 4.1 Lotka-\olterra prey-predator model

Besides there is a state of marginal stability, the frontierThe model equations are[18]
between the asymptotic stability and instabilitg, 5],
which we shall explain later on. The expression(3.6) of
dynamical complexity depending on the eigenvalues
(A1,A2,......,An) of the community matrixA is very dl:—cxzjtdxlxz (4.1)
suitable for study of stability and instability of the syste dt
The critical analysis of measure of dynamical wherex; andx, are the prey and predator populations
complexity(3.6) leads to the following conclusions: respectively. Two stationary states 46e0) and($, 2)

(i) Stationary point{0,0); Eigenvalues{a, —c}
C, The dynamical complexity (3.6) increases with time t The dynamical complexity is given by
when at least one of the eigenvalues has positive real part.
This is the case of instability implying the repelling H(t):|(1au32""1_|(2(;e*2‘3t (4.2)
nature of the stationary state.

Xm
— = axq — bxyx
ot 1 1X2
2

The dynamical complexity (4.2) whose results from (3.6)
C, The dynamical complexity (3.6) increases with time t by using the eigenvalued; = a ,A, = —c¢, may be
and the system tends to the stationary state if and only ipositive or negative. This implies the solution (or
all the eigenvalues have negative real parts. This impliedrajectory) may approach the stationary pqieit0) along
the asymptotic stability and attractive nature of the one direction and recedes from it along another direction.
stationary state. This implies that the stationary sta{@,0) is a saddle
point.
Cz The complication arises when all the eigenvalues
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(ii) Stationary point(§, 2); EigenvaluesA; » = +i/ac (b) If { increases the stationary points A and B approach
The dynamical complexity is given by each other, and merge ft= 1 or y = k to form a saddle

. . node. In this case the eigenvalues of the point B become
H(t) = kliv/ace?V®® — i /ace V3| = ky/acsin(2y/att) (A, = —~1,A, = 0) and the measure of dynamical
The purely imaginary eigenvalues implies periodic orbit. COMplexity becomes.
According to the criteriaCs of closed orbit we have to

_ —2t
consider the time-average of the dynamical complexity Hs = —kie (4.7)

over a complete cycle fromn= 0 tot = 21T which tends to zero as— . This corresponds to the
We have then stable saddle point B. Again f(ir: 1 the stationary point

B A(L,1—¥) reduces to the form\(1,0) which is the same
H = J JSTH(Odt= 5 [37i/ace? VA% —i/ace VAt = 5 (Tsin2 /a0t =0 g the stationary poir&(1,0) as it should be.

(4.3)
This is a important characteristic behavior of the
phenomena for which the time-average of the dynamicalc) |f Y increases further i.e., i becomes greater than 1
complexity along a closed orbit is zero. The same result((%/) > 1), the stationary poirﬂ\(ik’,l— Lk/) disappears into
also holds good for the thermodynamic entropy yhg" negative region, since the ordinate of A i.e.,

prqduqion rate or thermodyna_\mic complexig}.[This is 1-Y) < 0. For the stationary point B, the dynamical
a significant result characterizing the analogy between th omp;(lexity becomes

dynamical and thermodynamical complexi#y17].
Hy = —|(;|_872t + |(2€2(k7y)t = —|(;|_672t + |(2672(y7k>t (4.8)

4.2 Damped Lotka-\olterra prey-predator which tends to zero as— . since(y > k) This implies
Model that the stationary point B remains a stable as before

(since both eigenvalues are negative). What is the
ecological significance of the 3rd case i.%’.,> 1 or
y > k? In that case the predator ordingte— y > k)
becomes negative, implying the extinction of the predator.

Let us consider the damped Lotka-\Volterra system[18]

ﬂ = Ny(1—Nyp) — NiNp qu 'ghe greater value of t_h_e mortality.ra;a:ompared to

dt this inter-species competition rate k (i.¢.>> k) the prey
dN; population is unable to feed the predator population
ot - et kN1 Nz (4.4) implying that the predator population is downed to die out

where Ny (t) and N(t) are the populations of prey and from whatever initial state of the system starts from[19].
predator respectively at any timhe

(a) The non-trivial stationary-states(or points) are 4-3 Mutualistic Model population system
A(L,1—Y) for { < 1 inside the first quadrant ar{1,0)

on the abscissa. Let us consider a mutualistic system[20]

i i int: y AN dx r

(i) Stationary . Vp:njty. k A(g, 1 ) = k_ix(kl_“_y)

Eigenvaluegidy , = — sz_ K _y>} dy

The dynamical complexity is given by i —ZY(kz —y+bx) (4.9)
Hy = kA 1€t + ko et (4.5) wherek; , ko are the carrying capacity and , r, are the

. _ growth rate of the speciedt) andy(t) respectivelyb is
which tends to zero a$ — o since A1,A2 < 0. The  the measure of mutualism effect of each and other. In this

stationary point A is thus stable. model each of them benefits from the presence of other
(i) Stationary poinB(1,0);  species and grows logistically in absence of other species.
Eigenvaluest; o = {—-1,k—vy} (a) The non-trivial stationary-states a#éx*,y*), where
Since{ < 1 i.e.k—y > 0, the eigenvalues of B are of y+ — kl%'gz and y* = kzltbgl for b < 1 inside the first
opposite signs. So the stationary point B is a saddle pOimquadrant,B(kl,O) and C(0,kp) on the abscissa and the
The dynamical complexity is given by ordinate respectively.

Ho = —kje 2 + ka(k— y)@k "t (4.6)

(i) Stationary point: A(x*,y*); Eigenvaluegii, =
SR+ ) (L + 7 ana iy

which tends to infinity a$ — . This corresponds to the

. ko kiko
unstable saddle point B. The dynamical complexity is given by
Hy = paA1€?1t + poAe?? (4.10)
(@© 2016 NSP
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which tends to zero as— o sinceA;,A» < 0 asb < 1. independent parametens, 3, y. In terms of scaled
The stationary point A is thus stable. population, the non-trivial fixed or stationary point is

(1,1). The community matrix of the stationary point
(i) Stationary point: B(ki,0); (1,1)is
EigenvaluesiAio = —r1, 2 (ko +bky)}

. o 2 . . (k=2-P) (1
Sincer; > 0, the eigenvalues d8 are of opposite signs. A_ [ K@P (-1 415
So the stationary point is a saddle point. - ﬁ 0 (4.15)
+

The dynamical complexity is given by
, " The eigenvalues of the community matrix A, given
Hp = —parie 21t ¢ pzk—z(k2+ bky)e?e ket (4 17y by(4.15) are
2

—2_ - “1Dk2By— (K —2—B)2
which tends to infinity ag — c. This corresponds to )\lvzz(K 2-p)£iyAK —1)K2By— (k—2-)

unstable saddle poili 2k(1+PB)
(4.16)
(iii) Stationary point: C(0,ky): Let us investigate the dynamical behavior of the
Eigenvaluesihy » = L (ky + ky), —rp} © %7 stationary point(1,1) on the basis of the eigenvalues
d 1 Y

(4.16). The real part of the eigenvalues characterizes the
stability and instability of the stationary poifit,1) . The
threshold value of the parametelis given byRe(A) =0

i.e., byk = kc = 2+ . Below and above the threshold
value kK = 2 + 3, the phase-portrait is qualitatively
different. Fork < k¢ (i.e.x < 2+ ) the trajectories
converge to the fixed point(1,1), where as for
which tends to infinity ag — . This corresponds to  k > k. = 2+ B they converge to a limit cycle. The
unstable saddle poi. threshold or critical value. = 2+ 8 of the parametek
where this structural change occurrs is called a
bifurcation point. This is in view of the criteria of

4.4 Rosenzweig-MacArthur model Hopf-bifurcation theorenRe(A) = 0 at k = k. and

i ; ; dR;w |k=k.# 0 [17]. For kc = 2+ 3, the stability point
Let us now consider the case when the community matrlx(l 1) is marginal stable, it changes its stability
is a function of the environmental parameters which lead h’aracteristic with slight éhange of the parameier

to the eigenvalues dependent on the environment rossing the bifurcation point = 2+ f [22).

parameters. We consider a prey-predator model due t9et ys now investigate the dynamical complexity of the
Harrison P1] who studied a variety of prey-predator |imjt.cycle corresponding to the bifurcation value= k.

models in order to find which model gives the besti_e'KC:ZJrB.ForK:ZJrB the eigenvalues are purely
guantitative agreement with Luckinbill's data on imaginary given by '

Didinium and Paramecium2p,21]. Luckinbill’s grew
Paramecium Aurelia together with its predator Didinium . K—1)K2 . .
nasutum and, under favorable experimental conditiong'12 = i'% - i'\/€(1+ﬁ)(% — 1) = iA(say)
aimed at reducing the searching effectiveness of the _ . (4.17)
Didinium, he was able to observe oscillations of both Thus the dynamical complexity reduces to
populations for 33 days before they become extinct.In L . _ )

terms of scaled variables Harrison model reduces to the ~ H(t) = kiAe®™ —iAe 4] = ksin(2At) (4.18)
form of Rosenzweig-MacArthur mode2{]:

Since r, > 0, the eigenvalues o are of opposite
signs.So the stationary point is a saddle point.
The dynamical complexity is given by

Hy = pll%(kﬁ ket ezt (412)

where k is a constant. The time-average of the dynamical
complexity (4.13) over a periofD, 2m1) along the closed

da _ (1= a1X1X2 orbit is then given by
dt ! K B+x1 K [2m
dxo  axxiX 1= __ i =
by _ BZ+1xf o (4.13) H=s /0 sin(2At)dt = 0 (4.19)

which according to the criterion (3.8)characterizes the

where ) o
closed orbit of the limit cycle.

@ = (1 )(B+1)
ax=y(1+B) (4.14)

which predicts the outcome of Luckinbill’'s experiment. The objective of the present paper is to introduce a
The system of equations (4.13) contains only threemeasure of dynamical complexity of a multispecies

5 Conclusion
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ecosystem and to study its importance in thedistribution in the context of the statistical model of the
characterization of different dynamical behaviors of someecosystem. Boltzmann's mechanical concept of
model ecosystems. The main results and characteristigix-dimensional phase-space composed of a large number
features of the paper are as follows: of phase-cells (representing the state of the system) can
be applied to the macro-structure of the ecosystem. The
(i) We have first considered a generalized multispeciesconstruction of ecosystem phase-space then consists of
ecosystem described by a system of non-lineardeéveloping rules for assigning |nd|V|d_uaIs to dlﬁeren;
differential equations. The local analysis of the systemPhase-cells or ecological niches, of different metabolic
around stationary states determines the mathematicn€rdy-bandsi, (i=1,2,3,....,n). Letw, ?E the number
structure of the community matrix which is of significant ©f cells or ecological niches of the™ metabolic

importance in the subsequent analysis. energy-bands, (i = 1,2,3,....,n) [29. Assuming
dilute-gas model of ecosystem we haye<< wi- where

o o N; is the population size(the number of individuals) of the
The local fi - t f the .}
(ii) e local form (second-order variation) o e ith metabolic energy-bands, (i — 1.2.3,.....n) [25.

generalized Lyapunov-function along with its entropic i N g .
equivalence has been identified as a measure ofheratiopi=g, (i=123,...n)can be considered
complexity of the ecological system around the stationaryas the probability of having an individuals in any one of
states characterized by the community matiof the  the cells or niches of thé" metabolic energy-bands.

ecosystem. pi = tlv—'l is the same for stationary state of the system.
. . . The generalized Lyapunov-function(3.1) then can be
(iif) The dynamical complexity defined to be the rate of writteg as yap (3.1)

change of the local form of generalized NN n n _
Lyapunov-function provides a qualitative measure of L(N|N*) = Z(p(N—L): lei*wiqo( )= lei*wigo(%) (A1)

complexity associated with concept of stability, insteil i= i i= i= P

and periodicity. The dynamical complexity being The r.h.s of(Al) is the generalization of Csizer's directed
dependent on the eigenvalues of the community matrix odivergence(or cross-entropy) for a system with

Piwi
P wi

the ecosystem is thus related to the mathematicahon-stationary probability distribution
structure of the system near the steady state. The states faf = (py, p2,.....pn) , Stationary probability distribution
from the stationary or equilibrium state are outside thep* = (P35, P5s----Ph) with weights
domain of the application of the measure of thew = (wy,ws,....,w,)[26]. We call it as the generalized
dynamical complexity defined by (3.6). cross-entropy and represent it 8§N|N*) so that

(iv) Stability and Complexity are two vital concepts in N v N

ecosystems. The relation between the concept of stability SNINT) = i;N' o NI*) (A2)

and complexity is a long standing well-debated problem

of ecology[3,23,24]. A good deal of works on the subject defined over the positive-additive-distribution(PAD)
are available in literatures In spite of a great deal of N = (Ni,Ng,....;,Nn) and N* = (Nj,N3,.....N7) [13].
controversies about the unique relationship between thdhe expression(Al) thus provides the probabilistic
concept of stability and complexity the present analysisinterpretation of generalized Lyapunov-function and
based on the Lyapunov-function method of deterministicProvides the  equivalence of the generalized
dynamical model of ecosystem(without consideration ofLyapunov-function L(N|N*) and the generalized
any genomic and environmental stochasticity)givesCross-entrops(N|N*):

indication of a fairly important result that the complexity N N

usually results instability rather than stabili§; 23,24]. L(NIN") = S(N|N%) (A3)

We have thus the entropic significance of the Lyapunov-

(v) The study of equivalence between generalizedfynction for the broader perspective of positive-additive
Lyapunov-function and generalized cross-entropy plays &istribution.

significant role in the determination of the measure of
dynamical complexity.
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