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Abstract: The objective of this paper is to introduce a quantitative measure of dynamical complexity of a multispecies ecosystem and
to present mathematical characterization of different dynamical behaviors of the ecosystems around the steady-stateof the ecosystem.
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1 Introduction

A multispecies ecosystem consisting of many varied
interacting species or components connected in a more or
less complicated fashion is a complex dynamical system
[1,2] Dynamical behaviors exhibited by many species of
plants, insects and animals has stimulated great interest in
the development of dynamical (both deterministic and
stochastic) models of complex ecosystems. The
deterministic dynamical models are used to explain
system property, for example, stability, instability,
bifurcation, catastrophic change of state. In this analysis
attentions are focused on the change of state with time,
stability of steady states and change of steady state
through parametric change (bifurcation) etc. The stability
is a vital concept in the study of ecosystems. A variety of
ecologically interacting cases can be and have been,
attached to the term instability [3]. It plays significant role
in the study structure and function of ecosystems. Like
stability complexity is an other vital concept of
ecosystems. The dynamical complexity is associated with
the different dynamical behaviors such as stability,
instability, bifurcation, periodicity etc. The complexity is
an inseparable part of the world of dynamical system.
Henri Poincare, the great mathematician of the twentieth
of the century, invented the modern theory of dynamical
systems and set as an objective the exploration of the
types of behaviors that can be expected from the systems
described by coupled non-linear equations [4,5].

The objective of the present paper is to introduce a
quantitative measure of dynamical complexity and to
present an abstract more or less mathematical
characterization of different dynamical behaviors of the
ecosystems around a stationary state. The measure of
dynamical complexity is based on the local form
generalized Lyapunov-function and has similarity with
other measures of dynamical entropy or complexity [6,7]
and the measure of thermodynamic complexity [8,9]. We
have made critical analysis of stability, instability,
bifurcation, periodicity etc. in the perspective of this
measure of dynamical complexity with some illustrative
model ecosystems. In the Appendix we have studied the
equivalence between generalized Lyapunov-function and
generalized cross-entropy, which plays a significant role
in the development of the theory.

2 Multispecies Ecosystem: Dynamical Model
and Mathematical Structure

Let us consider a multispecies population ecosystem
consisting ofn components or species governed by the
system of non-linear differential equations [10]

dNi

dt
= fi(N1,N2, ......Nn,α),(i = 1,2, ....,n) (2.1)

where the vectorN(t) = (N1(t),N2(t), ....,Nn(t)) lies in
the positive quadrant of the Euclidean spaceEn, i.e.,the
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domain of the state-space in which the state-variables
Ni(i = 1,2, ....,n) are non-negative. This is a general
system of equations describing the ecological objects, the
state-variablesNi are either biomass or population of the
corresponding speciesi,(i = 1,2, , ...,n). α is a parameter
(or set of parameters) which describes either the state of
environment or characterizes the exchange between the
system with its environment. The set of equations (2.1) is
in general, non-linear and it is very difficult to solve the
equations in closed form. It is customary to study such a
system close to stationary(or reference) state. Let
N∗ = (N∗

1 ,N
∗
2 , .....,N

∗
n ) be a stationary state of the system

for a certain value(or a range of values) of the parameter
α of the system. Let us consider small deviation

δNi(t) = xi(t) = Ni(t)−N∗
i (2.2)

about the stationary stateN∗
i . The deviations{xi(t)} are

the perturbations or fluctuations acting on the stationary
stateN∗

i . Linearising the system of equations (2.1) about
the stationary stateN∗ = (N∗

1 ,N
∗
2 , ....,N

∗
n ), we have the

system of linear equations

dxi(t)
dt

=
n

∑
j=1

(
∂ fi(t)
∂N j

)
N∗

x j(t), ( j = 1,2, ...,n) (2.3)

or in matrix form

dx(t)
dt

= Ax(t) (2.4)

where the JacobianA is the community matrix with
element

ai j = (
∂ fi(t)
∂N j

)
N∗

(i, j = 1,2, ..,n) (2.5)

The elements{ai j} of the community matrixA plays
significant role in the dynamical behaviors of the
ecosystem. The community matrixA comprising of the
elements{ai j(N∗)} represents the mathematical structure
of the system near the stationary stateN∗. It represents
the pattern of species interaction independently of the rate
of growth or decay [9]. May [3] in his discussion on the
stability verses complexity, has studied the properties of
the community matrixA = [{ai j}(N∗)] for the study of
the stability of the ecosystem. It plays significant role in
the study of interrelation between stability and
complexity of the multispecies ecosystem to be discussed
next. To find the solution of the matrix equation (2.4), we
assume thatA is diagonalizable as almost always turns
out to be the case in ecology[10]. Let{vi, i = 1,2, ...,n}
be n linearly independent column vectors corresponding
to the eigenvalues(λ1,λ2, ...,λn) of the community matrix
A, then the solution of the matrix equation(2.4) can be
written as [11,12]

δN(t) = x(t) =∑
i

cie
λitvi (2.6)

or more explicitly, δNi(t) = δNi(0)e
λit (i = 1,2, ...n) (2.7)

whereci are constants of integration andvi are constant
column vectors.

Let us now investigate the stability of the stationary state
on the basis of the solution (2.6). The stability is one of
the fundamental concepts of the dynamical systems. It is
the response of the system to the perturbation or
fluctuation acting on the stationary (or reference) state. A
basic result of stability theory states that the asymptotic
stability or instability of the stationary state of the system
(2.1) are identical to those obtained from the linearized
version (2.3) or its solution (2.6). The stability of the
system in this way reduces to a linear problem. This is the
principle of linearized stability [4]. The criteria of
stability of the stationary state can be investigated from
the nature of the eigenvaluesλi appearing in the solution
(2.6). It follows from (2.6) that ifRe(λi)< 0 ∀ i , thenx is
an exponentially decreasing function(with or without
oscillatory modulation according to whetherλi
(i=1,2,...,n) is non-vanishing or vanishing). Hence the
solution x = 0 is reached in the limitt → ∞, in other
words,x = 0 is asymptotically stable. If on the other hand
if Re(λi)> 0, the perturbations are growing exponentially
and therefore the stationary statex = 0 (or N = N∗) is
unstable. These two regions, for which the principle of
linearized stability applies and are separated by the
regions whereRe(λi) = 0 applies are separated by the
regions whereRe(λi) = 0. We call the broadline case
between asymptotic stability and instability as the
marginal stability which signals the threshold of
instability of the stationary statex = 0 (or N(t) = N∗).
This analysis is, however, restrictive in the sense that the
determination of the eigenvalues is possible only if the
ecosystem consists of few number of species. For a
community of arbitrary number ofn species, we may
resort to the method of Lyapunov-function. In the next
section we shall illustrate the general form of
Lyapunov-function for the model system(2.1) along with
its physical significance for the further development of
the theory.

Let us now consider the importance of the concept of the
environmental parameterα. Indeed, a variation ofα
induces a variation of the community matrixA(α) and
through it, of the eigenvalues(λ1,λ2, ....,λn). The
existence of a transition between two qualitatively
different regions will then be reflected by the fact that at
least one of the eigenvaluesλi (i = 1,2, ...,n) will change
as a function ofα in the form depicted in the Fig-1. The
value αc of α at which Re(λ ) will change sign is the
critical value beyond which an instability is beyond to
occur [4,5]. The importance of the linear stability
analysis is to show that a qualitative change of behavior
may occur within a single, well-defined dynamical system
beyond the critical valueαc of the environmental
parameter α at which the system switches from
asymptotic stability to instability. However, as soon as
one enters the domain of instability, the linearized

c© 2016 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. Lett.4, No. 2, 47-54 (2016) /www.naturalspublishing.com/Journals.asp 49

Fig. 1: Dependence of the real part of the stability
exponentλ on the environmental parameterα. The value
of α = αc makes the transition from asymptotic stability
(α < αc) to instability (α > αc).

equations become inadequate, as they predict run away to
infinity. In order to investigate the existence of new
physically acceptable solution, which emerge beyond the
threshold of instability, non-linear equations will have to
be analyzed [5]. This is a difficult problem. We are
however, interested in the study of the behaviors of
non-linear equations (2.1) for values of the environmental
parameterα in a certain neighborhood ofαc. In the case
of a simple eigenvalue under the assumptions that
Re(λ )α=αc = 0 and the transversibility condition
dRe(λ )

dα |α=αc 6= 0, the Hopf-bifurcation theorem and the
existence of limit-cycle at the critical pointαc provides
significant information for values of the environmental
parameterα in a certain neighborhood ofαc [4,5].

3 Generalized Lyapunov-function :Measure
of Dynamical Complexity

A powerful method in the stability theory for differential
equation is the direct method of Lyapunov-function. A
function with particular properties known as
Lyapunov-function is constructed to prove stability,
asymptotic stability and instability in a given region. The
method based on Lyapunov-function can be applied to
both autonomous and non-autonomous system of
differential equations. It is an energy-like function that
increases or decreases along the trajectories. For the
system of non-linear differential equations (2.1) a
generalized Lyapunov-function is given by [10]

V (N|N∗) =
n

∑
i=1

N∗
i φ(

Ni

N∗
i
) (3.1)

whereφ( Ni
N∗

i
) is a continuously twice-differentiable convex

function of the argument satisfying the conditions[12]:

φ(1) = φ
′
(1) = 0 ,

d2φ
dξ 2

i

> 0 , f or ξi =
Ni

N∗
i
> 0 (3.2)

The expression of Lyapunov-function (3.1) has
important entropic significance. It can, infact, be

considered as a measure of generalized
cross-entropy-functionS(N|N∗) (say) defined over the
non-probabilistic positive-additive distribution (PAD)
N = (N1,N2, ...,Nn) [9,13] (See the Appendix). The
entropic character of the generalized Lyapunov-function
would be of significant importance for the generalized
Lyapunov-function to provide a measure of dynamical
complexity. Before we go to the measure of dynamical
complexity we need to explain the concept of complexity
in ecology. The complexity in ecological context is
connected with the total number of participating species
and the connectances that is, the number of non-zero
elements{ai j}(N∗) 6= 0 in the community matrix [3]
stated otherwise, the complexity of the ecosystem is
characterized by the interaction pattern (which involves
both the number of participating species and the
connectances) that is, by the community or interaction
matrix A describing the internal structure of the system
[3]. How to measure the complexity? There are different
approaches to the concept of complexity. The entropy
which is at the heart of the statistical mechanics and
information theory plays a significant role in the
characterization of complexity [14,15]. For the ecosystem
the entropic measure of complexity should be associated
with the community matrixA of the ecosystem. This can
be based on the measure of entropy of non-probabilistic
matrix A consistent with Von-Neumann quantum-entropy.
Jumarie [6] was the first to provide such an entropy
measure of a non-probabilistic matrix for dynamical
system. Chakrabarti and Ghosh [7] have developed the
theory for the study of interrelation between the concept
of stability and complexity of an ecosystem. Here we
shall present a different approach on the basis of the
generalized Lyapunov-function (3.1). For this,
generalized Lyapunov-function (3.1) must satisfy two
basic characteristic properties:
(i) The first is that the generalized Lyapunov-function
must be an entropy-function which is a measure of
complexity. It is, infact, true as we have studied earlier
and proved in an earlier paper [9].
(ii) The second characteristic property is that the
Lyapunov-function should be associated with the
community matrixA which characterizes the dynamical
behaviors of the system in the neighborhood of the
stationary pointN∗.
Both the above characteristic properties are satisfied by
the local form of the Lyapunov-function (3.1) in the
vicinity of the stationary pointN∗. In view of the above
observations we consider the second-variation of the
Lyapunov-functionδ 2V (N) as the basis for the measure
of dynamical complexity.
The first variation ofV (N|N∗) in the vicinity of the
stationary pointN∗ is given by

δV =
n

∑
i=1

∂V
∂Ni

δNi (3.3)
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then δV (N∗) = 0 for any arbitrary variationδNi. The
second variation is then given by

δ 2V (N)=
1
2

n

∑
i=1

n

∑
j=1

∂ 2V
∂NiN j

δNiδN j =
1
2

n

∑
i=1

φ
′′
(ξ

′
)
(δNi)

2

N∗
i

> 0

(3.4)
for any non-zero variationδNi. Using (2.6) the second-
order variationδ 2V (N) reduces to the form

δ 2V (N) =
1
2

n

∑
i=1

φ
′′
(ξ

′
)
(δNi(0))2

N∗
i

e2λit

=
1
2

n

∑
i=1

kie
2λit (3.5)

whereki = φ ′′
(ξ ′

) (δNi(0))2

N∗
i

is a positive constant.
We now proceed to measure the complexity associated
with the evolution of the system. The complexity which
we shall call dynamical complexity is a property of
evolution of a state and not of the state itself[8,14]. We
therefore define the dynamical complexity as the rate of
change of the entropy that is, of the second-order
variationδ 2V (N)

H(λ1,λ2, ....,λn; t) =
d
dt
{δ 2V (N)} =

n

∑
i=1

kiλie
2λit (3.6)

The expression (3.6) has similarity with other measures of
dynamical and thermodynamic complexity [7,8]. On the
basis of dynamical complexity(3.6) the criteria of stability
and instability are given by

H(λ1,λ2, ...,λn; t) =
d
dt

{δ 2V (N)} =
n

∑
i=1

kiλie
2λit

< 0 f or asymptotic stability

> 0 f or instability (3.7)

Besides there is a state of marginal stability, the frontier
between the asymptotic stability and instability [4,5],
which we shall explain later on. The expression(3.6) of
dynamical complexity depending on the eigenvalues
(λ1,λ2, ......,λn) of the community matrixA is very
suitable for study of stability and instability of the system.
The critical analysis of measure of dynamical
complexity(3.6) leads to the following conclusions:

C1 The dynamical complexity (3.6) increases with time t
when at least one of the eigenvalues has positive real part.
This is the case of instability implying the repelling
nature of the stationary state.

C2 The dynamical complexity (3.6) increases with time t
and the system tends to the stationary state if and only if
all the eigenvalues have negative real parts. This implies
the asymptotic stability and attractive nature of the
stationary state.

C3 The complication arises when all the eigenvalues

(λ1,λ2, ....,λn) are purely imaginary i.e.,λ j = ±ib j,
b j > 0, ( j = 1,2, ....,m|2m = n). The system is then
periodic. The application of the Lyapunov function to this
fails in this case. If a Lyapunov function exists, then
closed orbits are forbidden[7,16]. The criteria of closed
orbit of the system the reduces to the vanishing of the
time-average (over a period(0,2π) ) of the dynamical
complexity [7]:

H̄ = 1
2π
∫ 2π

0
d
dt {δ 2V (N)}dt = 1

2π
∫ 2π

0 H(λ1,λ2, ....,λn; t)dt = 1
2π
∫ 2π

0 ∑n
i=0 kiλie2λitdt = 0

(3.8)

C4 The positive value of the dynamical complexity
(H > 0) implies the instability of the system. By
complexity we mean only the instability, the zero
complexity (H = 0) implies the asymptotic stable
approaches to the stationary or fixed pointN∗ and finally
the vanishing of the time-average of the dynamical
complexity(H̄ = 0) implies the existence of closed orbits
of the periodic system.

4 Applications: Illustrative Model
Ecosystems

In this section we shall study the role of the measure of
dynamical complexity (3.6) in the characterization of
different dynamical behaviors such as stability, instability,
periodicity, bifurcation and limit-cycle of some model
ecosystems.

4.1 Lotka-Volterra prey-predator model

The model equations are[18]

dx1

dt
= ax1− bx1x2

dx2

dt
=−cx2+ dx1x2 (4.1)

where x1 and x2 are the prey and predator populations
respectively. Two stationary states are(0,0) and( c

d ,
a
b )

(i) Stationary point:(0,0); Eigenvalues:{a,−c}
The dynamical complexity is given by

H(t) = k1ae2at − k2ce−2ct (4.2)

The dynamical complexity (4.2) whose results from (3.6)
by using the eigenvaluesλ1 = a ,λ2 = −c, may be
positive or negative. This implies the solution (or
trajectory) may approach the stationary point(0,0) along
one direction and recedes from it along another direction.
This implies that the stationary state(0,0) is a saddle
point.
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(ii) Stationary point:( c
d ,

a
b ); Eigenvalues:λ1,2 =±i

√
ac

The dynamical complexity is given by

H(t) = k[i
√

acei2
√

act − i
√

ace−2i
√

act ] = k
√

acsin(2
√

act)

The purely imaginary eigenvalues implies periodic orbit.
According to the criteriaC3 of closed orbit we have to
consider the time-average of the dynamical complexity
over a complete cycle fromt = 0 to t = 2π
We have then

H̄ = 1
2π
∫ 2π

0 H(t)dt = k
2π
∫ 2π

0 [i
√

ace2i
√

act − i
√

ace−2i
√

act ]dt = k
√

ac
2π

∫ 2π
0 sin(2

√
ac)tdt = 0

(4.3)
This is a important characteristic behavior of the
phenomena for which the time-average of the dynamical
complexity along a closed orbit is zero. The same result
also holds good for the thermodynamic entropy
production rate or thermodynamic complexity [9]. This is
a significant result characterizing the analogy between the
dynamical and thermodynamical complexity [7,17].

4.2 Damped Lotka-Volterra prey-predator
Model

Let us consider the damped Lotka-Volterra system[18]

dN1

dt
= N1(1−N1)−N1N2

dN1

dt
=−γN2+ kN1N2 (4.4)

whereN1(t) and N2(t) are the populations of prey and
predator respectively at any timet.

(a) The non-trivial stationary-states(or points) are
A( γ

k ,1−
γ
k ) for γ

k < 1 inside the first quadrant andB(1,0)
on the abscissa.
(i) Stationary point: A( γ

k ,1 − γ
k );

Eigenvalues:{λ1,2 =
− γ

k ±
√

(
γ
k )

2−4 γ
k (k−γ)

2 }
The dynamical complexity is given by

H1 = k1λ1e2λ1t + k2λ2e2λ2t (4.5)

which tends to zero ast → ∞ since λ1,λ2 < 0. The
stationary point A is thus stable.
(ii) Stationary point:B(1,0);
Eigenvalues:λ1,2 = {−1,k− γ}
Since γ

k < 1 i.e.,k − γ > 0, the eigenvalues of B are of
opposite signs. So the stationary point B is a saddle point.
The dynamical complexity is given by

H2 =−k1e−2t + k2(k− γ)e2(k−γ)t (4.6)

which tends to infinity ast → ∞. This corresponds to the
unstable saddle point B.

(b) If γ
k increases the stationary points A and B approach

each other, and merge atγ
k = 1 or γ = k to form a saddle

node. In this case the eigenvalues of the point B become
(λ1 = −1,λ2 = 0) and the measure of dynamical
complexity becomes.

H3 =−k1e−2t (4.7)

which tends to zero ast → ∞. This corresponds to the
stable saddle point B. Again forγk = 1 the stationary point
A( γ

k ,1−
γ
k ) reduces to the formA(1,0) which is the same

as the stationary pointB(1,0) as it should be.

(c) If γ
k increases further i.e., ifγk becomes greater than 1

(( γ
k )> 1), the stationary pointA( γ

k ,1−
γ
k ) disappears into

the negative region, since the ordinate of A i.e.,
(1− γ

k ) < 0. For the stationary point B, the dynamical
complexity becomes

H4 =−k1e−2t +k2e2(k−γ)t =−k1e−2t +k2e−2(γ−k)t (4.8)

which tends to zero ast → ∞. since(γ > k) This implies
that the stationary point B remains a stable as before
(since both eigenvalues are negative). What is the
ecological significance of the 3rd case i.e.,γ

k > 1 or
γ > k? In that case the predator ordinate(1− γ > k)
becomes negative, implying the extinction of the predator.
For the greater value of the mortality rateγ compared to
this inter-species competition rate k (i.e.,γ > k) the prey
population is unable to feed the predator population
implying that the predator population is downed to die out
from whatever initial state of the system starts from[19].

4.3 Mutualistic Model population system

Let us consider a mutualistic system[20]

dx
dt

=
r1

k1
x(k1− x+ y)

dy
dt

=
r2

k2
y(k2− y+ bx) (4.9)

wherek1 , k2 are the carrying capacity andr1 , r2 are the
growth rate of the speciesx(t) andy(t) respectively.b is
the measure of mutualism effect of each and other. In this
model each of them benefits from the presence of other
species and grows logistically in absence of other species.
(a) The non-trivial stationary-states areA(x∗,y∗), where
x∗ = k1+k2

1−b and y∗ = k2+bk1
1−b for b < 1 inside the first

quadrant,B(k1,0) and C(0,k2) on the abscissa and the
ordinate respectively.

(i) Stationary point: A(x∗,y∗); Eigenvalues:{λ1,2 =

1
2[−( r2y∗

k2
+ r1x∗

k1
)±
√

( r2y∗
k2

+ r1x∗
k1

)2− 4r1r2(1−b)x∗y∗
k1k2

]}
The dynamical complexity is given by

H1 = p1λ1e2λ1t + p2λ2e2λ2t (4.10)
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which tends to zero ast → ∞ sinceλ1,λ2 < 0 asb < 1.
The stationary point A is thus stable.

(ii) Stationary point: B(k1,0);
Eigenvalues:{λ1,2 =−r1,

r2
k2
(k2+ bk1)}

Sincer1 > 0, the eigenvalues ofB are of opposite signs.
So the stationary point is a saddle point.
The dynamical complexity is given by

H2 =−p1r1e−2r1t + p2
r2

k2
(k2+ bk1)e

2
r2
k2
(k2+bk1)t (4.11)

which tends to infinity ast −→ ∞. This corresponds to
unstable saddle pointB.

(iii) Stationary point: C(0,k2);
Eigenvalues:{λ1,2 =

r1
k1
(k2+ k1),−r2}

Since r2 > 0, the eigenvalues ofC are of opposite
signs.So the stationary point is a saddle point.
The dynamical complexity is given by

H2 = p1
r1

k1
(k2+ k1)e

2
r1
k1
(k2+k1)t − p2r2e−2r2t (4.12)

which tends to infinity ast −→ ∞. This corresponds to
unstable saddle pointC.

4.4 Rosenzweig-MacArthur model

Let us now consider the case when the community matrix
is a function of the environmental parameters which leads
to the eigenvalues dependent on the environmental
parameters. We consider a prey-predator model due to
Harrison [21] who studied a variety of prey-predator
models in order to find which model gives the best
quantitative agreement with Luckinbill’s data on
Didinium and Paramecium [20,21]. Luckinbill’s grew
Paramecium Aurelia together with its predator Didinium
nasutum and, under favorable experimental conditions
aimed at reducing the searching effectiveness of the
Didinium, he was able to observe oscillations of both
populations for 33 days before they become extinct.In
terms of scaled variables Harrison model reduces to the
form of Rosenzweig-MacArthur model [21]:

dx1

dt
= x1(1−

x1

κ
)− α1x1x2

β + x1

dx2

dt
=

α2x1x2

β + x1
− γx2 (4.13)

where

α1 = (1− 1
κ
)(β +1)

α2 = γ(1+β ) (4.14)

which predicts the outcome of Luckinbill’s experiment.
The system of equations (4.13) contains only three

independent parametersκ , β , γ. In terms of scaled
population, the non-trivial fixed or stationary point is
(1,1). The community matrix of the stationary point
(1,1) is

A =

(

(κ−2−β )
κ(1−β ) ( 1

κ −1)
β γ

1+β 0

)

(4.15)

The eigenvalues of the community matrix A, given
by(4.15) are

λ1,2 =
(κ −2−β )± i

√

4(κ −1)κ2β γ − (κ −2−β )2

2κ(1+β )
(4.16)

Let us investigate the dynamical behavior of the
stationary point(1,1) on the basis of the eigenvalues
(4.16). The real part of the eigenvalues characterizes the
stability and instability of the stationary point(1,1) . The
threshold value of the parameterκ is given byRe(λ ) = 0
i.e., by κ = κc = 2+ β . Below and above the threshold
value κc = 2 + β , the phase-portrait is qualitatively
different. For κ < κc (i.e.,κ < 2+ β ) the trajectories
converge to the fixed point(1,1), where as for
κ > κc = 2+ β they converge to a limit cycle. The
threshold or critical valueκc = 2+ β of the parameterκ
where this structural change occurrs is called a
bifurcation point. This is in view of the criteria of
Hopf-bifurcation theorem:Re(λ ) = 0 at κ = κc and
dRe(λ )

dk |κ=κc 6= 0 [17]. For κc = 2+ β , the stability point
(1,1) is marginal stable, it changes its stability
characteristic with slight change of the parameterκ
crossing the bifurcation pointκc = 2+β [22].
Let us now investigate the dynamical complexity of the
limit-cycle corresponding to the bifurcation valueκ = κc
i.e.κc = 2+β . Forκ = 2+β , the eigenvalues are purely
imaginary given by

λ1,2 =±i
√

(κ−1)κ2β γ
κ(1+β ) =±i

√

β
γ (1+β )( 1

κ −1) =±iA(say)

(4.17)
Thus the dynamical complexity reduces to

H(t) = k[iAe2iAt − iAe−2iAt ] = k sin(2At) (4.18)

where k is a constant. The time-average of the dynamical
complexity (4.13) over a period(0,2π) along the closed
orbit is then given by

H̄ =
k

2π

∫ 2π

0
sin(2At)dt = 0 (4.19)

which according to the criterion (3.8)characterizes the
closed orbit of the limit cycle.

5 Conclusion

The objective of the present paper is to introduce a
measure of dynamical complexity of a multispecies

c© 2016 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. Lett.4, No. 2, 47-54 (2016) /www.naturalspublishing.com/Journals.asp 53

ecosystem and to study its importance in the
characterization of different dynamical behaviors of some
model ecosystems. The main results and characteristic
features of the paper are as follows:

(i) We have first considered a generalized multispecies
ecosystem described by a system of non-linear
differential equations. The local analysis of the system
around stationary states determines the mathematical
structure of the community matrix which is of significant
importance in the subsequent analysis.

(ii) The local form (second-order variation) of the
generalized Lyapunov-function along with its entropic
equivalence has been identified as a measure of
complexity of the ecological system around the stationary
states characterized by the community matrixA of the
ecosystem.

(iii) The dynamical complexity defined to be the rate of
change of the local form of generalized
Lyapunov-function provides a qualitative measure of
complexity associated with concept of stability, instability
and periodicity. The dynamical complexity being
dependent on the eigenvalues of the community matrix of
the ecosystem is thus related to the mathematical
structure of the system near the steady state. The states far
from the stationary or equilibrium state are outside the
domain of the application of the measure of the
dynamical complexity defined by (3.6).

(iv) Stability and Complexity are two vital concepts in
ecosystems. The relation between the concept of stability
and complexity is a long standing well-debated problem
of ecology[3,23,24]. A good deal of works on the subject
are available in literatures In spite of a great deal of
controversies about the unique relationship between the
concept of stability and complexity the present analysis
based on the Lyapunov-function method of deterministic
dynamical model of ecosystem(without consideration of
any genomic and environmental stochasticity)gives
indication of a fairly important result that the complexity
usually results instability rather than stability [3,23,24].

(v) The study of equivalence between generalized
Lyapunov-function and generalized cross-entropy plays a
significant role in the determination of the measure of
dynamical complexity.

Appendix:

Let us now study the significance of the generalized
Lyapunov-function(3.1) as a measure of generalized
cross-entropy developed in statistical mechanics and
information theory. For this, it is first necessary to
develop statistical mechanical model of the ecosystem
and then to introduce the concept of probability

distribution in the context of the statistical model of the
ecosystem. Boltzmann’s mechanical concept of
six-dimensional phase-space composed of a large number
of phase-cells (representing the state of the system) can
be applied to the macro-structure of the ecosystem. The
construction of ecosystem phase-space then consists of
developing rules for assigning individuals to different
phase-cells or ecological niches, of different metabolic
energy-bandsEi, (i = 1,2,3, ....,n). Let wi be the number
of cells or ecological niches of theith metabolic
energy-bandsEi, (i = 1,2,3, ....,n) [25]. Assuming
dilute-gas model of ecosystem we haveNi << wi< where
Ni is the population size(the number of individuals) of the
ith metabolic energy-bandsEi, (i = 1,2,3, ....,n) [25].
The ratiopi =

Ni
wi
, (i = 1,2,3, ....,n) can be considered

as the probability of having an individuals in any one of
the cells or niches of theith metabolic energy-bandsEi.

p∗i =
N∗

i
wi

is the same for stationary state of the system.
The generalized Lyapunov-function(3.1) then can be
written as

L(N|N∗) =
n

∑
i=1

φ(
Ni

N∗
i
) =

n

∑
i=1

p∗i wiφ(
piwi

p∗i wi
) =

n

∑
i=1

p∗i wiφ(
pi

p∗i
) (A1)

The r.h.s of(A1) is the generalization of Csizer’s directed
divergence(or cross-entropy) for a system with
non-stationary probability distribution
p∗ = (p1, p2, .....pn) , stationary probability distribution
p∗ = (p∗1, p∗2, .....p

∗
n) with weights

w = (w1,w2, ....,wn)[26]. We call it as the generalized
cross-entropy and represent it byS(N|N∗) so that

S(N|N∗) =
n

∑
i=1

N∗
i φ(

Ni

N∗
i
) (A2)

defined over the positive-additive-distribution(PAD)
N = (N1,N2, .....,Nn) and N∗ = (N∗

1 ,N
∗
2 , .....,N

∗
n ) [13].

The expression(A1) thus provides the probabilistic
interpretation of generalized Lyapunov-function and
provides the equivalence of the generalized
Lyapunov-function L(N|N∗) and the generalized
cross-entropyS(N|N∗):

L(N|N∗) = S(N|N∗) (A3)

We have thus the entropic significance of the Lyapunov-
function for the broader perspective of positive-additive-
distribution.
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