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Abstract: Visibility determination is an essential topic in computer graphics when visualizing large scenes. This problem can be
addressed using many different techniques, but most of them discard obtaining an exact visible set because it is more time consuming
compared with the solution provided by the graphics hardware. Howeverthe problem remains if the scenes must be visualized in a
mobile device and the visible scene must be transmitted via the Internet. In thispaper we introduce a new approach based on ray
shooting for obtaining an exact visibility set in polygonal scenes inR

2 and prism-shaped objects inR3. In both cases the scene is
divided into disjoint regions using thepolar diagram, a plane partition based on angle preprocessing. The polar diagram allows to
improve computation times while ensuring accurate results in these scenes.
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1 Introduction and state of the art

Two points in 2D p= (xp,yp) andq = (xq,yq) located in
a sceneE are visible if the line segmentpq does not
intersect with any other object inE. This concept can be
extended to scenes defined inRn. The visibility
computation for a pair of points is indispensable to solve
more complex visibility problems in several application
areas such as computer graphics, robotics, simulation of
wireless communications, etc.

To address the problem of visibility from the point of
viewpoint of computational geometry, the sceneE
becomes an abstraction of reality. For example, a polygon
with holes in R2 may represent a furnished room. An
urban environment may be represented by means of the
footprints of their buildings, etc. InR3 this abstraction
process is lower, but the algorithms to solve visibility are
more complex or require more computation time.

Visibility from a viewpoint p that observes the scene
E in a specific viewing angle is also referred as the
visibility mapfrom point p. This is a key problem in path
planning and walk-through applications. From the point
of view of a mobile object or robot, visibility determines
the free configuration space to move without collision. In
computer graphics, visibility determination is important
to reduce the amount of geometry that the hardware
graphics must process.

In this paper we study an extension of the simplest
visibility test between two pointspq: the shooting query
of the ray r(t) = p + t

−→
d ,
−→
d = −→q − −→p , t ⊂ [0,∞],

consideringq and p as vectors with the coordinates of
these points, [22]. Once solved this visibility problem, a
selected set of rays starting fromp can determine the
visibility in a viewing angle. This ray shooting problem
can be considered as a special instance of the geometric
range-searching problem. In a preprocessing phase, a data
structure divides the sceneE into small regions to avoid
performing the expensive ray-object intersection tests.
Afterwards a ray-traversal algorithm searches the set of
objects hit by this set of rays.

There are many spatial data structures supporting ray
shooting algorithms. A tree-based data structure
maintaining a partition of the scene may support efficient
range searches, especially on balanced structures. The
root represents the whole scene and each hierarchical
level represents a decomposition of the level just above.
The ray shooting test begins with the location ofp into
the tree data structure. The ray may intersect with the
object or objects associated with this node. Otherwise the
ray crosses successively to adjacent regions according to
the ray direction

−→
d , while the intersection is not found or

the ray does not leave the scene. The concept of adjacency
is implemented in the tree structure itself by accessing to
positions of neighboring nodes. This decomposition is
compatible with scenes inR2 or R3, and with closed or
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open areas. The most used data structures in ray shooting
are BSP-trees, [2,12], Kd-trees [15], octrees [11,24].

Flat space-oriented partitioning such as uniform grids
are also widely used for ray traversal problems [9]. The
advantages of this type of plane or space partition are the
simplicity and efficiently of their implementation.
However regular regions are not adapted to the
distribution or size of the objects in the scene. The data
structures described so far show their strength in some
cases but not in all of them. Thus, they can be combined
to work together in hybrid data structures [16].

Once a spatial subdivision is constructed using the
most appropriate criterion, the ray shooting process
consists in the traverse of adjacent regions. The data
structure must help to make this process efficiently by
means of its own configuration (uniform grids) or by
defining topological relations such as the TIN
(Triangulated Irregular Network).

Nevertheless, ray shooting in computer graphics is
specially used in related problems to visibility, such as
global illumination. These techniques named ray-casting
and ray-tracing are image based algorithms of heuristic
nature. In computer graphics, visibility determination is
oriented to speed up the rendering phase by discarding as
much non-visible objects as possible, in order to release
the hardware of processing scene primitives that are
invisible from the viewer position. Exact visibility is
usually discarded for being more expensive in time than
the solution given by the Z-buffer [8]. In fact, the most
desired characteristic is to identify as much occluded
objects as possible without forgetting any visible
primitive. Thus, these techniques calledvisibility culling,
search a potentially visible set (PSV) with the property of
being conservative (considering all visible objects) evenif
it contains non-visible primitives. The Z-buffer is
responsible of hidden those objects of the PSV that are
finally non-visible.

The visibility culling techniques discard in a
straightforward way those objects outside the viewing
frustum (view-frustum culling)and also those primitives
that face away from the observer(back-face culling).
Finally, the occlusion cullingtechniques go beyond by
rejecting primitives occluded behind of some other visible
objects. These methods have been widely studied, we find
some of them summarized in [1,6,14].

Occlusion culling techniques can be classified
attending to different strategies for addressing the
problem as well as for different types of scenes. It can be
distinguished between occlusion cullingfrom a viewpoint
or from a region, this last studying all those visible
objects from at least a point-position of a certain area.
Point-based methods can be classified inobject and
image-precision, the first ones use the scene geometry,
while image-precision techniques operate during the
rasterization process. The order in which the PVS is
obtained differentiates the techniques that remove
candidates from the global set of primitives from those
which start from an empty set that increases its size in the

process. This method becomes more advisable if the
percent of the visible scene is reduced, for example in
densely occluded environments.

In Section2 we highlighted the benefits of using an
exact visibility culling method, above all in web-based
systems. Section3 introduces the polar diagram as a
tessellation that divides the plane into regions with similar
angular characteristics. In Section4 several visibility
problems related to ray shooting are defined and solved
using the polar diagram as preprocessing. These
algorithms run efficiently in dense scenes such as urban
environments. Section5 shows performance results for
applying these algorithms with prism-shaped scenes
representing city models in web-based systems. Finally in
Section6 we summarize the contributions of this paper
and discuss possible improvements and applications.

2 Motivation

Despite the many methods in the literature to solve
visibility, none of them is especially focused on
web-based systems. In recent times web-based systems
are extensively used due to the services offered through
Internet. The demand grows specially for web 3D
services such as mobile navigation in urban scenes, [7].
Mobile devices do not have the graphics capabilities of
desktops computers, requiring a huge reduction of
geometry to allow an accurate client-server interaction.
The network must transfer at each time the information
that the client device visualizes. This is an example in
which exact visibility is important for accurate results
since non-visible buildings transferred through the
network is ineffective to maintain real-time interaction in
the web system.

This paper introduces a ray shooting method for exact
visibility determination from a viewpoint in polygonal
scenes inR2, and prism-shape objects inR3. In both
cases a plane tessellation calledpolar diagram [13], is
used as preprocessing of the scene geometry. This plane
partition makes the process of calculating ray
intersections more efficient by reducing the set of
possible intersecting objects. The resulting visible set is
conservative because all the visible objects are finally
found. The best performance case is given in densely
occluded scenes such as city models where the visible set
is expected to be reduced.

3 The polar diagram

The polar diagram [13], as any other plane tessellation,
constructs a partition of the scene that makes some
processes work faster by reducing the number of
primitives to be tested in a specific instant. For instance,
the Voronoi diagram, [19], finds the nearest site to a given
point position in logarithmic time. The polar diagram can
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be defined in terms of the Voronoi diagram but replacing
the minimum Euclidean distance as rule of construction
with theminimum angular distance, that is, the minimum
polar angle of any point p with respect to a specific
object oi , denoted asangoi (p). This angle is defined by
the positive horizontal line ofp (the starting angle) and
the straight line linkingp andoi in the range[0,π]. The
locus of points with smallest positive polar angle with
respect to the objectoi ∈ E is the polar region of oi ,
denoted as PE(oi). Thus, PE(oi) =
{

(x,y) ∈ R
2 | angoi (x,y)< ango j (x,y),∀ j 6= i

}

. Figure
1.a) shows the polar angle ofp with respect to the sitesi
denoted asangsi (p). The shaded area of Figure1.b)
represents the polar region of the sites3. Each point
located in this region is angularly closer to objects3 than
to any other site.

Given a set E of n two-dimensional objects,
E = {o1,o2,...,on}, the polar diagramof E, denoted as
P(E), is a half-plane division in polar regions. Because
the polar angle is defined in the range[0,π], it partitions
the lower half-plane defined by the horizontal line
containing the vertex (or site) with greater y-coordinate.
Each generator objectoi creates a polar regionPE(oi)
representing the locus of points with common angular
characteristics in a given angular criterion. Any point in
this half-plane belongs to one polar region which
determines its angular situation with respect to the rest of
generator objects in the scene. More specifically, if point
p lies in the polar region of objectoi , p ∈ PE(oi), we
know thatoi is the first object found after performing an
angular scanning in counter-clockwise starting at zero
angle. Figure1.b) is the polar diagram of a set of sites in
the plane, and the horizontal line containings0 the
frontier tessellation.

The polar diagram can be constructed inΘ(nlogn)
for a set onn sites in the plane or a set ofN polygonal
objects withn vertices, using the Divide and Conquer or
the Incremental methods, [13]. The strength of using this
tessellation as preprocessing is avoiding any angular
sweep by locating a point into a polar region in
logarithmic time.

The polar diagram can be used as preprocessing to
solve efficiently some angle-based problems as the
convex hull of points and objects, [13], the path planning
for robotics applications, [21], as well as Collision
Detection, [20].

The polar diagram can be constructed for a set of
static and dynamic objects in the plane as in [3].
Polygonal objects may represent an abstraction of any
real object. In generalized cases, complex-geometry
objects are replaced with some others formed by simple
geometric items, whose complexity is increased
hierarchically only when necessary. In all these cases a
2D representation of the environment, a city map for
instance, can be used for some precalculations, as
locating an observer in the scene or finding the visibility
map from its position. Polar diagrams carry out a
multi-purpose plane partition that can be useful as a

p
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(a) angsi(p)
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(b) PE(s3

Fig. 1: Polar diagram

visibility culling technique, with important improvements
in the final visualization time.

The definition of polar diagram,P(E), considers the
counter-clockwise direction and the angle zero as criterion
of construction. In certain applications, it is possible that
the counter-clockwise criterion should be replaced by the
clockwise or by another starting angle. Observe Figure2.a)
a counter-clockwise scanning from points finds objectA.
If the rotation is clockwise, then the object found isC, as
depicted in Figure2.b).

Therefore, the criterion of construction can vary
considering different starting angles or rotation directions.
The previous definition of polar diagram,P(E) can be
denoted asP0+(E), considering the angle zero as
starting angle, and the scanning in positive direction
(counter-clockwise). The polar diagram which rotates
clockwise or negative direction is denoted asP0−(E), as
the example of Figure2.b). In the general case, the polar
diagram can be computed considering the starting angle
defined by the vector

−→
d = −→q −−→p , considering−→p the

vector with coordinates equal to the pointp, the origin of
the angular scanning. Thus, in generalPd+(E) is
considered the polar diagram performed using the angle
of
−→
d (the angle formed with the horizontal) and rotating

in counter-clockwise. SimilarlyPd−(E) denotes the
polar diagram constructed using the same angle but
scanning in clockwise.

The polar diagram data structure is key for obtaining
efficient results in visibility. It is defined in terms similar
to the Voronoi diagram, a winged-edge data structure
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Fig. 2: Polar diagram of polygonal objects using two
different criteria; p lies in the region ofC in theP0+(E)
polar diagram and in the polar region ofD in P0−(E)

preserving topological information. This data
representation is also used in other plane tessellation such
us the Triangulated Irregular Network (TIN), used for
terrain representation. Neighborly relations are important
for grouping adjacent regions and therefore to speed up
the process of traversal polar regions during the ray
shooting. The Voronoi diagram uses these neighborly
relations to make efficient the path planning problem
resolution in [10] or to compute the drainage network in a
triangulated terrain as in [17].

The boundary of a polar regionPE(oi) is defined by
a set of edges denoted asPEE(oi). If oi is a polygonal
object, then this boundary is defined by polar edges, and
also by edges of polygons, as depicted in Figure2. Each
polar edgeek ∈ PEE(oi), ek ∈ PEE(o j) divides two
adjacent polar regionsPE(oi) andPE(o j). For instance,
e6 dividesPE(D) andPE(C). Thus, if the trajectory of a
mobile object touchesek after crossing the polar region of
oi , then it arrives to the adjacent polar region ofo j after
crossing edgeek, and avoiding linear searches.

Table 1: Polar diagram data structure of the example of
Figure2.a)

Object Edges Adjacent Object

A e0, e1, e2, e3 A, B
B e1, e5 B
C e2, e3, e4, e6 C, B, D
D e4, e5, e6 D, B

Edges Adjacent regions

e0 ⊘, A
e1 A, B
e2 A, C
e3 A, C
e4 C, D
e5 B, D
e6 D, C

Table?? shows the topological relations of the polar
diagram of Figure2.a). For instance, the first row of the
upper table states thatPE(A) is bounded by the polar
edgese0,e1,e2,e3. In the second table, edgee0 divides
two adjacent polar regions,PE(A) and the upper
half-plane.

4 Visibility using the polar diagram as
preprocessing

Polar diagrams can solve visibility problems due to its
capability of determining the nearest angular neighbors.
As stated before, this plane tessellation avoids angular
searches by locating a pointp in a polar region. This
process requiresO(logn) instead of linear time.

The foundations for solving visibility problems using
polar diagrams consist of definingp as the viewpoint, and
considering the virtual scene composed by a set of
polygons in R

2. For 3D scenes represented by
prism-shaped objects with polygonal base, the visibility
problem can be defined as an extension of the 2D case.
These objects resulting of the extrusion of a polygon are
also called as 2.5D objects in computer graphics
literature. They are usually used for representing
buildings in virtual urban environments [4] or as
bounding boxes that enclose other geometrically complex
objects as in [1].

In this section we define several related visibility
problems. The first determines the maximum visibility
angle (if any) from a viewpointp in a given direction. An
extension of this problem is to find the first visible object
from p in an arbitrary direction

−→
d , also defined as ray

shooting query. The solution to this simple problem is the
basis for obtaining the visibility map fromp in R

2 or R3.
The two dimensional case considers a scene of polygons,
and the three dimensional case considers prism-shaped
objects.
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Fig. 3: Maximum visibility angle

4.1 Maximum visibility angle in a given
direction

The maximum visible angle from pointp in a given
direction

−→
d is considered the maximum obstacle-free

angle from the viewer positionp when the sceneE is
being observed in direction

−→
d . This is a problem related

to illumination in computer graphics. The incident light
beam between the gap formed by objectsA andC is the
maximum angle of visibility from the lantern positionp,
as depicted in Figure3.a). However the opening angle
from point q is null because the rayr(t) = q + t

−→
d ,

t ⊂ [0,∝) intersects with objectB, as seen in the picture.
In this case there is not an open angle, but it is determined
the specific illuminated object.

The maximum visibility angle from pointp or the
problem of determining the intersecting object of the ray
r(t) in a scene withn objects, are linear time problems
using brute force algorithms. However the problem can be
studied using the polar diagram as preprocessing.

Let us consider the sceneE = {o1,o2,...,on} with n
polygonal objects, the viewpointp and the direction of
visibility

−→
d . If the polar diagramsPd+(E) andPd−(E)

are pre-computed, then the maximum visibility angle is
determined according to Lemma1.

Lemma 1.Let beP(E)d+(oi) the polar region in which the
viewpoint p is located in the polar diagramPd+(E) of the
scene E, p∈P(E)d+(oi), and let beP(E)d−(o j) the polar
region in which p is located in the polar diagramPd−(E),
p∈P(E)d−(o j). There exists an open visibility angle from

p in direction
−→
d iff oi 6= o j . Otherwise, if oi = o j , then the

visibility angle is null and the ray r= p+ t
−→
d , t⊂ [0,∝),

intersects with oi .

Proof.Let us consider
−→
d the direction of an horizontal

vector with angle 0 (East direction). An open visibility
angle exists if the rayr(t) = p+ t

−→
d , t ⊂ [0,∝), does not

intersect with any object. Then ifp ∈ P(E)0+(oi), it is
necessary a non-zero angular sweep in counter-clockwise
starting from direction

−→
d to find oi . Likewise, an angular

sweep in clockwise direction is required to findo j . But
object o j could never be found sweeping
counter-clockwise by definition of polar angle because it
only sweeps in the angular range[0,π), and o j could
never be reached, consequentlyoi 6= o j .

The implication in the reverse is straightforward
considering that if two different objects are found using
opposite angular scans from the angle 0 direction, then by
definition there exists an open visibility angle.

Finally, if the rayr(t) intersects withoi , thenoi is the

first object found when looking at
−→
d direction (East in this

case). No angular scans in clockwise or counter-clockwise
direction are necessary becauseoi is found before starting
any angular scans. Therefore this object must be the same
in both cases.

In the example of Figure3.b) the polar edges of
P0+(E) in black color and the edges ofP0−(E) in red
are superimposed. Pointp lies in the polar regions of
objectsC and D in P0+(E) and P0−(E) respectively.
The maximum angle of visibility is obtained by throwing
tangent lines toC andD as the figure3.b) shows.

In the same example, pointq lies in both cases in the
polar region of the same objectD, consequently objectD
is the first object that intersects the horizontal positive ray
r(t) = q+t

−→
d according to Lemma1. However, computing

linear time processes to find intersections can be avoided
by locating pointp into a polar region in logarithmic time.

Theorem 1.The maximum angle of visibility from point p
in a given direction

−→
d in a scene with n polygonal objects

can be calculated in O(logn) time using a pair of polar
diagrams as preprocessing.

Proof.Lemma1 guarantees that it is possible to find the
maximum visibility or the first visible object in direction
−→
d using the pairs of polar diagramsPd+(E) and
Pd−(E) by locating the viewpointp into both polar
diagrams. Each of these location processes requires a
logarithmic time. The rest of operations such as throwing
tangent lines need only constant time.
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4.2 Visible object in an arbitrary direction

Lemma1 provides a method to find the first visible object
in a given direction

−→
d by means of pre-computing a pair

of polar diagramsPd+(E) and Pd−(E), using
−→
d as

criterion of construction.
This method is efficient for calculating visibility (or

related problems such as intersections) from any sitep in
the plane in

−→
d direction. However in real problems, the

ray r(t) = p+ t
−→
d may represent the movement direction

in a specific instant, and this trajectory may vary along
the execution. Suppose a robot moving in a scene, or an
avatar navigating in a virtual environment. In these cases
−→
d can take any value, and the construction of an arbitrary
number of polar diagrams in each direction requiring
O(nlogn) time, is neither efficient nor feasible.
Nevertheless, it is possible to provide an efficient solution
to this visibility problem by using the topological
relations implemented in the data structure of the polar
diagram, as well as its angular characteristics.

According to the definition of polar diagram, the polar
region of the siteoi , P(E)0+(oi), is the locus of points
with smaller positive angle with respect tooi in the
angular range [0,π). This means that if point

p ∈P(E)0+(oi), the rayr(t) = p+ t
−→
d , with

−→
d defining

any angle in the range[0,π) is angularly close to object
oi , even ifr does not intersect withoi . This statement can
be emphasized if we search only in the range[0,π/2],

which implies that if
−→
d is framed in the first quadrant, we

search angularly close objects using the
P(E) = P0+(E) polar diagram.

See again Figure3.b), the raysr2 andr3, collides with
object D, however rayr1 does not. In any caser1 is
angularly close tooi and this proximity may be used for
searching angularly close objects. If rayr1 does not
intersect withD, the search can be focused on angularly
close objects, which can be found efficiently using the
this topological data structure. This characteristic benefits
polar diagrams with respect to similar plane tessellation
such as Voronoi diagrams. The approach is similar, a ray
crosses adjacent regions to find the first intersecting
object with the ray describing the trajectory, however the
minimum Euclidean distance criterion is less efficient
than using angular preprocessing.

If P0+(E) is able solve angular proximity in the
range [0,π/2], a combination of polar diagrams
constructed with different criteria can scan the angular
spectrum[0,2π). In fact, we describeP0−(E) as the
polar diagram constructed using the starting angle 0 and
sweeping the plane in clockwise direction. The remaining
[π/2, 3π/2] range can be angularly covered with the
Pπ+(E) and Pπ−(E), sweeping the third and second
quadrant respectively.

These four orthogonal polar diagrams used as
preprocessing can solve visibility in an arbitrary

−→
d

direction. The visibility problem from pointp in the

P0-(E)

P0+(E)

PPI+(E)

PPI-(E)

if 0 ≤ angle< π/2 useP0+(E)
if π/2≤ angle< π usePπ−(E)
if π ≤ angle< 3π/2 usePπ+(E)
if 3π/2≤ angle< 0 useP0−(E)

Fig. 4: The polar diagram is chosen according to the
−→
d

direction

Algorithm 1 RayShootingQuery(PD(E), r(t) = p +

t
−→
d ):l i ,oi

Input: The four polar diagrams E:
PD(E) = {P0−(E), P0+(E), Pπ+(E),
Pπ−(E)}

- The ray r(t) = p+ t
−→
d defining the

visibility direction.
Output: The visible object oi ∈ E or /0
- The list of crossed rays l i
BEGIN
1.Select the polar diagram

P(E) ∈PD(E) according to the
table of Figure 4

2.Locate p in the polar region of
object o, p∈P(E)(o)

3.RayCollision (P(E), r(t),o): {oi,l i}
4.RETURN oi and l i
END

direction
−→
d or ray shooting query, is defined as the

process to find the intersecting object with the ray
r(t) = p+ t

−→
d . The direction

−→
d is framed in one quadrant

and one polar diagram is selected according to the scheme
of Figure4.

Algorithm 1 describes the process to find the object
colliding with r(t) using the polar diagrams as
pre-processing. The input data are the set of polar
diagrams PD(E) = {P0−(E), P0+(E),
Pπ+(E),Pπ−(E)} and r(t), the output are the colliding
object oi and the list of crossed polar edgesl i . This
algorithm determines the polar diagram to be used and the
polar region in whichp is locatedp ∈P(E)(o), then it
calls to the Algorithm2 (RayCollision) that implements
the traversal process and finds the colliding objectoi .

Now we describe the RayColliison process
considering the example of Figure5. Firstly, point p is
located in the polar region of objecto14. The polar region
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Algorithm 2 RayCollision(P(E), r(t) = p + t
−→
d ,

o):{oi , l i}
Input: - The polar diagram
P(E) ∈PD(E)

- The ray r(t) = p+ t
−→
d defining the

visibility direction.
- The object o such that p∈P(E)(o)

Output: The tuple (oi , l i): the visible
object oi ∈ E or /0,
- The list of crossed edges l i
BEGIN
1.BOOL terminate ← false
2.Initialize l i ← /0 and oi ← o
3.WHILE (NOT terminate) DO

(a)Determine the edge e intersecting
with r(t) in P(E)(oi)

(b)IF e= 0 (out of the scene) OR e is
a polygon edge (collision
detected)

(c)THEN terminate ←true
(d)ELSE (go to an adjacent region)

i.Insert edge e in l, l ← l +{e}
ii.Let be o j the object whose polar

region is adjacent to edge e
iii.oi ← o j

(e)END WHILE

4.IF e= 0 THEN oi = 0
5.RETURN oi and l i
END

Fig. 5: Ray traverse ofr(t) = p+ td

P(E)(o14) is in fact a free configuration space in which
r(t) can move freely without colliding with any obstacle
except its boundary. The frontier of a polar region is
defined by either polar edges or generator polygons. If
r(t) intersects with a polar edge, then it crosses to the
polar region of an adjacent object. In the example the ray

crosses towards the polar region ofo8. This circumstance
is computed in constant time because polar edges store
adjacency information. Again the polar regionP(E)(o8)
provides a free space to move until a new intersection if
performed. In this caser(t) enters in the polar region of a
new objecto5 before arriving toP(E)(o1). There, r(t)
finally intersects witho1 completing the ray shooting
query.

Theorem 2.Given a scene with n polygonal objects, the
visible ray shooting query from the viewpoint p in an
arbitrary direction

−→
d (if any), can be solved using the

four polar diagrams: PD(E) = {P0+(E), P0−(E),
Pπ+(E), Pπ−(E)} in O(logn+ n), being n the number
of polygons in the scene.

Proof.The time for locating p into a polar region is
O(logn). According to Algorithm1, in the worst case the
ray r(t) must crossn regions to find an intersection or to
leave the scene. The processing time for determining that
this ray crosses each regions depends on the number of
edges defining the scene. The number of polar edges of
the sceneE is O(2n), with an average number of two
edges per region. The rest of the frontier edges are the
scene polygons.

Theorem2 considers the worst case scenario in which
the scene is probably composed of small polygonal
objects and the rayr(t) does not collide with any of them.
Thus, the ray crosses evenn polar regions computing
intersections before leaving the scene without finding
collisions. However in dense scenes this computation
time can be considered as logarithmic, the location time,
since it is assumed that the ray will intersect in only
several loops of the algorithm.

Then, the visibility resolution comes from the same
principle which allows the Voronoi diagram to solve
collisions in [18]. However Voronoi diagrams for
polygonal objects are more complex to compute,
generating curved edges. In addition polar diagrams
provide conservativity when determining visibility in a
view frustum, as described in the next section.

4.3 Visibility map determination in 2D scenes

In practice, the ray shooting query that finds the visible
object fromp in direction

−→
d is closely related to obtain

the intersecting object with the rayr(t) = p + t
−→
d .

Visibility is more oriented to find a set of visible objects
from a view frustum or viewing angle. In any case, if a
ray r(t) is able to find a visible object, on the same
principle, a set of selected rays may obtain the visible set
from p in an angular range. This is the basis for
ray-tracing techniques in computer graphics for visibility
culling. Illumination also uses ray-tracing techniques to
consider reflexion, refraction or dispersion of the light
when rendering complex scenes.
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p p

Fig. 6: Different density of rays for visibility detection.

A simple technique of ray shooting for visibility may
consist of computing the intersection of an uniform fan of
rays, as Figure6 shows, for the 2D version of this
problem. Each time that a ray starting from the viewpoint
p intersects with an object, it is considered as visible.
Although this approach is simple, two issues arise: (1)
which number of rays must be shot in order to obtain a
conservative visibility set? and (2) how to speed up this
process to avoid sequential searches? The first property
ensures that all visible objects are detected. However, if
the fan of rays is small as in the left example of the figure,
a visible object may not be reached by any ray. If the
number of rays is increased as in the example on the right,
then more computation time is required without ensuring
conservativity.

Therefore, the solution should be adaptive to the
number and disposition of the objects in the scene. The
ideal configuration is a fan ofk rays to findk visible
objects, that isO(c � k) rays, consideringc as a constant.
The goal is to find the visibility map as Definition1
states.

Definition 1.Let be VMp(rL, rR) the visibility map from
point p looking at the scene with the viewing angle
[rL, rR], considering rL and rR the left and right rays
defining this angular sector respectively. The set
VMp(rL, rR) contains those objects that are visible from p
at least partly.

The definition ofVMp(rL, rR) is valid in computer
graphics because the hidden portions of the objects are
detected by the depth map implemented by the Z-buffer.
In fact, the Z-buffer does not require any additional
processing to find the visible set. However, a complex
scene with many hidden primitives needs too much time
for rendering objects that will never be visible. Therefore
it is preferable to reduce the number of primitives sent to
the Z-buffer, allowing this visibility culling process works
faster. This reasoning is further justified when the scene is
to be transferred over the network.

The polar diagram helps to speed up the visibility
determination process in all these phases:

–the ray shooting query of the rayr(t) = p+ t
−→
d can be

solved efficiently (Algorithm1),

–the fan of rays is adaptive to the visible set so that only
c�k rays are needed to be shot,

–the conservativity of the visible set is also guaranteed.

The first issue, studied in Section4.2, allows to perform
efficient intersections specially in densely occluded
scenes. The rest of features, studied below, also
contributes to an efficient and accurate method.

4.3.1 Determining the fan of rays

Consider again the situation of Figure3.b) in which the
maximum visibility angle is obtained by means of tangent
lines to objectsA and C. Tangent lines determine the
dividing lines between the visible and non-visible portion
of the scene. Tangent lines and polar diagrams are the
basis of the methodology used in this section to obtain the
visibility map.

This ray shooting process denoted asVisbility Map is
described in Algorithm3. In a first time, the set of polar
diagrams that match with the viewing angle[rL, rR] is
selected. IfrL and rR are located in different quadrants,
the angular interval[rL , rR] is divided into the resulting
sub-intervals from the intersection with the coordinate
axes. The visibility determination process is performed
independently in each sub-intervals[r l , r r ] ⊆ [rL , rR],
using a different polar diagram according to Figure4, and
combining the partial results at the end of the process. For
each sub-interval,p is located in a polar region and the
visibility map is obtained as described in this algorithm.

The tree-based data structureT, maintains the fan of
rays angularly sorted from left to right (clockwise).T is
initialized with raysr l andr r . The rays inserted inT are
new tangent lines fromp toward any object considered as
visible. Each time that a rayr i is shot using Algorithm2, it
is obtained the listl i of polar edges crossed byr i , as well as
the collided objecto. Each time that a new visible object is
obtained is inserted intoV, the set of visible objects from
p.

In summary, if the rayr i intersects with objectA, then
A is inserted inV and its left and right tangent lines from
p are inserted inT waiting to be processed in angular
order. However, a new tangent ray may not add new
visibility information because it is located in the so called
adjacent rays. In order to check adjacency, the setR=
{(r l , l l ,ol ), (r l+1, l l+1,ol+1), ..., (rr−1, lr−1,or−1), (rr , lr ,or)}
maintains the fan of rays shot, as well as the lists of edges
that they cross in the forml i = {ei1,ei2, ....eis}. Between
two adjacent rays there are no new visible objects.
Therefore, when the algorithm finishes, each pair of
consecutive tuples(r i , l i ,oi)− (r i+1, l i+1,oi+1) in R must
represent adjacent rays (Definition2). Otherwise
Algorithm 4 searches for potential visible objects, as
explained in the following section.

Definition 2.Two shot rays ri and rj represented by the
tuples(r i , l i ,oi) and(r j , l j ,o j), are adjacent if the angular
sector that they define visualizes as much a single object.
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Table 2: Steps followed by Algorithm3 in the scene of Figure7.

shoot ray collide tangent to R T V Ad jacency

/0 {r l , rr} /0 -
r l A − {(r l , l l = e7),A} {r1, rr} {A} [l l ]

r1 B A
{(r l , l l = {e7},A),

(r1, l1 = {e7,e4,e2},B)}
{r2, rr} {A,B} [l l , l1]

r2 D B
{(r l , l l = {e7},A),

(r1, l1 = {e7,e4,e2},B),
(r2, l2 = {e7},D)}

{r3, r4, rr} {A,B,D} [l l , l1][l2]

r3 B D

{(r l , l l = {e7},A),
(r1, l1 = {e7,e4,e2},B),
(r3, l3 = {e7,e4,e2},B),

(r2, l2 = {e7},D)}

{r4, rr} {A,B,D} [l l , l1, l3, l2]

r4 E D

{(r l , l l = {e7},A),
(r1, l1 = {e7,e4,e2},B),
(r3, l3 = {e7,e4,e2},B),

(r2, l2 = {e7},D),
(r4, l4 = /0,E)}

{rr} {A,B,D,E} [l l , l1, l3, l2, l4]

rr E −

{(r l , l l = {e7},A),
(r1, l1 = {e7,e4,e2},B),
(r3, l3 = {e7,e4,e2},B),

(r2, l2 = {e7},D),
(r4, l4 = /0,E),
(rr , lr = /0,E)}

{} {A,B,D,E} [l l , l1, l3, l2, l4, lr ]

The fun of rays represented in Figure7 given in
clockwise order{r l , r1, r3, r2, r4, rr} are adjacent:

–(r l , l l ,ol ) - (r1, l1,o1) visualizesA
–(r1, l1,o1)-(r3, l3,o3) visualizesB
–(r3, l3,o3)-(r2, l2,o2) visualizesD
–(r2, l2,o2)-(r4, l4,o4) visualizesD
–(r4, l4,o4)-(rr , lr ,or) visualizesE

Lemma 2.Given the pair of tuples(r i , l i ,oi) and(r j , l j ,o j),
if l i = l j and oi = o j , then ri and rj are adjacent.

Proof.If l i = l j and oi = o j , then r i and r j cross exactly
the same polar regions before intersecting. If there were a
different object betweenr i andr j , then necessarilyl i 6= l j .

In the example of Figure7, Lemma2 determines that
r1 andr3, as well asr4 andrr are adjacent rays. The rest
of pairs ensures adjacency by means of Lemma3, which
ensures adjacency in the first three cases depicted in Figure
8, the last one corresponds to Lemma2.

Lemma 3.Given the pair of tuples (r i , l i ,oi) and
(r j , l j ,o j), defined in a2D scene, li 6= l j , the rays ri and rj
are adjacent if∃ok such that:

–if ok = oi then rj is a tangent ray to ok or, (first example
of Figure8)

–if ok = o j then ri is a tangent ray to ok or, (second
example of Figure8)

–if ok 6= oi 6= o j then ri and rj are tangent rays to ok
(third example of Figure8)

and the sequence of edges before touching ok must be
equal; otherwise let be ES the set of edges in which they
differ before touching ok; r i and rj are adjacent if for
each es∈ ES then:

–es is a polar edge of object ok, es∈ PE(ok), or
–es is a polar edge of a different object ot , ot 6= ok that
is not located in the angular range[r i , r j ].

Proof.Lists l i andl j begin with the same sequence because
rays r i and r j start from pointp. If both lists are equal
before touching objectok, then both rays cross the same
polar regions and no other object can be located between
r i andr j ; otherwisel i andl j could not be equal according
to Lemma2.

If both lists are different before touching objectok and
the polar edgees∈ESbelongs took, it means that no other
object can lie betweenr l andr j . Otherwise ifes∈ PE(ot),
necessarilyot must be out of this angular range to ensure
adjacency.

In the example of Figure7, r l = {e7} and
r1 = {e7,e4,e2} are adjacent rays according to Lemma3.
In this caseok = A as the first example of Figure8. If r l is
considered asr i andr1 asr j , then the first different edge
is e4 ∈ PE(D), a polar edge that belongs toD, an object
out of range. The cases ofr3-r2 andr2-r4 are similar.

The steps that Algorithm3 follows to find the
visibility map from point p in the scene of Figure7 are
summarized in Table2. Firstly the rays defining the
viewing angler l and rr are inserted inT waiting to be
shot in clockwise order. The rayr l is thrown reaching
objectA, which becomes visible. Only the right tangent to
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Algorithm 3 VivisilityMap(E, p, rL, rR)

Input: The four polar diagrams of
E:PD(E) = {P0−(E), P0+(E),
Pπ+(E),Pπ−(E)}

-The rays rL = p+ t
−→
dL and rR = p+ t

−→
dR

defining the viewingangle.

Output: VMp(rL, rR)

Var: T : a tree-based data structure
of angularly sorted rays
- R : set of 3-tuplas containing rays,
lists of crossed edges and the
collided object o, R= {(rL, lL,oL),
(rL+1, lL+1,oL+1), ..., (rR−1, lR−1,oR−1), (rR, lR,oR)}

BEGIN
1.Initialize V, V← /0
2.FOR EACH angular sector in a

quadrant [r l , rr ]⊂ [rL, rR] DO

(a)Select the polar diagram
P(E) ∈PD(E) according to Figure 4

(b)Initialize T and R, T← /0, R← /0
(c)Locate p in the polar region of

object q, p∈P(E)(q)
(d)Insert r l and rr clockwise sorted in

T, T← T +{r l , rr}
(e)bool ad jacency← false
(f)REPEAT

i.WHILE (T is not empty) DO

A.Get the first ray r of T, T← T−{r}
B.RayCollision(P(E), r(t), q):(o, l)

(Shoot ray r(t) using Algorithm 2)
C.IF o 6= /0 AND o /∈V (if the there is a

new visible object)
D.THEN

-insert o in V, V←V +{o}
-let be rt l the left tangent ray to
o
-IF rt l ⊂ [r l , rr ] AND is not within a
pair of adjacent rays
-THEN insert rt l clockwise sorted in
T, T← T +{rt l}
-let be rtr the right tangent ray
to o
-IF rtr ⊂ [r l , rr ] AND is not within a
pair of adjacent rays
-THEN insert rtr clockwise sorted
in T, T← T +{rtr}

E.Insert (r, l ,o) into R, R← R+{(r, l ,o)}

ii.END WHILE
iii.IF all consecutive pair of tuples

(r i , l i ,oi)− (r i+1, l i+1,oi+1) are adjacent
iv.THEN ad jacency←true
v. ELSE T← T + f ind potentialVO ((r i , l i ,oi),

(r i+1, l i+1,oi+1))

(g)UNTIL ad jacency=true

3.END FOREACH
4.RETURN V
END

Algorithm 4 f ind PotentialVO((r i , l i ,oi),(r j , l j ,o j)) :
rA, rB

Input: The tuples ((r i , l i ,oi) and
(r i+1, l i+1,oi+1),
l i = {ei0, ei1, ..., eim}, l j = {e j0, e j1, ..., e jq}
Output: The left and right tangents

to the potentially visible object o
BEGIN

1.FOREACH eik ∈ l i DO

(a)IF eik /∈ l j (if this edge is not in l j
it may belong to a visible object)

(b)THEN

i.let o be the object such that
eik ∈ PEE(o)

ii.IF o is in the range [r i , r j ]
iii.THEN RETURN left and right

tangents to o rA and rB

2.END FOR
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Fig. 7: Example of execution of Algorithm3
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Fig. 8: Different adjacent situations associated with
Lemma3.
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Fig. 9: Example of execution of Algorithm3 in a sparse
scene.

objectA, ray r1 is inserted inT because the left one if out
of the first quadrant. Whenr1 is shot, it reaches to object
B, and its right and left tangent lines processed. However,
the left tangent is not inserted inT since the angular range
in which it lies does not provide new visibility
information. It is formed by[r l − r1], a pair of rays
already considered as adjacent according to Lemma3 (in
the figure this ray is depicted with dotted lines). When a
pair of rays are adjacent, their lists of crossed edges
appear into the same bracket in the columnadjacency.

The right tangent toB, the rayr2 is shot intersecting
with objectD. Left and right tangents toD, r3 andr4 are
then inserted inT to be processed later.R maintains the
tree rays shot so far. The next ray to shot in angular order
is r3, tangent to objectD. It collides with B, previously
processed, thus its tangent lines are not inserted inT
again. Thenr4 is thrown intersecting with objectE, a new
visible object that is inserted inV. Again the left tangent
line to objectE is an adjacent ray tor2 (Lemma2) and to
r4 (Lemma 3), then it does not provide new visible
objects and is not inserted inT. The right tangent line to
objectE is out of range and is neither processed. The last
ray shot,rr finds objectE too, which is adjacent to its
neighborr4 in R. The set of raysT becomes empty and
Algorithm 3 finishes. The algorithm checks that all the
pairs of tuples inR are adjacent, as in this example. Each
angular sector defined by these pairs of tuples represents
the view-frustum towards a single visible object. The set
of angular sectorsR represents the information associated
with the visibility map of pointp in the angular range
[rL, rR], that isVMp(rL, rR).

4.3.2 Adjacency check for preserving conservativity

In the example developed in Figure7, all rays intersect
with any object in the scene. In these cases each ray is able
to find new visible objecs, and the fan of rays maintained

in R after the iterative process has the property of being
adjacent. However, if one or several tangent rays does not
intersect with any object, what happens in sparse scenes,
adjacency is not guaranteed. In this section we specify the
process to get a conservative set of visible objects.

If all the pairs of consecutive tuples inserted inR are
not adjacent using the method proposed in Algorithm3,
then there may be visible objects not detected. In case that
the tuples(r i , l i ,oi)− (r i+1, l i+1,oi+1) are not adjacent,
Algorithm 4 is responsible of finding a possible visible
object to follow with the same process. For this purpose
the list l i is checked to find an edgee∈ l i , such thate
belongs to the polar region of an objecto, that has not yet
been considered visible,o /∈V and is in the angular range
[r i , r i+1]. This candidate may be visible or not, therefore
tangent rays towards objecto are inserted inT. The inner
loop WHILE of Algorithm 3 will cycle again because in
these casesT becomes non-empty. The REPEAT-UNTIL
loop finishes when all pairs of tuples become adjacent.

Figure 9 represents a scene with scattered objects
representing small occluders. This means that many
tangent rays may not intersect with any objects. The
sequence of steps that this algorithm performs is
described in Table3. The columnAd jacencyrepresents
into the same bracket those lists corresponding to
adjacent rays. The adjacency must be searched between
the pair of rays without satisfying this property.

The first steps are similar to the example of Figure7
becauseT maintains rays to process. However when it
becomes empty after shootingr2, which does not find any
intersecting object, the listsl l = {e8,e7,e3,e1,e0} and
l2 = {e8,e4} are not adjacent. Then the routine described
in Algorithm 4, f ind potentialVO((r l , l l ,ol )(r2, l2,o2))
determines thate0 ∈ l l , e0 /∈ lr , can be associated with a
visible object in the angular range[r l , r2]. The edgee0 is a
polar edge of objectA, e0 ∈ PEE(A), and if its tangent
raysr3 andr4, lies in the angular range[r l , r2], thenA may
be visible, thus both rays are inserted inT to be
processed. Becauser3 touches objectA, then it is inserted
in V, and listsr l andr3 are adjacent according to Lemma
2. Whenr4 is shot it also touches objectA in the way that
l3 andl4 become adjacent too.

Again T is empty andl4 andl2 are not adjacent at all.
Then list l4 is checked again in Algorithm4 to find that
edgee1 belongs to an objectB in the range[r4, r2] which
generates two tangent rays towardB, the raysr5 and r6.
HoweverB is never reached byr5 or r6 which means that
is hidden by the visible objectC. When tangent rays toC,
r7 andr8 are shot, all the lists become adjacent.

Raysr6 andr8 are also adjacent according to Lemma
3 even when they differ in several objectsl6 = {e8,e7},
l8 = {e8,e4,e2,e0}. Both raysr6 and r8 touch objectC
(first example of Figure8). The list EShas the edges in
which they differ before touchingC, ES= {e7,e4}. This
pair of edges is analyzed independently:e7 is a polar edge
of objectC = ok ande4 is a polar edge of objectD that is
out of the range[r6, r8]. Therefore these rays are adjacent
because both situations are referred in this lemma.
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Table 3: Steps followed by Algorithm3 in the scene of Figure9.
ray collide R T V Ad jacency

/0 {r l , rr} { /0} -
r l /0 {(r l , l l = {e8,e7,e3,e1,e0}, /0)} {rr} { /0} [l l ]

rr F
{(r l , l l ),

(rr , lr = /0, F)}
{r1} {F} [l l ][lr ]

r1 D
{(r l , l l ),

(r1, l1 = {e8}, D),
(rr , lr)}

{r2} {F,D} [l l ][l1lr ]

r2 /0
{(r l , l l ), (r2, l2 = {e8,e4,e2,e0}, /0),
(r1, l1), (rr , lr )}

{} {F,D}
[l l ]

[l2, l1, lr ]
executef ind potentialVO((r l , l l ,ol )(r2, l2,o2)):A {r3, r4}

r3 /0
{(r l , l l ),

(r3, l3 = {e8,e7,e3,e1,e0}, /0), (r2, l2),
(r1, l1), (rr , lr}

{r4} {F,D,A}
[l l , l3]

[l2, l1, lr ]

r4 /0
{(r l , l l ), (r3, l3),

(r4, l4 = {e8,e7,e3,e1,e0}, /0), (r2, l2),
(r1, l1), (rr , lr )}

{} {F,D,A}
[l l , l3, l4]
[l2, l1, lr ]

executef ind potentialVO((r4, l4,o4)(r2, l2,o2)):B {r5, r6}

r5 C

{(r l , l l ), (r3, l3),
(r4, l4), (r5, l5 = {e8,e7},C),
(r2, l2),
(r1, l1), (rr , lr )}

{r7, r6,r8} {F,D,A,C}
[l l , l3, l4]

[l5]
[l2, l1, lr ]

r7 /0

{(r l , l l ), (r3, l3),
(r4, l4), (r7, l7 = {e8,e7,e3,e1,e0}, /0),
(r5, l5), (r2, l2),
(r1, l1), (rr , lr )}

{r6,r8} {F,D,A,C}
[l l , l3, l4, l7, l5]

[l2, l1, lr ]

r6 C

{(r l , l l ), (r3, l3),
(r4, l4), (r7, l7),
(r5, l5), (r6, l6 = {e8,e7},C),
(r2, l2),
(r1, l1), (rr , lr )}

{r8} {F,D,A,C}
[l l , l3, l4, l7, l5, l6]

[l2, l1, lr ]

r8 /0

{(r l , l l ), (r3, l3),
(r4, l4), (r7, l7),
(r5, l5), (r6, l6),

(r8, l8 = {e8,e4,e2,e0}, /0), (r2, l2),
(r1, l1), (rr , lr}

{} {F,D,A,C}
[l l , l3, l4, l7, l5,
l6, l8, l2, l1, lr ]

4.3.3 Efficiency

The worst case of Algorithm3 arises when all the scene is
visible from pointp, what happens in sparse scenes with
small objects. In this case it is required to throwc �n rays,
and each of them needs to crossn polar regions.

Lemma 4.Algorithm3 throws O(4k) rays to find k visible
objects from point p in a scene with n polygonal objects.

Proof.Each visible objecto ∈ V is obtained by shooting
tangent rays until each pair of rays inRbecomes adjacent.
In dense scenes, if each tangent ray reaches to any other
visible object, the fan of rays inR is adjacent without
running Algorithm 4. In this case only 2� k rays are
required. The rays that lies between adjacent rays are not
thrown.

The worst case is found in sparse scenes in which
tangent rays are thrown to the potentially visible objectoi .
If o j is reached instead ofoi , then new tangent rays too j

are thrown. In theses cases four tangent rays are shot to
find one visible object. Again, no new rays are thrown in
angular ranges defined by adjacent rays.

In the example of Figure9, objectA is found throwing
only two rays,r3 and r4. However objectC has required
four rays to ensure adjacency in its angular spectrum. Rays
r5 andr6 are tangent rays to a potentially visible objectB,
that is finally hidden byC. Two new tangent rays to object
C, r7 andr8, are then required.

Theorem 3.Given a scene E with n polygonal objects, the
visibility map from point p, VMp(rL, rR) can be found in
O(k � n) for k visible objects, using the four polar
diagramsP0+(E), P0−(E), Pπ+(E) and Pπ−(E), as
preprocessing.

Proof.Lemma 4 asserts that at most each visible object
requires four rays to be found. According to Lemma2 a
ray requiresO(logn+ n) to find its intersecting object;
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Fig. 10: Throwing a 2.5D ray.

however the logarithmic time is performed only once,
then it requires only linear time. Algorithm4 needs as
much linear time to find a candidate. In the worst case, to
find k visible objectsO(logn+ k � n+ n) is required to
find the visibility map.

4.4 Visibility map in 3D prism-shape scenes

Visibility determination in 2D scenes is a key topic in
computational geometry and robotics. However, in
computer graphics visibility must be solved for 3D
scenes. As stated in the Introduction section, the hardware
graphics acceleration option can solve this problem
directly, however visibility remains crucial in large scenes
with thousands of objects in which most of them are
occluded, and specially in mobile devices with limited
graphics capabilities and connected to the Internet.

The ray shooting technique described in Section4.3
can be extended to prism-shaped objects constructed by
extruding 2D polygons. These simple models, also called
2.5D objects, are very useful to represent buildings in
virtual cities, and as bounding boxes that enclose other
models with complex geometry.

The ray shooting process described in Algorithm3
can also be used for 2.5D scenes, since only the geometry
of the base and the height of the 2.5D object are
considered. The main difference is the behavior of the ray
shooting query, that has been adapted in Algorithm5.
While in 2D scenes the ray stops when the first obstacle is
found, in prism-shaped objects there can be partially
visible objects behind. In contrast, the ray in 2.5D scenes
must follow its trajectory to detect half-occluded objects,
as in the situation of Figure10. Initially the ray is shot in
the XZ plane (at the observer height), but it takes the
gradient of each object found. In fact the ray projection in
theXZ plane compute intersections as in the 2D case, but
it also considers the height of each intersected object. As
observed in the same figure, the ray first reaches objectA,
then it takes the gradient considering the height ofA, that
also intersects with objectB at height h1. As
height(B) > h1, then B is considered as visible. This
process can follow until the ray leaves the scene or until it
takes the maximum height of the scenehmax, a value

Algorithm 5 RayShootingQuery2.5D(P(E), r(t) = p+

t
−→
d , hmax, o):{l p,V}
Input: The polar diagram P(E) ∈PD(E)
in which r(t) lies

- The ray r(t) = p+ t
−→
d defining the

visibility direction.
- The maximum height of the scene
hmax
- The object o such that p∈P(E)(o)

Output: The list l p defining the
polar regions crossed by r(t);
-V the set of visible objects that
finds r(t)

BEGIN
1.BOOL terminate ← false
2.Initialize l p← /0 and oi ← o
3.Initialize V← /0
4.WHILE (NOT terminate) DO

(a)Determine the edge e intersecting
with r(t) in P(E)(oi)

(b)IF e is a polygon edge
(c)THEN

i.determine h the height of r(t) when
reaching to oi

ii.IF h< height max(oi) AND h> height min(oi)
iii.THEN V←V +{oi} AND r(t) adopts the

gradient of height max(oi)
iv.IF h> hmax terminate←true (out of

height)
v.Insert oi in l p, l p← l p+{oi}

(d)ELSE (go to an adjacent region,
open a new subset)

i.Insert edge e in l p, l p← l p+{e}
ii.Let be o j the object whose polar

region is adjacent to edge e
iii.oi ← o j
iv.IF e= 0 (out of the scene)
v.THEN terminate ←true (oi is null)

5.RETURN l p and V
END

which ensures that this ray will not find any other visible
object. On the other hand, if the scene is not settled on a
flat surface, each 2.5D object has associated two different
heights,height min(A) and height max(A) as Algorithm
5 refers.

The second difference is the way in which adjacency
is checked. The tuples(r i , l i ,oi) defined in Section4
assume that the rayr i only intersects with objectoi ,
however in prims-shaped scenes the ray can cross several
polar regions and objects, and compute several
intersections. In this case the tuple is replaced by the pair
(r i , l pi), the rayr i and the list of crossed polar regionsl pi ,
which also contains the objects intersected. Thus, a ray
crosses objects and polar edges, which is to say polar
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Fig. 11: Visibility map in 2.5D scenes.

regions. In this case we define a set of of subsets, each of
them representing a crossed polar region. The case ofr l in
Figure 11 is defined as: (r l , l pl =
{{e12},{e11,o1},{e7},{o2},{o3,e0}}). Each subset into
l pl represents a polar region by means of its polar edges
and/or its generating polygon. Algorithm5 describes the
process for generating this ray shooting query.

The definition of adjacency differs of Definition2
because an angular sector may contain many objects.
However adjacency is guaranteed if both rays crosses the
same polar regions, or if they differ as much in one object
or polar region.

Definition 3.Two rays ri and rj , represented by the tuples
(r i , l pi) and (r j , l p j) in a 2.5D scene are adjacent if the
polar regions that they cross differ as much in one object.

Adjacency determination is then a similar process to
the defined in Lemma3.

Lemma 5.Given the pair of tuples(r i , l pi) and (r j , l p j),
defined in a2.5D scene, ri and rj are adjacent:

1.if they cross the same polar regions:|l pi | = |l p j | and
∀k such thatP(E)(ok) ∈ l pi , thenP(E)(ok) ∈ l p j , or

2.if there is one or several polar regionsP(E)(ok) such
that ∀k, P(E)(ok) ∈ l pi and P(E)(ok) /∈ l pi , then ok
must be out of the range[r i , r j ] or/and

3.if there is only one polar region such that
P(E)(ok) ∈ l pi and P(E)(ok) /∈ l pi and ok lies is in
the range[r i , r j ].

Algorithm 6 AdjacentRays2.5D((r i , l pi) ,
(r j , l p j)):boolean

Input: the pair of tuples (r i , l pi) and
(r j , l p j ), defined in a 2.5D scene
Output: true if r i and r j are adjacent;

false otherwise

BEGIN
1.IF l pi = l p j
2.THEN RETURN true
3.IF l pi 6= l p j,
4.THEN let be ES the set of
different polar regions in which
they differ

(a)FOREACH prk ∈ ES,

i.IF the object defining the polar
region prk is out of the range
defined by [r i , r l ],

ii.THEN ES← ES−{prk}

(b)END FOREACH

5.IF |ES|= /0 or |ES|= 1
6.THEN RETURN true
7.ELSE RETURN false
END

Proof.If both rays crosses the same polar regions, then no
other object can be inside the range[r i , r l ] becoming
adjacent rays. If they differ in several polar regions but
they are associated with objects out of range, then they
are adjacent as well; otherwise they can only differ in one
polar region whose generating object is into the angular
range[r i , r l ]. In all these cases the range ensures as much
a different object inside each adjacent pair of rays.

Algorithm 6 provides the sequence of steps to detect
if two rays are adjacent according to Lemma5. In the
example of Figure11, we observe that all the rays shot
are adjacent. Polar regions are represented with the edges
or polygons crossed by these rays. For instance
(r l , l pl = {{e12},{e11,o1},{e7},{o2},{o3,e0}}) and
(r4, l p4 = {e12},{o1},{e9},{e7,e4},{e2},{o3,e0}) are
not similar but they represent adjacent rays. They differ in
edge, e9 ∈ l p3 and e9 /∈ l pl but its associated
prism-shaped objecto6 is out of the range[r l , r1]. The
case ofe2 is similar,e2 ∈ l p3 , e2 /∈ l pl but it belongs to
the objecto4 that is out of range. There is only one
allowed element in this angular range in which they differ
for being adjacent,o2, o2 ∈ l pl ando2 /∈ l p3.

Algorithm 7 is the revised version of Algorithm3 for
2.5D scenes. They are essentially the same except for two
main differences cited above:

–the ray shooting query in 2D is replaced by the
RayShootingQuery2.5D( )of Algorithm 5, which
generates lists of crossed polar regions.

–the adjacency checking process is replaced by the
AdjacentRays2.5D( )of Algorithm 6.
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(a) Top view of the scene (b) View from the observer

Fig. 12: 3D visualization of the scene of Figure11.

Figure 11 shows the topview of the 3D scene
represented in Figure12.a). It also shows the set of rays
that the modified Algorithm3 generates to determine
visibility. Each object in the scene has different heights
and also is located at different heights from the ground
surface. After applying this visibility determination
process from the viewer position (point in red), the
resulting set of visible objects is shown in Figure12.b).

Table4 summarizes the steps for determining visibility
in this scene:

1.r l is initially shot in parallel to theXZ plane; then it
intersects witho1 that is visible, thenr l takes the
gradient ofo1, it intersects witho2 and o3 but the
height of the ray is greater when reaching to these
objects and are considered as non visible. Then,
tangent rays to the visible objecto1 are shot, but its
left tangent is out of range. The rayr1, right tangent to
o1, is inserted inT waiting to be processed.

2.The tangent ray too1, r1, hits with o5 that becomes
visible. When the ray takes the gradient ofo5, then it
collides with the object behindo4; again its gradient is
modified to the height ofo4 determining thato3 is also
visible. New tangent rays too5 (r2 andr3), too4(r4 and
r5) as well as the right tangent too3 (r6) are inserted in
T in angular order. The listsl l andl1 appear in separate
brackets[l l ] [l1] indicating that raysr l andr1 are non-
adjacent rays.

3.The next ray to process in angular order isr4, that also
intersects witho1. The ray computes inl4 the crossed
regions. Listsl l and l4 represent two adjacent rays, as
stated before, since this angular sector only contains
one different object. On the other hand,l4 and l1 also
represents to adjacent rays because they cross exactly
the same polar regions. Adjacency is represented now
with these lists inside the same bracket[l pl , l p4, l p1].

4.The next rayr2, tangent tor5, is not finally shot
because it lies inside a pair of adjacent raysr4 andr1,
then no new visibility information is going to be
obtained.

5.Next,r6, the right tangent too3 is shot. Since it crosses
the same polar regions that its neighborr1,then they
become adjacent too.

6.Rayr3 intersects witho6 that is considered as visible.
Theno4 is also intersected, but it was already inserted
in V and not processed again. The listl3 is checked for
adjacency withl6, becoming adjacent too. New tangent
rays too6 should be inserted inT but the left one lies
inside an adjacent interval, so it is discarded. The right
tangentr7 is inserted inT.

7.Rayr5 collides witho6 and becomes also adjacent to
r3.

8.Ray r7, that does not hit with any object, is also
adjacent tor3.

9.Finally rr is shot colliding with o7. Because it is
adjacent tor3, its left tangent ray is not necessary to
be shot.

The listT is empty and the process finishes because all the
pairs of lists remain adjacent.

Theorem 4.Given a scene E with n prism-shaped objects,
the visibility map from point p, VMp(rL, rR) can be found
in O(k � n) for k visible objects, using the four polar
diagramsP0+(E), P0−(E), Pπ+(E) and Pπ−(E), as
preprocessing.

Proof.The sequence of steps and the performance of
Algorithm 7 are similar to the Algorithm 3. The
RayShootingQuery2.5D described in Algorithm5 does
not stop at the first object found and it is expected that
crosses several polar regions. However these cases are
similar to those in which no intersecting objects are found
in Algorithm 7. Each visibility object detected requires as
much four rays, each of them shot inO(n) time. The
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Table 4: Steps followed by Algorithm3 revised for 2.5D in the scene of Figure11.

ray collide R T V Ad jacency

/0 {r l , rr} { /0} -
r l o1 {(r l , l pl = {e12},{e11,o1},{e7},{o2},{o3,e0})} {r1, rr} {o1} [l pl ]

r1 o5,o4,o3
{(r l , l pl ),

(r1, l p1 = {e12},{o1},{e9},{e7,o5},{o4},{o3,e0})}
{r4, r2,r6,
r3, r5, rr}

{o1,o5,o4,o3} [l pl ] [l p1]

r4 o1

{(r l , l pl ),
(r4, l p4 = {e12},{e11,o1},{e9},{e7,e4},{e2},{o3,e0}),

(r1, l p1)}

{r2,r6,
r3, r5, rr}

{o1,o5,o4,o3} [l pl , l p4, l p1]

r2 is not shot, it lies in the range[r4, r1] that is adjacent
{r6, r3,
r5, rr}

r6 o5,o4
{(r l , l pl ),(r4, l p4),(r1, l p1),

(r6, l p6 = {e12},{e9},{o5},{o4},{o3,e0}}
{r3, r5, rr} {o1,o5,o4,o3}

[l pl , l p4,
l p1, l p6]

r3 o6,o4
{(r l , l pl ),(r4, l p4),(r1, l p1),

(r6, l p6),(r3, l p3 = {e12},{o6}{e6,o4,e3},{e0})}
{r5, r7, rr}

{o1,o3,o5,
o4,o6}

[l pl , l p4, l p1,
l p6, l p3]

r5 o6
{(r l , l pl ),(r4, l p4),(r1, l p1),(r6, l p6),
(r5, l p5 = {e12},{o6},{o4,e3},{e0})}

{r7, rr}
{o1,o3,o5,

o4,o6}
[l pl , l p4, l p1,
l p6, l p3, l p5]

r7 /0
{(r l , l pl ),(r4, l p4),(r1, l p1),(r6, l p6),

(r5, l p5),(r7, l p7 = {e12},{o6,e10},{e0})}
{rr}

{o1,o3,o5,
o4,o6}

[l pl , l p3, l p1, l p6,
l p2, l p4, l p7]

rr o7
{(r l , l pl ),(r4, l p4),(r1, l p1),(r6, l p6),(r5, l p5),

(r7, l p7),(rr , l pr = {o7,e13},{e10})}
{}

{o1,o3,o5,
o4,o6,o7}

[l pl , l p3, l p1, l p6,
l p2, l p4, l p7, l pr ]

location time isO(logn) and is performed only once for
each polar diagram. In the worst case, to findk visible
objects it is requiredO(logn + k � n + n) to find the
visibility map.

In 2D scenes the best performance of Algorithm3 is
obtained in dense scenes in which all rays reach to any
object, making the process stops. In 2.5D scenes the best
case is obtained when the ray crosses only few regions. To
this end the observer must be in densely occluded scenes
and close to the occluders. Then the rayr(t) early takes a
high gradient which exceedshmaxand makes the traversal
process to finish. In general, the number of visible objects
k is greater in 2.5D scenes which implies that the number
of rays shot is also greater. However, the probability that
the ray falls at intervals of adjacent rays is also high.

5 Application to walkthough in urban scenes

Urban scenes are very susceptible for requiring an efficient
visibility determination method, specially in walkthrough
applications. The observer is identified as a pedestrian that
navigates through the scene, but only visualizes a small
portion of it, at least with detail. Buildings become great
occluders and it is assumed that a pedestrian does not see
all the scene at a given time. Furthermore, most buildings
have prism shape, so the method proposed in this paper is
particularly appropriate for urban scenes.

Up to now, visibility in large scenes has been solved
by means of occlusion culling techniques that find a
potencially visible set that also includes non-visible
objects. In web-based systems, not only geometry but
texture files must be transmitted through the network, and
these non visible objects slow down the interaction

process. Using the method proposed in this paper, the
exact visibility set of buildings can be obtained by
defining the 2.5D scene with the footprints of the building
blocks and their associated height. These data are
retrieved from a spatial database of a real city in the South
of Spain, Jáen.

Jáen city is on the side of a mountain, and the Digital
Elevation Model of the terrain (DEM) is also considered
for determining visibility. The polar diagrams are
computed using the polygonal footprints of the blocks
and the heights of the ground and the roof level.
Algorithm 7 considers that objectA is visible if the height
of the ray r(t) intersects with A, that is,
r(t) < heightRoo f(A) andr(t) > heightGround(A) when
r(t) reaches with the geometry of objectA.

The scene is visualized using X3D [5], an open
standard language for visualizing 3D scenes in web-based
systems. As stated in the Introduction section, the
visualization of complex scenes is partly solved in
desktop computers with the occlusion query extension of
the graphics cards [23]. However when the scene must be
displayed in a small computer connected to the Internet,
the bottleneck is the data transmission over the network.
The smaller files that are transmitted, the faster the
interaction and visualization are. In a client-server
architecture, the server side receives an interaction
request in a given coordinate. Then, a file in X3D format
with the visible scene from this point is generated and
transmitted through the network to the client device,
which finally visualizes the resulting 3D scene. In these
cases a file containing non-visible buildings implies more
transmission time for primitives that finally will not be
visualized. An exact occlusion method allows an accurate
visualization and a real-time interaction.
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Algorithm 7 VivisilityMap(E, p, rL, rR)

Input: The four polar diagrams of E:
PD(E) = {P0−(E), P0+(E),
Pπ+(E),Pπ−(E)}

-The rays rL = p+ t
−→
dL and rR =

p+ t
−→
dR defining the visibility angle.

Output: The visible set V

Var: T : a tree-based data structure
of angularly sorted rays
- R : set of tuplas containing rays
and lists of crossed polar regions
(r i , l pi), R= {(rL, l p), (rL+1, l pL+1)
, ..., (rR−1, l pR−1), (rR, l pR)}

BEGIN
1.Initialize V, V← /0
2.FOR EACH [r l , rr ]⊂ [rL, rR] DO

(a)Select the polar diagram
P(E) ∈PD(E) according to Figure 4

(b)Initialize T and R, T← /0, R← /0
(c)Locate p in the polar region of

object o, p∈P(E)(o)
(d)Insert r l and rr clockwise sorted in

T, T← T +{r l , rr}
(e)bool ad jacency← false
(f)REPEAT

i.WHILE (T is not empty) DO

A.Get the first ray r of T, T← T−{r}
B.RayShootingQuery2.5D(P(E),

r(t) = p+ t
−→
d , hmax, o):l p,Vr(t)(Shoot ray r

using Algorithm 5)
C.IF ∃ok, ok∈Vr(t)and ok /∈V(There are
new visible objects)

D.THEN FOREACH ok∈Vr(t)and ok /∈V
-V←V +{ok}
-let be rt l the left tangent ray to
ok
-IF rt l is not out of range and is
not within a pair of adjacent rays
-THEN insert rt l clockwise sorted in
T, T← T +{rt l}
-let be rtr the right tangent ray
to ok
-IF rtr is not out of range and is
not within a pair of adjacent rays
-THEN insert rtr clockwise sorted
in T, T← T +{rtr}

E.Insert (r, l p) into R, R← R+{(r, l p)}

ii.END WHILE
iii.IF all consecutive pair of tuples

(r i , l i ,oi)− (r i+1, l i+1,oi+1) are adjacent
(use Algorithm 6)

iv.THEN ad jacency←true
v.ELSE

T← T + f ind potentialVO((r i , l p),(r i+1, l p))
(Algorithm 4)

(g)UNTIL ad jacency=true

3.END FOREACH
4.RETURN V
END

Table 5: Polar diagram computation times.
Scene 1183 Scene 7000

num. blocks 1183 12168
num. triangles 7000 70000

Polar diagram

construction time (ms) 437 1940
Viewpoints (A,B,C) A B C A B C

num. visible blocks 1 2 2 4 2 3
Visibility time (ms) 30 89 10 42 29 30

The experimental results have been implemented
using a Windows computer system: Intel(R) 3.42 GHz
CPU, 1GB RAM. Table?? reflects the computation times
associated with the construction of the polar diagram and
the visibility map of different scenes with 1183 and
12168 2.5D blocks of buildings respectively. Both scenes,
in particular the second one, have a heavy geometry to be
managed in a web-based system. The plane tessellation is
computed in less than 2 seconds in the larger scene.
Anyway, this time corresponds to the pre-processing
phase.

Once the four polar diagrams are computed we place
three observers in each scene in the locationsA, B andC.
The best performance of the algorithm is found when the
observer is close to the buildings and only several of them
are visible. In the performance tests only few blocks of
buildings and the time for detecting visibility ranges from
10 to 89 ms.

However, comparative tests based on computation
times are then less interesting in web-based systems. The
time for transmitting the information uses to be the
bottleneck and it is highly dependent of the quality of the
Internet connection. Table??shows the size of the files of
the visible set of the first scene. The comparison of our
method with any other that transmits the whole scene is
unfeasible. Thus, the urban model has been inserted into a
quadtree for determining the set of objects into the
viewing angle.

The quadtree is a hierarchical data structure with an
efficient location time,O(log4n). However, the number of
objects placed into this angular sector may be much
greater, as Table?? shows. The first column shows
several positioning coordinates of the observer. The
method proposed in this paper points out that the set of
visible objects in these positions is lower than twenty
while the view-frustum contains more that one hundred of
objects inside. Consequently, the size of the transmitted
X3D files save up to 94% of space.

In Figure 13.a) the whole urban scene is depicted
together with the relief of the area in which the city is
located. In Figure13.b) the scene only shows the set of
visible buildings at a given time of the navigation. In
Figure14 it can be appreciated that from the viewpoint of
a pedestrian, the resulting scene is the same when
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(a) The whole scene

(b) Using Visibility Map()

Fig. 13:An aerial perspective of the whole scene and using
Visbility Map

(a) Using the quadtree

(b) Using Visbility Map()

Fig. 14: A pedestrian perspective of the city using
Visbility Map and using the quadtree

Table 6: Comparative test using polar diagrams and
quadtrees.

Position Blocks Blocks Quadtree Pol. D %space
Quadt. Polar D. (Kb) (Kb) saved

0.57,0.09 173 18 1887 300 84,1
0.54,0.11 181 7 1826 57 96,9
0.62,0.10 124 15 1306 130 90,0
0.6,0.13 120 7 1248 138 88,9

0.53,0.13 149 3 1536 80 94,7

visualizing only the visible set but with a reduced number
of blocks of buildings.

6 Conclusions and future work

In this work some algorithms for determining visibility
have been developed both in 2D and in 3D scenes. In all
cases the scene is decomposed using the polar diagram as
pre-processing, which can be computed in optimal
O(nlogn) time. The location of the observer position into
the scene is computed only once in logarithmic time. The
data structure of this plane tessellation allows to manage
topological relationships between adjacent regions for an
efficient traversal process. The visibility solution for 2D
scenes is straightforward extended to 2.5D with
interesting applications to urban scenes. The terrain
features can be considered in order to properly place the
buildings in the urban environment.

The visibility map computation time isO(k � n) for k
visible objects in a scene ofn polygonal or prism-shaped
objects. This result is very interesting in densely occluded
scenes such as urban environments. In these cases only a
small number of rays must be shot to findk objects. In
addition, these rays immediately take a high gradient,
which allows to stop the traversal process requiring only a
few steps of the algorithm. In these cases, the time
computing is almost constant.

The advantage of obtaining the exact visibility set is
specially appreciated in web-based systems in which the
client device interacts with the portion of visible scene
retrieved from the server side. The real-time navigation is
only possible if the transmitted portion of scene by the
network is greatly reduced.

It is also possible that the observer is located in such a
position that almost the whole scene is visible. As future
work our algorithm can be adapted to detect these cases
and to apply different techniques for saving the
transmission of geometry, such as the use of impostors or
low-resolution models.
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