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Abstract: A supply chain of one producer and one retailer is consideredin this paper. The production process produces items in lots
with random fraction defective to satisfy the retailer witha deterministic demand. When a lot is completed, a random sample is drawn
to sentence the produced lot. If the number of defective items in the sample is less than or equal to the specified acceptance number, the
lot is accepted and sold at a regular price. On the other hand,if the lot is rejected, it is sold at a reduced price. The retailer is protected
by a limit on the incoming quality. That is, the retailer dictates a certain Acceptable Quality Level, which must be respected by the
producer. The objective of the model is to determine the optimal production run, sample size, and acceptance number simultaneously,
to maximize the expected total profit made by the producer. The decision variables in this model are the production lot size, the sample
size, and the acceptance number.
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1 Introduction

The single-producer single-retailer supply chain has
received a considerable focus in recent years because it is
the building block for the wider supply chain. A supply
chain can be very complex and link-by-link
understanding can be very useful (Ben-Daya et al., 2008;
Qin et al. 2013). In the single-producer single-retailer
model, the producer manufactures an item in lots and
delivers the produced lot to a retailer. Traditionally, the
production process in single-producer single-retailer
model is assumed to be perfect, that is all produced items
are of acceptable quality. However, this assumption is not
realistic in most situations. In this paper, the production
process under consideration produces a lot with a random
fraction of nonconforming items. In order to sentence the
produced lot, a sample is drawn; and based on the sample,
the lot is classified into one of two states: A high quality
lot or a sub-standard lot. The state of the lot determines its
sales price. The objective is to determine the optimal lot
size and sampling plan parameters in order to maximize
the profit achieved by the supplier. In the literature, there
are many models that consider imperfect production
processes. For example, Salameh and Jaber (2000)
extended the classical EPQ/EOQ model by considering

imperfect lots. They assume that low-quality items are
sold as a single batch by the end of the screening process.
The fraction of nonconforming items is assumed to be
constant in this model. Yassine et al. (2012) considered
EPQ model with a random fraction of produced inventory.
They considered a 100% inspection policy to detect
imperfect items at the end of the production cycle and
derived optimal production quantity assuming that the
imperfect items are scrapped at the end of production
cycle. Then, they extended this base model to allow for
consolidating the imperfect items during a single
production run and over multiple production runs. In
above models, sampling plan parameters are not included,
instead, the authors considered 100% inspection.
However, there are many models that integrate the
sampling plan parameters with production related issues.
For example, Boucher and Jafari (1991) developed a
model that determines the optimal target value of the
process when sampling plan parameters are imposed on
the process-targeting problem. In other words, the plan is
given and the process parameters are optimized using the
plan as an input. Darwish and Duffuaa (2010) developed
a mathematical model for determining the optimal
process mean for a production process and the inspection
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plan parameters; the sample size, and the acceptance
number. In this model, products are produced in lots and a
single sampling plan is used to accept or reject the lots.
However, they considered constant fraction of
non-conforming items in the lot. Sheu et al. 2014
proposed a model with a variable sampling plan based on
incapability index to accept or reject the lot. Their model
distinguished among the products that are within the
specification limits. Moreover, Chiu (2003) considered
the effects of reworking of defective items on the
economic production quantity where backorders are
allowed. In this model, the author considered the
defective rate as a random variable that follows a beta
distribution. When the production run is complete, the
reworking of defective items starts at a certain rate.
However, sampling plan is not considered in this model.
Another model is developed by Cheung and Leung (2000)
who used (Q, S) policy to manage a two-item inventory
control system. The orders for each item varies from lot
to lot and accordingly the sampling plan will also be
changed. Ben-Daya et al. (2006) considered a buyer who
is subjected to deterministic demand and orders from a
supplier. When a lot is received, the buyer uses some type
of inspection policy, such as no inspection, sampling
inspection, or 100% inspection. The fraction
nonconforming items in the lot is assumed to be a random
variable following a beta distribution. However, the
sampling inspection is determined by imposing consumer
and producer risk. Also, Ben-Daya and Noman (2008)
extended Ben-Daya et al. (2006) by considering
stochastic demand. Finally, Wu and Ouyang (2000)
derived a stochastic inventory model with backorders and
lost sales when the lot contains a fraction of
nonconforming items that follows a beta distribution. In
this model the order quantity, reorder point and lead time
are decision variables. The purpose of this paper is to
develop a model for a single-producer single-retailer
supply chain where a producer manufactures a product in
lots. It is assumed that the process is imperfect in a sense
that it produces a random fraction of defective items
which follows a beta probability distribution. The
producer is responsible for replenishing the retailer?s
inventory who observes a deterministic demand. When
the producer completes the lot, a sample is drawn from
the lot and based on the contents of the sample, the lot is
classified as high-quality or sub-standard lot. The
high-quality lot is sold at a premium price while the
sub-standard lot is sold at a reduced price. Since the
model optimizes the producer?s profit, the customer is
protected by Acceptable Quality Level (AQL). The
objective of the model is to determine the optimal
production run, sample size, and acceptance number
which maximize the expected total profit of the producer
while the customer?s AQL is respected.

2 Problem Statement

Consider a producer who produces an item in lots of size
Q. At the beginning of the production cycle, the process is
setup at a cost of A. It is assumed that the process is
imperfect, that is, it produces a random fraction of
non-conforming items (Y) which follows a beta
probability distribution with parameters a and b as
follows:

fY (y) =
Γ (a+ b)
Γ (a)Γ (b)

ya−1(1− y)b−1, y ∈ [0,1] (1)

Where Γ is gamma function. Beta probability
distribution is used in this paper to model the proportion
of defective items in the lot because it is defined over real
numbers between 0 and 1. Moreover, it contains two
parameters which make it easy to control the shape of the
distribution and consequently easy to fit real data. This
makes it a better alternative than the uniform distribution
that is defined between 0 and 1. The producer who can
produce the item at a rate P is responsible for replenishing
the retailer’s inventory who is subjected to deterministic
demand D. When a lot is completed, a sample of size n is
inspected. On the basis of the information in this sample,
a decision is made regarding lot disposition. If the number
of non-conforming items in the sample, X, is less than or
equal to acceptance number (d), then the lot is considered
of high-quality and sold at a price v1. On the other hand,
if X is greater than d, the lot is considered to be
sub-standard and sold at a reduced pricev2 wherev1 > v2.
Moreover, the sample size is typically small in
comparison to the lot size, thus, the probability of
accepting a lot if the fraction of nonconforming items in
the lot isy0 is given by

P(X ≤ d|Y = y0) =
d

∑
x=0

(

n
x

)

yx
0(1− y0)

n−x (2)

Moreover, the retailer is protected by acceptable
quality level, AQL, which is the poorest level of quality
that is accepted by the retailer. It is important to indicate
that n, d, and AQL are related as follows:

d ≤ ⌊(AQL)n⌋ (3)

For example, if the retailer’s AQL is 10% and the
sample size chosen by the producer is 15 items, the
acceptance number should be 1 or less to achieve the
retailer’s AQL. The notation used in developing the
model is as follows:
P: Production rate
D: Demand rate,
T: A random variable represents inventory cycle length
ET: Expected value of inventory cycle length
v1: Selling price per unit in the accepted lot,
v2: Selling price per item in the sub-standard quality lot,
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X: Number of non-conforming items in a sample,
Y: A random variable represents the fraction of
nonconforming items in a lot
n: Sample size
Pa: Probability of accepting a lot,
Ci: Inspection cost per inspected item
AQL: Acceptable quality level.

3 Model Development

In this section, sample plan parameters and production
decisions are integrated in one model with the objective
of maximizing the producer?s expected total profit which
is the difference between total revenue and total cost.
Revenue is generated from selling a high-quality lot at a
pricev1 and a sub-standard quality lot at a pricev2. Thus,
the revenue generated from selling a lot (R) is a random
variable and is given by:

R =

{

v1Q X ≤ d
v2Q X > d

(4)

On the other hand, the costs that are included in the
model are screening cost, setup cost and holding cost, and
they are as follows:

1.Screening Cost: The producer incurs a variable costCi
for each screened item. Therefore, the screening cost
per cycle isnCi.

2.Setup Cost: At the start of each production run, the
producer incurs a setup cost A.

3.Holding Cost: There are two distinct periods in a
production run. The first of which is the buildup
period when the production starts until the whole lot
is produced. The other period is consumption period
whereas the producer begins satisfying the demand
until the produced lot is consumed. This policy is
known in the literature as lot-for-lot policy. During
consumption period, the retailer may find some
nonconforming items, which will be scrapped with no
salvage value. Thus, the reduction in inventory is in
fact more than the demand rate. Because the number
of nonconforming items in a lot is very small
compared to the lot size, we assume that the inventory
at the end of the buildup period is decreased by Qy as
shown in Figure 1. Hence, the inventory holding cost
in one inventory cycle (HCC) is given by:

HCC = h

[

1
2

Q2

P
+

1
2

Q2(1−Y)2

D

]

(5)

Thus, the total inventory cost per cycle, including the
set up and inspection costs, is as follows:

TCC = A+ nCi+
hQ2

2

[

1
P
+

(1−Y)2

D

]

(6)

Fig. 1: Evolution of inventory over time.

We have to point out that TCC is a random variable and
using the expectation operator on TCC in Equation (6)
yields the expected total cost ETCC as follows.

ETCC = A+ nCi+
hQ2

2

[

1
P
+

E((1−Y)2)

D

]

(7)

Proposition 1: Let Y be a random variable,
representing the fraction of nonconforming items in a lot,
which follows beta distribution with parameters a and b,
then,

E((1−Y)2) =
b2+ b

(a+ b)2+(a+ b)

The proof of the proposition is given in Appendix A.
Therefore, expected total inventory cost in equation (7)
becomes:

ETCC = A+ nCi+
hQ2

2D

[

D
P
+

b2+ b

(a+ b)2+(a+ b)

]

(8)

Now, one can find the expected total profit per cycle
(EPRC) based on two possible profit (PRC) values. It will
be denoted as PRc1 for the case of X ? d, and as PRc2 for
the case of X > d. Thus, the expected profit can be
obtained from the following equations by using the
conditional probabilities depending on fraction defective
(X) found in the sample.

EPRC = (PRC1) P(X ≤ d)+ (PRC2) P(X > d) (9)

However, the depends on the random variable y, which
takes 0?y?1. Therefore, the expected value ofPRC1 has to
be determined by the following equation:

(PRC1|Y = y) = v1Q(1− y)−TCC (10)

And its expected value is as follows:

E(PRC1) =

1
∫

0

(v1Q(1− y)−TCC)r(y)dy

== v1Q(1−E(Y))−ETCC (11)
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In the case ofPRC2, the profit does not depend on y
since the whole lot is sold at a cheaper price because of the
fraction defective X > d. Thus,(PRC2|Y = y) = v2Q−TCC
, and therefore,

E(PRC2) = v2Q−ETCC (12)

From Equations (9), (10), and (12), we obtain

EPRC =

(

v1
b

a+ b
− v2

)

Q [P(X ≤ d)]+ v2Q−ETCC

(13)
Hence, the expected profit per cycle is:

EPRC = (v1
b

a+ b
− v2)QPa + v2Q

−A− nc−
hQ2

2D

[

D
P
+

b2+ b

(a+ b)2+(a+ b)

]

(14)

It is worthwhile to indicate that this problem is a
renewal reward stochastic process. Thus, the expected
total profit per unit time (EPR) is simply the expected
total profit per cycle (EPRC) divided by the expected
cycle length (ET), that is

EPR =
EPRC

ET
(15)

From Figure 1, we can determine the inventory cycle
length (T) as follows:

T =
Q [D+(1−Y)P]

DP
(16)

SinceE(Y ) = a/(a+ b), expected cycle length (ET)
will be given as follows:

ET =
Q
D

(

D
P
+

b
a+ b

)

(17)

Using Equations (15), (16), and (17), we find the
expected total profit per unit time as follows:

EPR=
1

(

D
P + b

a+b

)

[

v2D+(v1
b

a+ b
− v2)DP(X ≤ d)−

D(A+ nc)
Q

−
hQ
2

[

D
P
+

b2+ b

(a+ b)2+(a+ b)

]]

(18)

Proposition 2: Let X be the number of nonconforming
items in a sample of size n with the acceptance number d,
then the probability of accepting a lot is given by:

P(X ≤ d) =
Γ (a+ b)
Γ (a)Γ (b)

d

∑
x=0

(

n
x

)

Γ (x+ a)Γ (n− x+ b)
Γ (n+ a+ b)

The proof of proposition 2 can be found in Appendix
B. The decision variables in the profit function are the lot
size, sample size, and acceptance number. One important
property of EPR function is its concavity, which is shown
below by its second derivative.

∂EPR
∂Q

=
1

(

D/P+ b
a+b

)

[

D(A+ nc)
Q2 −

h
2

[

D
P
+

b2+ b

(a+ b)2+(a+ b)

]]

(19)

∂ 2EPR
∂Q2 =

1
(

D
P + b

a+b

)

[

2D(A+ nc)
Q3

]

> 0 (20)

Thus, EPR is concave in Q, consequently, the optimal
lot size can be derived from Equation (19) as follows:

Q =

√

√

√

√

2D(A+ nc)

h
[

D
P + b2+b

(a+b)2+(a+b)

] (21)

Using (18) and (21), EPR can be simplified (after
eliminating Q) as follows:

EPR(n,d)=
1

(

D
P + b

a+b

)

[

v2D+(v1
b

a+ b
− v2)DP(X ≤ d)−

√

√

√

√2hD(A+ nc)

[

D/P+
b2+ b

(a+ b)2+(a+ b)

]



 (22)

In order to solve this model, we suggest the following
algorithmic steps:
Step 1: Let: n = 0, d = 0, EPR1 = -infinity
Step 2:n = n+1, j = d, n j = j/AQL.
Step 3: Find Q from Equation (21) as:

Q =
√

2D(A+nc)

h

[

D
P + b2+b

(a+b)2+(a+b)

]

Step 4: FindEPR2 = EPR (d, n, Q) from Equation (22)
Step 5: IfEPR2 > EPR1 thenEPR1 = EPR2, otherwise,
go to step 7.
Step 6: ifd ≥ n, then d =0 and go to step 2, otherwise d =
d +1 go to step 4.
Step 7: Stop, the previous solution is optimal.
The algorithm will be illustrated with a case example in
the next section.

4 Sensitivity Analysis

In this section, we study the effects of the following
parameters on the optimal solution:

1.Effect of shape parameter 1 of Beta distribution (a).
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2.Effect of shape parameter 2 of Beta distribution (b).
3.Effect of acceptable quality level (AQL).
4.Effect of the selling price per unit in the high-quality

lot (v1).
5.Effect of the selling price per unit in sub-standard

quality lot (v2).
6.Effect of inspection cost (Ci).

It should be noted that the parameters a and b of the beta
distribution are important since they affect the probability
of the fraction non-conforming in a lot. Therefore, we
have included the effects of changes in these parameters
on various performance measures. A typical case example
is used to illustrate the effects of several parameters on
optimal lot size, expected profit, and other measures. The
values of the parameters for the selected case example are
given in table 1.

Table 1: Basic data for sensitivity analysis.

Parameter Value Parameter Value
P 2000 v1 15
D 1000 v2 10
h 1 α 3
A 100 β 3
Ci 0.5 AQL 0.1

4.1 Effects of Shape Parameter 1 of Beta
Distribution (a)

For a fixed value of b, the probability that fraction of non-
conforming items in the lot is less than y0, that is P(Y <
y0), is lower when the shape parameter (a) is large. Thus,
the expected profit of the producer is expected to increase
as shown in Figure 2. However, the sample size is expected
to decrease because the quality of the lot is higher for high
a and the need to take a larger sample size is not strong.
This relation between a and n is depicted in Figure 3. It is
to be noted that the step-like shape of optimal n is due to
the constraint that the producer should respect AQL of the
retailer as shown by inequality (3). Since Q is the number
of non-conforming items in the lot, it is anticipated that it
increases. This is true because the cost of defective items
will be reduced when the quality of the lot is high.

Figure 4 shows unexpected trend when a = 10 where
the lot size decreases, this is because at this particular point
the sample size optimal.

4.2 Effects of Shape Parameter 2 of Beta
Distribution (b)

Generally speaking, for Beta distribution, high values of b
correspond to high probability of fraction of

Fig. 2: Effect of shape parameter of beta distribution
parameter (a) on EPR.

Fig. 3: Effect of shape parameter 1 (a) of beta distribution
on sample-size.

Fig. 4: Effect of shape parameter 1 (a) of beta distribution
on lot-size.

non-conforming items in the lot. Thus, the expected total
profit should decrease with b as shown by Figure 5.
However, the expected total profit increases for b > 10.
This trend is due to fact that AQL = 0.1 which must be
observed by the producer, and optimal n = 10 (shown in
Figure 5), consequently, optimal d = 1 (obtained from
inequality 3). In other words, lots with high percentage of
non-conforming items can be considered as acceptable
while the retailer?s AQL is still satisfied. Moreover,
optimal n is reduced when b is higher (see Figure 6). This
is due to the probability of high percentage of
non-conforming items in the lot, that is, it is easy to detect
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a low quality lot even with small sample size. Also,
Figure 6 shows that the lot size is low for high values of b
because it is not optimal to increase the production lot
when the process produces high percentage of defective
items.

Fig. 5: Effect of shape parameter 2 (b) of beta distribution
on EPR.

Fig. 6: Effect of shape parameter 2 (b) of beta distribution
on sample-size.

Fig. 7: Effect of shape parameter of beta distribution
parameter (b) on lot-size.

4.3 Effects of Acceptable Quality Level (AQL)

As shown in Figure 8, the expected total profit will
decrease as the AQL increases due to the increase of
accepted lots with more defective items. Moreover, as the
AQL increases, the sample size and lot size decreases in
order to decrease the effect of defective items (see Figures
9 and 10).

Fig. 8: Effect of Accepted Quality Level (AQL) on EPR.

Fig. 9: Effect of Accepted Quality Level (AQL) on
sample-size.

4.4 Effects of the Unit Selling Price for the
High-Quality Lots

As v1 increases, the expected profit will increase (see
Figure 11). Moreover, increasingv1 will increase the
probability of accepting the lot, and thus, forcing the
sample size and the lot size to decrease (see Figures 12
and 13).

4.5 Effects of the Unit Selling Price in
Sub-Standard Quality Lots

As v2 increases, the expected profit will increase linearly
as shown in Figure 14. Also, increasingv2 will increase
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Fig. 10: Effect of Accepted Quality Level (AQL) on lot-
size.

Fig. 11: Effect of the unit selling price in high-quality lot
on EPR.

Fig. 12: Effect of the unit selling price in high-quality lot
on sample-size.

the portion of units that will be sold at the secondary
market. This will decrease the probability of acceptance
forcing the sample size as well as the lot size to increase
(see Figures 15 and 16).

4.6 Effects of Inspection Cost

Figure 17 illustrates the relationship between the
inspection cost and the expected profit. It shows that as
the inspection cost increases, the expected profit

Fig. 13: Effect of the unit selling price in high-quality lot
on lot-size.

Fig. 14: Effect of unit selling price for the sub-standard
quality lot on EPR.

Fig. 15: Effect of unit selling price for the sub-standard
quality lot on sample-size.

decreases. However, the rate of decrease in the expected
profit decreases as inspection cost increases. This is due
to decrease of the sample size and lot size (see Figures 18
and 19).

5 Conclusion

A single-producer single-retailer supply chain is
considered in this paper. The producer produces a single
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Fig. 16: Effect of unit selling price for the sub-standard
quality lot on lot-size.

Fig. 17: Effect of the unit selling price for the high-quality
lot on EPR.

Fig. 18: Effect of the unit selling price for the high-quality
lot on sample-size.

item to satisfy a retailer who observes a deterministic
demand. The production process under consideration is
imperfect and produces a random proportion of defective
items which follow a beta distribution. A sampling
inspection is used to classify the lot in one of two
categories; high-quality or sub-standard quality. In the
first case, the lot is sold at a regular price, while in the
second case it is sold at a reduced price. The retailer is
protected by a limit on the incoming quality, called
acceptable quality level, AQL. In other words, the
producer must respect the AQL of the retailer. The
objective of the model is to determine the optimal

Fig. 19: Effect of the unit selling price for the high-quality
lot on lot-size.

production run, sample size, and acceptance number
which maximize the expected total profit of the producer.
The decision variables in this model are the production lot
size, the sample size, and the acceptance number. The
concavity of the expected profit with respect to the lot
size is established and an algorithmic method is proposed
to obtain a solution for the problem. In addition to the
solution, parametric sensitivity analysis are presented and
discussed with respect to a selected case example.
Sensitivity analysis on the model’s key parameters reveal
that the optimal expected profit and optimal lot size are
greatly affected by the distribution of defective items as
well as the inspection cost. Therefore, the integrated
system leads to significant cost saving. The model in this
paper can be extended in many directions. For example, a
single-producer and a multi-retailer case can be
investigated. Another possible extension is considering a
stochastic demand instead of the deterministic demand
used in this paper.
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APPENDIX A: Proof of Proposition 1.

E((1−Y)2) =
1
∫

0
(1− y)2 fY (y)dy Where

fY (y) = Γ (a+b)
Γ (a)Γ (b)y

a−1(1− y)b−1, y ∈ [0,1] Thus,

E((1−Y)2) = 1−2E(Y)+E(Y 2)
E((1−Y)2) = 1−2 a

a+b +E(Y2)

E(Y 2) = Γ (a+b)
Γ (a)Γ (b)

1
∫

0
ya+1(1− y)b−1dy using

a
∫

0
xm(an − xn)pdx = am+1+npΓ [(m+1)/n]Γ [p+1]

nΓ [(m+1)/n+p+1] We find,

E(Y 2) = a
(a+b)

(a+1)
(a+b+1)
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Thus E((1−Y)2) = b2+b
(a+b)2+(a+b)

,and the proof is

complete.

APPENDIX B: Proof of Proposition 2.

As we have mentioned earlier, for a given fraction of
defective items, in the lot, the number of nonconforming
items in a sample, X, follows a binomial distribution that
is:
P(X = x|y) =

(n
x

)

yx(1− y)n−x Thus,

P(X = x) =
1
∫

0

(n
x

)

qx(1− q)n−x f (q)dq =

Γ (a+b)
Γ (a)Γ (b)

(n
x

)

1
∫

0
yx+a−1(1− y)n−x+b−1dy

Which can be simplified as follows:
P(X = x) =

(n
x

) Γ (a+b)
Γ (a)Γ (b)

Γ (x+a)Γ (n−x+b)
Γ (a+b+n) therefore,

P(X ≤ d) = Γ (a+b)
Γ (a)Γ (b)

d
∑

x=0

(n
x

)Γ (x+a)Γ (n−x+b)
Γ (a+b+n) , this

completes the proof.
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