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Abstract: A supply chain of one producer and one retailer is considerélis paper. The production process produces items in lots
with random fraction defective to satisfy the retailer wathleterministic demand. When a lot is completed, a randonplgaisidrawn

to sentence the produced lot. If the number of defectivestenthe sample is less than or equal to the specified acceptamasber, the

lot is accepted and sold at a regular price. On the other lifiie lot is rejected, it is sold at a reduced price. The tetas protected

by a limit on the incoming quality. That is, the retailer dit#ts a certain Acceptable Quality Level, which must be reegeby the
producer. The objective of the model is to determine thenegitproduction run, sample size, and acceptance numbettaimeausly,

to maximize the expected total profit made by the produces.détision variables in this model are the production la,dtze sample
size, and the acceptance number.

Keywords: Supply chain, lot size, quality control, acceptance samgphind sample size.

1 Introduction imperfect lots. They assume that low-quality items are

) ) ) . sold as a single batch by the end of the screening process.
The single-producer single-retailer supply chain hastpe fraction of nonconforming items is assumed to be
received a considerable focus in recent years because it {§nstant in this model. Yassine et al. (2012) considered
the building block for the wider supply chain. A supply £pg model with a random fraction of produced inventory.
chain can be very complex and link-by-link They considered a 100% inspection policy to detect
understanding can be very useful (Ben-Daya et al., 2008y perfect items at the end of the production cycle and
Qin et al. 2013). In the single-producer single-retailer yerjed optimal production quantity assuming that the
model, the producer manufactures an item in lots andmperfect items are scrapped at the end of production
delivers the produced lot to a retailer. Traditionally, the cycle. Then, they extended this base model to allow for
production process in single-producer single-retailerconsolidating the imperfect items during a single
model is assumed to be perfect, that is all produced item$);qquction run and over multiple production runs. In
are of acceptable quality. However, this assumption is nogpoye models, sampling plan parameters are not included,
realistic in most situations. In this paper, the productioninstead, the authors considered 100% inspection.
process under consideration produces a lot with a ra”do'”Piowever, there are many models that integrate the
fraction of nonconformmg items. In order to sentence thesampling plan parameters with production related issues.
produced lot, a sample is drawn; and based on the sample:o; ‘example, Boucher and Jafari (1991) developed a
the lot is classified into one of two states: A high quality model that determines the optimal target value of the
lot or a sub-standard lot. The state of the lot determines itﬁ)rocess when sampling plan parameters are imposed on
sales price. The objective is to determine the optimal lotihe process-targeting problem. In other words, the plan is
size and sampling plan parameters in order to maximizgyiven and the process parameters are optimized using the
the profit achieved by the supplier. In the literature, therep|an as an input. Darwish and Duffuaa (2010) developed
are many models that consider imperfect productiony mathematical model for determining the optimal

processes. For example, Salameh and Jaber (200Q)scess mean for a production process and the inspection
extended the classical EPQ/EOQ model by considering
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plan parameters; the sample size, and the acceptané Problem Statement

number. In this model, products are produced in lots and a

single sampling plan is used to accept or reject the lotsConsider a producer who produces an item in lots of size
However, they considered constant fraction of Q. Atthe beginning of the production cycle, the process is
non-conforming items in the lot. Sheu et al. 2014 setup at a cost of A. It is assumed that the process is
proposed a model with a variable sampling plan based ommperfect, that is, it produces a random fraction of
incapability index to accept or reject the lot. Their model non-conforming items (Y) which follows a beta
distinguished among the products that are within theprobability distribution with parameters a and b as
specification limits. Moreover, Chiu (2003) considered follows:
the effects of reworking of defective items on the
economic production quantity where backorders are r b
allowed. In this model, the author considered the fy ( ):M
defective rate as a random variable that follows a beta I (a)r(b)
distribution. When the production run is complete, the
reworking of defective items starts at a certain rate.
However, sampling plan is not considered in this model.
Another model is developed by Cheung and Leung (2000
who used (Q, S) policy to manage a two-item inventory
control system. The orders for each item varies from lot
to lot and accordingly the sampling plan will also be
changed. Ben-Daya et al. (2006) considered a buyer wh
is subjected to deterministic demand and orders from a
supplier. When a lot is received, the buyer uses some typ
of inspection policy, such as no inspection, samplingd
inspection, or 100% inspection. The fraction
nonconforming items in the lot is assumed to be a rando
variable following a beta distribution. However, the
sampling inspection is determined by imposing consume
and producer risk. Also, Ben-Daya and Noman (2008)
extended Ben-Daya et al. (2006) by considering
stochastic demand. Finally, Wu and Ouyang (2000)
derived a stochastic inventory model with backorders an
lost sales when the Ilot contains a fraction of : : i
nonconforming items that follows a beta distribution. In compatlrlson Itct) .ftTr? |f°t ?ze, fthus, th? prpbalsﬂny .Of
this model the order quantity, reorder point and lead timeflhccleF)t Ingafotl be raction ot nonconiorming ftems in
are decision variables. The purpose of this paper is to € 10t1Syo IS given by
develop a model for a single-producer single-retailer
supply chain where a producer manufactures a product in d /n

lots. It is assumed that the process is imperfect in a sense PX <d|Y =yp) = Z}( )yé(l—yo)”x (2)
that it produces a random fraction of defective items =0 \X

which follows a beta probability distribution. The oo
producer is responsible for replenishing the retailer?s Moreover, the retailer is protected by acceptable

! S quality level, AQL, which is the poorest level of quality
inventory who observes a deterministic demand. Wherihat is accepted by the retailer. It is important to indicate

the producer completes the lot, a sample is drawn fro )
the lot and based on the contents of the sample, the Iotnighat n, d, and AQL are related as follows:

classified as high-quality or sub-standard lot. The
high-quality lot is sold at a premium price while the d < [(AQL)n] (3)
sub-standard lot is sold at a reduced price. Since the For example, if the retailer's AQL is 10% and the
model optimizes the producer?s profit, the customer issample size chosen by the producer is 15 items, the
protected by Acceptable Quality Level (AQL). The acceptance number should be 1 or less to achieve the
objective of the model is to determine the optimal retailer's AQL. The notation used in developing the
production run, sample size, and acceptance numbemodelis as follows:
which maximize the expected total profit of the producerP: Production rate
while the customer?s AQL is respected. D: Demand rate,

T: A random variable represents inventory cycle length

ET: Expected value of inventory cycle length

vy: Selling price per unit in the accepted lot,

vo: Selling price per item in the sub-standard quality lot,

Y-yt ye01 (1)

Where I is gamma function. Beta probability
distribution is used in this paper to model the proportion
f defective items in the lot because it is defined over real
umbers between 0 and 1. Moreover, it contains two
parameters which make it easy to control the shape of the
distribution and consequently easy to fit real data. This
akes it a better alternative than the uniform distribution
at is defined between 0 and 1. The producer who can
roduce the item at a rate P is responsible for replenishing
e retailer’s inventory who is subjected to deterministic
emand D. When a lot is completed, a sample of size n is
inspected. On the basis of the information in this sample,
a decision is made regarding lot disposition. If the number
Iof non-conforming items in the sample, X, is less than or
equal to acceptance number (d), then the lot is considered
of high-quality and sold at a price v1. On the other hand,
if X is greater than d, the lot is considered to be
ub-standard and sold at a reduced pvicetherev; > vs.
oreover, the sample size is typically small in
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X: Number of non-conforming items in a sample, oy
Y: A random variable represents the fraction of T
nonconforming items in a lot
n: Sample size

P5: Probability of accepting a lot, Y
Ci: Inspection cost per inspected item
AQL: Acceptable quality level.

oa-nl .../ .

.

Time

3 Model Development Fig. 1: Evolution of inventory over time.

In this section, sample plan parameters and production

decisions are integrated in one model with the objective

of maximizing the producer?s expected total profit whichWe have to point out that TCC is a random variable and
is the difference between total revenue and total costusing the expectation operator on TCC in Equatiép (
Revenue is generated from selling a high-quality lot at ayields the expected total cost ETCC as follows.

pricevy and a sub-standard quality lot at a priee Thus,

: . 2
the revenue generated from selling a lot (R) is a random _  hQ2 1 E(A-Y)T)
variable and is given by: ETCc =A+nGi+ 2 |p " D )
vQ X<d Proposition 1: Let Y be a random variable,
= wQ X>d (4) representing the fraction of nonconforming items in a lot,

which follows beta distribution with parameters a and b,
On the other hand, the costs that are included in thehen,
model are screening cost, setup cost and holding cost, and E((1_Y)2) — b?+b
they are as follows: (1-Y))= (a+b)2+ (a+b)

1.Screening Cost: The producer incurs a variable€Gost The proof of the proposition is given in Appendix A.
for each screened item. Therefore, the screening costherefore, expected total inventory cost in equatién (
per cycle isnG. becomes:

2.Setup Cost: At the start of each production run, the
producer incurs a setup cost A. 2 9

3.HOIding' Cost: There are two di.stin(':t periods' in a ETCc =A+ nQ+h— 9+ b2+b (8)
production run. The first of which is the buildup 2D | P (a+b)*+(a+b)
period when the production starts until the whole lot ] ]
is produced. The other period is consumption period __Now, one can find the expected total profit per cycle
whereas the producer begins satisfying the demandEPRC) based on two possible profit (PRC) values. It will
until the produced lot is consumed. This policy is be denoted as PRc1 for the case of X ? d, and as PRc2 for
known in the literature as lot-for-lot policy. During the case of X > d. Thus, the expected profit can be
consumption period, the retailer may find some Obtained from the following equations by using the
nonconforming items, which will be scrapped with no conditional probabilities depending on fraction defeetiv
salvage value. Thus, the reduction in inventory is in (X) found in the sample.
fact more than the demand rate. Because the number
of nonconforming items in a lot is very small _ <
compared to the lot size, we assume that the inventory EPRe = (PRe1) P(X < d) + (PRez) P(X > d)  (9)

at the end of the buildup period is decreased by Qy as  However, the depends on the random variable y, which
shown in Figure 1. Hence, the inventory holding cost takes 0?y?1. Therefore, the expected valuBRy; has to

in one inventory cycle (HCC) is given by: be determined by the following equation:
P Y=y)= 1-y)-T 1
HCc=h >pT3 Db (5) And its expected value is as follows:

Thus, the total inventory cost per cycle, including the 1
set up and inspection costs, is as follows:
E(PRe1) = [ (Q(L-Y) ~ TCo)r(y)dy
1 (1-Y)? 0

"D

2
TCCZA-I-I’ICH-h%

(6) ==v;Q(1-E(Y))—ETCc (11)
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In the case oPRc», the profit does not depend on y

The proof of proposition 2 can be found in Appendix

since the whole lot is sold at a cheaper price because of thB. The decision variables in the profit function are the lot

fraction defective X > d. ThugPRc2|Y =y) =v,Q—TCc
, and therefore,

E(PRc2) =voQ—ETCc
From Equations9), (10), and (L2), we obtain

(12)

b
EPRe = (g g V2 ) QP(X <] +v:Q - ETCe
(13)
Hence, the expected profit per cycle is:

EPRe = (Vi—2— — %) QP 1 v2Q

=Wy V)RRt Ve

2 2
NPV R - P
2D |P (a+b)*+(a+b)

It is worthwhile to indicate that this problem is a

renewal reward stochastic process. Thus, the expected
total profit per unit time (EPR) is simply the expected
total profit per cycle (EPRC) divided by the expected

cycle length (ET), that is

EPR— EPRC

ET (15)

From Figure 1, we can determine the inventory cycle

length (T) as follows:

QD+ (1-Y)P]

T= (16)

will be given as follows:
D b
D (5 Tar b) (7

DP
SinceE(Y) = a/(a+b), expected cycle length (ET)
ET- 2
Using Equations 15), (16), and (7), we find the
expected total profit per unit time as follows:

1 b
EPR= VoD + (Vi—— — V2)DP(X < d)—
prenl LAl LS
D(A+nc) hQ|D b2+ b
- > st —=———=|| (18
Q 2 [P (a+b)*+(a+b)

Proposition 2: Let X be the number of nonconforming
items in a sample of size n with the acceptance number
then the probability of accepting a lot is given by:

(%

d

2

I (a+b)
I (a)r(b)

r(x+a)l (n—x+b)

PX<d)= Fnraib)

size, sample size, and acceptance number. One important
property of EPR function is its concavity, which is shown
below by its second derivative.

JEPR 1
9Q  (D/P+3%)
D(A+nc) h|D b2+ b (19)
Q? 2| P (at+b)?+(a+b)
J’EPR 1 2D(A+nc)
Q@ :(g+%)[ o2 ]>0 @0
at

Thus, EPR is concave in Q, consequently, the optimal
lot size can be derived from Equation (19) as follows:
2D(A+nc)

Q:$h[%+ b2+b }

(a+b)?+(a+b)
Using (18) and 1), EPR can be simplified (after
eliminating Q) as follows:

(21)

EPR(n,d) = o B ] |:V2D+(V1$)—V2)DP(X<d)—
P atb
b2+ b

In order to solve this model, we suggest the following
algorithmic steps:
Step 1: Let: n=0,d =0, EPRL1 = -infinity

Step2n=n+1, j=d, nj=j/AQL.
Step 3: Find Q from Equation (21) as:
Q= 2D(A+nc)
o [% b§+b ]
(a+b)“+(a+b)

Step 4: FindEPR, = EPR (d, n, Q) from Equation (22)
Step 5: IfEPR; > EPR; thenEPR; = EPRy, otherwise,
gotostep 7.

Step 6: ifd > n, then d =0 and go to step 2, otherwise d =
d +1 goto step 4.

Step 7: Stop, the previous solution is optimal.

The algorithm will be illustrated with a case example in
the next section.

% Sensitivity Analysis

In this section, we study the effects of the following
parameters on the optimal solution:

1.Effect of shape parameter 1 of Beta distribution (a).
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2.Effect of shape parameter 2 of Beta distribution (b).

3.Effect of acceptable quality level (AQL). '
4 Effect of the selling price per unit in the high-quality ;
lot (v1). ;
5.Effect of the selling price per unit in sub-standard T
quality lot (v2). i
6.Effect of inspection cost (Ci). .

It should be noted that the parameters a and b of the beta

distribution are important since they affect the probapili

of the fraction non-conforming in a lot. Therefore, we

have included the effects of changes in these parameteisig. 2: Effect of shape parameter of beta distribution
on various performance measures. A typical case examplparameter (a) on EPR.

is used to illustrate the effects of several parameters on

optimal lot size, expected profit, and other measures. The

values of the parameters for the selected case example are

given in table 1.
Table 1: Basic data for sensitivity analysis.
Parameter| Value | Parameter| Value
P 2000 V1 15 :

D 1000 Vo 10
h 1 a 3
A 100 B 3
Ci 0.5 AQL 0.1

Fig. 3: Effect of shape parameter 1 (a) of beta distribution
on sample-size.

4.1 Effects of Shape Parameter 1 of Beta

Distribution (a)

For a fixed value of b, the probability that fraction of non- i
conforming items in the lot is less than y0, that is P(Y < .
y0), is lower when the shape parameter (a) is large. Thus,

the expected profit of the producer is expected to increase

as shown in Figure 2. However, the sample size is expected

to decrease because the quality of the lot is higher for high

a and the need to take a larger sample size is not strong.

This relation between a and n is depicted in Figure 3. It iSFig. 4: Effect of shape parameter 1 () of beta distribution

to be noted that the step-like shape of optimal n is due tq,y'|ot-size.

the constraint that the producer should respect AQL of the

retailer as shown by inequality (3). Since Q is the number

of non-conforming items in the lot, it is anticipated that it

increases. This is true because the cost of defective itemﬁon-conforming items in the lot. Thus, the expected total

will b.e reduced when the quality of the lot is high. profit should decrease with b as shown by Figure 5.

Figure 4 shows unexpected trend when a = 10 whergqgwever, the expected total profit increases for b > 10.

the lot size de_zcreases, this is because at this particular po This trend is due to fact that AQL = 0.1 which must be

the sample size optimal. observed by the producer, and optimal n = 10 (shown in
Figure 5), consequently, optimal d = 1 (obtained from
inequality 3). In other words, lots with high percentage of

4.2 Effects of Shape Parameter 2 of Beta non-conforming items can be considered as acceptable

Distribution (b) while the retailer?s AQL is still satisfied. Moreover,
optimal n is reduced when b is higher (see Figure 6). This

Generally speaking, for Beta distribution, high values of bis due to the probability of high percentage of

correspond to high probability of fraction of non-conformingitems inthe lot, thatis, itis easy to detect
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a low quality lot even with small sample size. Also, 4.3 Effects of Acceptable Quality Level (AQL)
Figure 6 shows that the lot size is low for high values of b N L
because it is not optimal to increase the production lot"S Shown in Figure 8, the expected total profit will

when the process produces high percentage of defectivieécrease as the AQL increases due to the increase of
items. accepted lots with more defective items. Moreover, as the

AQL increases, the sample size and lot size decreases in
order to decrease the effect of defective items (see Figures
9 and 10).

Y =

Fig. 5: Effect of shape parameter 2 (b) of beta distribution
on EPR.
Fig. 8: Effect of Accepted Quality Level (AQL) on EPR.

i BT

Fig. 6: Effect of shape parameter 2 (b) of beta distribution __ _ .
on sample-size. Fig. 9. Effect of Accepted Quality Level (AQL) on

sample-size.

4.4 Effects of the Unit Selling Price for the
High-Quality Lots

As vy increases, the expected profit will increase (see
Figure 11). Moreover, increasing; will increase the
probability of accepting the lot, and thus, forcing the
sample size and the lot size to decrease (see Figures 12
and 13).

4.5 Effects of the Unit Selling Pricein

Fig. 7. Effect of shape parameter of beta distribution Sub-Standard Quality Lots

parameter (b) on lot-size.
As vy increases, the expected profit will increase linearly
as shown in Figure 14. Also, increasing will increase
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iiaceu I IR

Fig. 10: Effect of Accepted Quality Level (AQL) on lot- Fig. 13: Effect of the unit selling price in high-quality lot
size. on lot-size.

7 =

Fig. 11: Effect of the unit selling price in high-quality lot
on EPR. Fig. 14: Effect of unit selling price for the sub-standard
quality lot on EPR.

T L

Fig. 12; Effect of the unit selling price in high-quality lot
on sample-size. Fig. 15: Effect of unit selling price for the sub-standard
quality lot on sample-size.

the portion of units that will be sold at the secondary

market. This will decrease the probability of acceptancedecreases. However, the rate of decrease in the expected

forcing the sample size as well as the lot size to increasgrofit decreases as inspection cost increases. This is due

(see Figures 15 and 16). to decrease of the sample size and lot size (see Figures 18
and 19).

4.6 Effects of Inspection Cost
5 Conclusion
Figure 17 illustrates the relationship between the
inspection cost and the expected profit. It shows that a®\ single-producer single-retailer supply chain is
the inspection cost increases, the expected proficonsidered in this paper. The producer produces a single
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Fig. 16: Effect of unit selling price for the sub-standard Fi9- 19: Effect of the unit selling price for the high-quality
quality lot on lot-size. lot on lot-size.

production run, sample size, and acceptance number
which maximize the expected total profit of the producer.
The decision variables in this model are the production lot
size, the sample size, and the acceptance number. The
concavity of the expected profit with respect to the lot
size is established and an algorithmic method is proposed
to obtain a solution for the problem. In addition to the
solution, parametric sensitivity analysis are presentet] a

discussed with respect to a selected case example.
Sensitivity analysis on the model’s key parameters reveal
that the optimal expected profit and optimal lot size are
greatly affected by the distribution of defective items as
well as the inspection cost. Therefore, the integrated
system leads to significant cost saving. The model in this
paper can be extended in many directions. For example, a
single-producer and a multi-retailer case can be

investigated. Another possible extension is considering a
stochastic demand instead of the deterministic demand
used in this paper.
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Fig. 17: Effect of the unit selling price for the high-quality
lot on EPR.

Fig. 18: Effect of the unit selling price for the high-quality
lot on sample-size.

APPENDIX A: Proof of Proposition 1.

item to satisfy a retailer who observes a deterministic )

demand. The production process under consideration i§((1-Y)9) =

imperfect and produces a random proportion of defective I'(a+b) 1

items which follow a beta distribution. A sampling YY) = Y (1 yP 7ty € [01  Thus,

inspection is used to classify the lot in one of two E((1-Y)? )—1 2E(Y) E(Y2)

categories; high-quality or sub-standard quality. In theE((1—Y)?)=1— 2a+b+E( 2)
(

o—

(1Y) fy(y)dy Where

first case, the lot is sold at a regular price, while in the 5 a+b 1 b1

second case it is sold at a reduced price. The retailer i&(Y) = fya+ (1—y)""dy using

protected by a limit on the incoming quality, called , miLenp

acceptable quality level, AQL. In other words, the [x™(@"—x"Pdx = & n,_[(ﬂmﬂg]ﬂ[f”} We find,
producer must respect the AQL of the retailer. The©

objective of the model is to determine the optimal E(Y?) = (ibwﬁ;bfl)
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Thus E((1-Y)?) = % ,and the proof is  [10] A. J. Fernandez, C. J. Pérez-Gonzalez, Optimal acoepta
complete (@tb)™+(a+h) sampling plans for log-location-scale lifetime modelsngsi
' average risksComputational Satistics & Data Analysis,
56(3), 719-731 (2012).
. .. [11]K. S. Wu and L. Y. Ouyang, Defective units in
APPENDIX B: Proof of Proposition 2. (Q.r,L) inventory model with sub-lot sampling inspection.

) ) ) . Production Planning AND Control: The Management of
As we have mentioned earlier, for a given fraction of  operations, 11(2), 179-186, (2000).

defective items, in the lot, the number of nonconforming[12] A. Yassine, B. Maddah and M. Salameh, Disaggregatiah an
items in a sample, X, follows a binomial distribution that  consolidation of imperfect quality shipments in an extehde

is: EPQ modellnternational Journal of Production Economics,
P(X =xly) = (3)y*(1—y)"*Thus, 135(1), 345-352, (2012).
1
PX = x = [(Qo1-9" " f(a)dg =
L 0 A. R. Alenezi joined
r(atb) (n Fa-1(1 _ y)xtb-1y the faculty of the Industrial
I'(a).l'(b) (X)i{yx ) (__ ) Y and Management Systems
Which can be s;rppu;‘ler(i as)fro(llowsb:) Engineering Department
o _ ¢(n a+ x+a)l (n—x+ i i ;
PASSG) r(a)r(rb) b r(?bmr :heref:) © (“ m‘ %t 2005}3<.ul\1lviiltcurretljtn Ir\éit:gr%:h
PX < d) = %XZO (2)% this ) - ‘ ac'i[vity fctJ_cuses on I?rge-ﬁcale
= % f optimization, supply chain
completes the proof. ca network design, production
planning and control, and
algorithms for real-time order
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