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Abstract: In this note, we apply a numerical method to solve viscoelastic models involving fractional derivatives. Our method
generalizes rational Legendre collocation scheme. It usesnew functions named “fractional rational Legendre functions” as the basis.
The new basis convergence more rapidly than rational Legendre functions in solving fractional differential equations. Numerical results
show the efficiency and performance of the new basis in comparison with rational Legendre functions.
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1 Introduction

The concept of differentiation and integration to
noninteger order is not certainly new. It is as old as
conventional calculus, but has not been very popular in
science and engineering for years. It has gained its
considerable popularity and importance in science and
engineering, over the last decades. Nowadays, utilization
of fractional calculus for modeling natural phenomena
has grown and it is finding increasing use in many areas
of science and engineering from the nano to the macro
scale. Fractional calculus models, represent a relatively
simple way to describe dynamics in complex systems. It
has been widely applied in different science fields such as
dynamical systems theory, controller tuning, legged
robots, redundant robots, heat diffusion, digital circuit
synthesis, viscoelastic materials, electricity, mechanics,
chaos and fractals [1,2].

By growing the applications of the fractional calculus,
it is required to extend methods for solving fractional
differential equations. Since fractional differentiation and
integration is a non-local property, obtaining solutions of
such equations comes with a high cost. In most problems,
it is impossible to have exact solutions, so approximate
techniques play an important role in finding the solution
of these equations. Although numerous schemes are
introduced to solve fractional differential equations, none
of them is a reliable method for solving all fractional
differential equations. In other words, our information

about the structure of the problem is the key to choosing
the method. In this paper, we have introduced a new basis
to solve fractional differential equations which occur on
real positive line. The basis is named fractional rational
Legendre functions (FRLFs). These functions are
constructed from rational Legendre functions (RLFs) and
improve the rate of convergence. To show the efficiency
of this new basis, collocation scheme is employed to
solve fractional viscoelasticity model.

While the first section includes some basic definitions
and necessary formulas of fractional calculus, fractional
viscoelastic model is considered in Section2 and its
governing equations are given there. In the beginning of
Section3, the formulation of RLFs, FRLFs together with
some basic properties of them are presented. After that,
the implementation of collocation method based on RLFs
and FRLFs is presented and a brief argument about
convergence is discussed. In Section4 the results of
applying the proposed methods for solving fractional
viscoelastic equation are summarized. Eventually, the
summary and conclusions are outlined in Section5.

1.1 Preliminary definitions

In this section some notations of the fractional calculus
that will be used throughout the paper, are presented. The
base function in fractional calculus is the Euler’s Gamma
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function, which generalizes the factorial function, and
allows to take non-integer values.

Definition 1(Euler’s Gamma function). The Gamma
function for all complex z is defined as [1,2,3,4]:

Γ (z) =
∫ ∞

0
e−t tz−1dt, (1)

which converges in the right half of the complex plane,
Re(z)> 0.

Mittag-Leffler is another important function in
fractional calculus. In fractional calculus, this function
plays a similar role of the exponential function in integer
order calculus. In other words, is an alternative for the
exponential function in fractional calculus.

Definition 2(Mittag-Leffler function). For α,β > 0, the
two parameter Mittag-Leffler function is defined as [1,2,
3]:

Eα ,β (z) =
∞

∑
k=0

zk

Γ (kα +β )
. (2)

Taking β = 1 gives the one parameter Mittag-Leffler
function, Eα(z).

There are several definitions of fractional derivative.
In this paper, because of its benefits for initial value
problems, the Caputo’s definition of fractional derivative
is used. The fractional derivative in the Caputo sense is
defined based on the Riemann-Liouville fractional
integral.

Definition 3(Riemann–Liouville fractional integral).
Let α ∈ R

+. The Riemann–Liouville fractional integral of
orderα for 0< t < a is defined as [1,3,4]:

Jα
0 f (t) =

1
Γ (α)

∫ t

0
(t − τ)α−1 f (τ)dτ. (3)

Definition 4(Fractional derivative in the Caputo sense).
Letα ∈R

+. The Caputo’s fractional derivative of orderα
for t > 0 is defined as [1]:

C
0Dα

t f (t) = J⌈α⌉−α
0 D⌈α⌉ f (t)

=
1

Γ (⌈α⌉−α)

∫ t

0
(t − τ)⌈α⌉−α−1D⌈α⌉ f (τ)dτ, (4)

whereD⌈α⌉ is the ordinary differential operator.

2 Fractional viscoelastic model

Viscoelasticity describes a material behavior that is
time-dependent, or retains memory of the material
history. This is in contrast to an elastic material, which is
time invariant. A viscoelastic material exhibit both elastic
(often Hookean) and viscous (often Newtonian) behavior.
The mechanics of these viscoelastic materials can be

modeled as arrangements of lossless elastic springs and
lossy viscous dampers (dashpots). In fact, many common
models for viscoelasticity consider springs and dashpots
in various configurations. The viscoelastic properties of a
medium can be determined from multiple methods, such
as stress–relaxation, creep, and dynamic testing. The
stress–relaxation experiment is particularly useful
because it contains a wide spectrum of storage and loss
properties. For a distributed material the stress due to the
elastic element is proportional to the strain and the stress
due to the viscous element is proportional to the time rate
of change of strain [5,6,7,8].

Polymers in general show a weak frequency
dependence of their viscoelastic characteristics. This
frequency dependence is difficult to describe with
classical viscoelasticity. The classical models for polymer
materials are based on constitutive equations with
differential operators of integer order. A large number of
derivative operators (or internal variables), resulting in
many parameters, is required to obtain a reasonably
accurate description of the observed viscoelastic
characteristics.

Fractional order operators are very useful for
modeling viscoelastic materials. The fractional derivative
model significantly reduces the number of elements, and
terms, needed to robustly model viscoelasticity. The
model replaces the dashpot of the Maxwell element with
a fractional spring-pot. The spring-pot interpolates
between spring and dashpot behavior, giving the
fractional model more flexibility. Mathematically, this is
described as:

σ = η
dα ε
dtα (5)

whereα is a rational number between 0 and 1, andη is a
material parameter similar to a damping coefficient. The
nature of the spring-pot element is clear; ifα = 0 then the
element becomes a spring. Ifα = 1 then the element
becomes a dashpot. For anyα between 0 and 1, the
element has both spring and dashpot behavior [8].

An advantage of using fractional order operators in
viscoelasticity is that a whole spectrum of viscoelastic
mechanisms can be included in a single internal variable.
The stress–relaxation spectrum for the fractional order
model is continuous with the relaxation constant as the
most probable relaxation time, while the order of the
operator plays the role of a distribution parameter. Note
that the spectrum is discrete for the classical model that is
based on integer order derivatives. By a suitable choice of
material parameters for the classical viscoelastic model it
is observed both numerically and analytically that the
classical model with a large number of internal variables
(each representing a specific viscoelastic mechanism)
converges to the fractional model with a single internal
variable.

It has been proven that fractional viscoelastic models
are thermodynamically consistent. Ever since fractional
order models have been used to describe relaxation and
creep behavior as well as damping properties. The
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fractional order viscoelastic model has successfully been
fitted to experimental data over a broad frequency range
for several polymers using only four parameters in the
uniaxial. The fractional order viscoelastic model has also
been successfully fitted to time domain rubber data at
small strains [5,6,7].

By using the concept of internal variables the simplest
uniaxial fractional viscoelastic model that can reproduce
instantaneous and long time elastic responses, is
formulated as follows [5]

σ(t) = E1(ε(t)− ǫ(t))+E2ε(t), (6)

ǫ
(α)(t)+

1
τα ǫ(t) =

1
τα ε(t), 0< α < 1, (7)

where σ and ε represent the stress and (macroscopic)
strain, respectively.ǫ is an internal variable of strain type
representing a distribution of irreversible microstructural
processes in the material.E1 > 0 andE2 > 0 are elastic
stiffness andτ > 0 is the relaxation constant.α is the
order of fractional derivative, which is in the Caputo
sense. Equation (7) comes with the following initial
condition

ǫ(0) = 0, (8)

which means that the model predicts an initial response
following Hooke’s elastic law

σ(0) = (E1+E2)ε(0) = E(0)ε(0), (9)

whereE(0) = E1+E2 is the instantaneous stiffness of the
model.

3 Rational approach

Rational Chebyshev functions were introduced by
Boyd [9] to solve problems on positive real line. This
basis allows free use of the Fast Fourier Transform. Later,
Guo et al. [10] developed Boyd’s idea and introduced
rational Legendre functions. The rational Chebyshev and
rational Legendre functions have been successfully used
in a wide range of applications [9,10,11,12,13,14,15,16,
17,18].

In this section, at first, RLFs are introduced and some
basic properties of them are explained. Then, we
generalize RLFs and construct FRLFs which have more
rapid convergence for solving fractional differential
equations. At last, implementation of the collocation
scheme and some points about convergence are given.

3.1 Rational Legendre functions

RLFs are obtained from Legendre polynomials, using the
algebraic functiont−L

t+L . The RLF of ordern, which is

denoted by Rn(t), is the nth eigenfunction of the
following singular Sturm-Liouville problem

1
w(t)

(

tR′
n(t)
)′
+n(n+1)Rn(t) = 0, t ≥ 0,

n= 0,1,2, . . . , (10)

wherew(t) is the weight function as follows

w(t) =
L

(t +L)2 . (11)

L is a user-selective constant which is called “map
parameter” and sets the length scale of the mapping. This
parameter should be optimized by trial-and-error. The
accuracy is usually quite insensitive toL so long as it is of
the same order of magnitude as the optimum value.
Strategies for optimizingL are given in [9,11].

RLFs are orthogonal on the semi-infinite interval with
respect tow(t) and satisfy the following orthogonality
property

∫ ∞

0
Rn(t)Rm(t)w(t)dt =

{

0 n 6= m,

1
2n+1 n= m.

(12)

These functions can be obtained using the following
recursive relation forn≥ 1

Rn+1(t) =
2n+1
n+1

R1(t)Rn(t)−
n

n+1
Rn−1(t), (13)

and initial functions

R0(t) = 1, R1(t) =
t −L
t +L

. (14)

Using the previous relations, we have the following
explicit representation for RLFs:

Rn(t) =
n

∑
i=0

(−1)i(n+ i)!
(i!)2(n− i)!

(

L
t +L

)i

. (15)

3.2 Fractional rational Legendre functions

RLFs are suitable basis for solving ordinary differential
equations on semi-infinite intervals, but their convergence
rate for solving fractional differential equations is slow. In
present paper, we have introduced FRLFs to subdue this
problem. While these new functions have all of the good
features of RLFs, they converge more rapidly than RLFs
in solving fractional differential equations.

Similar to RLFs, FRLFs, which we denote byRn,α(t),
are orthogonal functions on semi-infinite interval with
respect to the weight function

wα(t) =
α
L

(

L
t +L

)α+1

. (16)
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Their orthogonality property doesn’t differ from RLFs; i.e.

∫ ∞

0
Rn,α(t)Rm,α(t)wα (t)dt =

{

0 n 6= m,

1
2n+1 n= m.

(17)

Also, FRLFs are the eigenfunctions of the following
singular Sturm-Liouville problem

1
wα(t)

(

1
wα (t)

(

(

L
t +L

)α
−

(

L
t +L

)2α
)

R′
n,α(t)

)′

+n(n+1)Rn,α(t) = 0,

t ≥ 0, n= 0,1,2, . . . . (18)

FRLFs satisfy the following recursive relation forn≥
1

Rn+1,α(t) =
2n+1
n+1

R1,αRn,α(t)−
n

n+1
Rn−1,α(t), (19)

and initial relations

R0,α(t) = 1, R1,α(t) = 1−2

(

L
t +L

)α
, (20)

which gives an explicit form for FRLFs

Rn,α(t) =
n

∑
i=0

(−1)i(n+ i)!
(i!)2(n− i)!

(

L
t +L

)α i

. (21)

3.3 Function approximation

Here, we present collocation scheme for solving
differential equations using RLFs and FRLFs. The first
step for solving differential equations, using collocation
method, is to choose appropriate trial functions. Since we
are going to solve fractional differential equations on
semi-infinite interval, we use FRLFs as the basis,
although we employ RLFs, for considering the rate of
convergence.

By choosing FRLFs as the basis, the solution of the
differential equation is approximated as

uN(α, t) =
N

∑
n=0

cnRn,α(t)

+ cN+1
L⌈α⌉+1

Γ (α +1)
tα

(t +L)⌈α⌉+1
, (22)

wherecns are unknown coefficients that should be found.
The last term in the right hand side is included, since for all
smooth functions, the fractional derivative in the Caputo
sense, at origin, is zero. So, we add this term to surmount
difficulties.

In the next step, the unknown function in the
differential equation and its initial condition are replaced
by the approximating function,uN(α, t), and the residual

function is constructed. Since the residual function is
identically equal to zero for the exact solution, the
challenge is to choose the series coefficients,cn, so that
the residual function is minimized. In the collocation
approach it is required that the residual function be
satisfied exactly at a set of collocation points,ti :

res(ti) = 0. (23)

These equations together with the initial conditions form
a system of algebraic equations which should be solved to
give the expansion coefficientscns.

3.4 Convergence

The order of the convergence of spectral methods is based
on the behavior of the series coefficients,cn. These
quantities, have the property of decaying to zero with
increasing n at the same qualitative rate, usually
exponentially. The smoother the function, the more
rapidly its spectral coefficients converge. It is shown that
representing the coefficients on a log-linear or log-log
graph gives the order of convergence. More details are
given in [11].

Definition 5(Algebraic index of convergence). The
algebraic index of convergence, k, is the largest number
for which

lim
n→∞

|cn|n
k
< ∞ (24)

where the cn are the coefficients of the series. In other
words, k is the algebraic index of convergence, if for
n>> 1

cn ∼ O
(

n−k
)

. (25)

4 Numerical Results

In this section, collocation scheme based on RLFs and
FRLFs is used to solve fractional viscoelasticity model
introduced by equationas (6), (7) and (8). The obtained
solutions for both basis are compared and the algebraic
indexes of convergence for them are computed.

Using appropriate replacements, Equation (7) is
converted to the following non-dimensional equation [5]

ǫ
(α)(t)+ ǫ(t) = ε(t). (26)

By choosing the stress response due to the following step
strain

ε(t) =

{

1, t ≥ 0,
0, t < 0,

(27)

the exact solution of the model is as follows

σ(t) = E1Eα (−tα)+E2. (28)

c© 2016 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.10, No. 3, 1027-1033 (2016) /www.naturalspublishing.com/Journals.asp 1031

(a) Stress (b) Strain

Fig. 1: The stress and strain functions of the model for differnt values ofα.

(a) FRLF (b) RLF

Fig. 2: Spectral coefficients of the solution of the fractional viscoelasticity model using FRLFs and RLFs forα = 1
2 and

different values ofN.

To obtain the approximate solution using collocation
scheme, the residual function is constructed by replacing
ǫ(t) in Equation (26) with ǫN(t) = uN(α, t) defined in
(22). So, we have

res(t) = C
0Dα

t ǫN(t)+ ǫN(t)− ε(t). (29)

In the collocation technique, once the basis set has
been chosen, the optimal sets for nodal points are the
Gaussian points for each basis [11]. Since the equation is
defined on real positive line, fractional rational
Legendre-Gauss-Lobatto nodes are used as collocation
points. These nodes are the roots of
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RN+1,α(t) − RN−1,α(t). By evaluating the residual
function at these nodes, we have the following system of
algebraic equations

res(ti) = 0, i = 1,2, . . . ,N+1,

ǫN(0) = 0.
(30)

The approximate solution,ǫN(t), is determined after
solving this system for unknown coefficientscn. We
computed these coefficients usingfsolve command of
the Maple software. The approximate stress,σN(t), is
computed using (6) andǫN(t).

The graphs of stress and strain functions for different
values ofα, obtained by FRLFs, are shown in Figures1a
and 1b. Since the obtained graphs for RLFs and exact
solutions coincide with these graphs, they are omitted to
prevent iteration.

Maximum errors between exact and approximate
solutions,‖σ −σN‖∞, obtained by FRLFs and RLFs are
compared in Table1. Considering this table we observe
that although using RLFs give solutions which are in
good approximation with exact solution, but applying
FRLFs give better solutions. Comparing obtained errors
with errors reported in [5], it is found that collocation
scheme together with FRLFs or RLFs give more accurate
solutions than discontinuous Galerkin method.

Table 1: Maximum errorrs between approximation and
exact solutions of stress function.

α N FRLFs RLFs

1
2

8 2.10×10−3 1.10×10−2

16 3.02×10−4 5.74×10−3

32 4.10×10−5 2.94×10−3

64 5.36×10−6 1.49×10−3

2
3

8 3.82×10−5 1.90×10−3

16 4.96×10−5 8.97×10−4

32 1.35×10−5 3.82×10−4

64 3.68×10−6 1.56×10−4

3
4

8 9.14×10−5 5.13×10−4

16 1.62×10−5 2.59×10−4

32 8.17×10−6 1.07×10−4

64 8.04×10−6 4.08×10−5

4
5

8 2.50×10−4 1.03×10−4

16 2.29×10−5 8.49×10−5

32 1.93×10−5 3.90×10−5

64 1.93×10−5 1.95×10−5

Log-Log graphs of the absolute values of spectral
coefficients,|cn|, versusn obtained by FRLFs and RLFs
for α = 1

2 and different values ofN, are given in Figure2.
As we anticipated, the coefficients tend to zero by
increasingn. The rate of tending to zero, specifies the

order of convergence. As fast as the coefficients decay,
the approximate solution converges to the exact solution.
Figure2 illustrates that the spectral coefficients obtained
by FRLFs are approximately proportional to O

(

n−4
)

,
while the spectral coefficients obtained by RLFs are
proportional to less than O

(

n−2
)

. This fact is true for
other values ofα. From these graphs and Definition5, it
is found out that the collocation scheme with FRLFs has a
fourth-order convergence, whereas this scheme with
RLFs has a convergence rate less than two. The valueλ
in these graphs is used to show a constant coefficient.

5 Conclusion

Fractional rational Legendre functions and rational
Legendre functions are employed to compute
approximate solutions of fractional order viscoelasticity
model. FRLFs are introduced for the first time in this
paper. They enhance the convergence rate of RLFs
approximately twice. The results exhibit the high
accuracy of the proposed methods. This property and
simple implementation of the methods demonstrate their
reliability for solving other fractional problems which lie
in semi-infinite intervals.
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