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Abstract: In this note, we apply a numerical method to solve viscomlasiodels involving fractional derivatives. Our method
generalizes rational Legendre collocation scheme. It neasfunctions named “fractional rational Legendre funasibas the basis.
The new basis convergence more rapidly than rational Legdndctions in solving fractional differential equatiodumerical results
show the efficiency and performance of the new basis in cosgrawith rational Legendre functions.
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1 Introduction about the structure of the problem is the key to choosing
the method. In this paper, we have introduced a new basis

The concept of differentiation and integration to [© Solve fractional differential equations which occur on
noninteger order is not certainly new. It is as old as real positive I|ne: The basis is named fracuonal rational
conventional calculus, but has not been very popular in-€9endre functions (FRLFs). These functions are
science and engineering for years. It has gained ité:onstructed from rational Legendre functions (RLF_S) and
considerable popularity and importance in science andMProve the rate of convergence. To show the efficiency
engineering, over the last decades. Nowadays, utilizatiof! this new basis, collocation scheme is employed to
of fractional calculus for modeling natural phenomenaSC!ve fractional viscoelasticity model. _ o
of science and engineering from the nano to the macrdnd necessary formulas of fractional calculus, fractional
scale. Fractional calculus models, represent a relativelyiscoelastic model is considered in Secti@nand its
simple way to describe dynamics in complex systems. [{JOVerning equations are given there. In the beginning of
has been widely applied in different science fields such ag>ection3, the formulation of RLFs, FRLFs together with
dynamical systems theory, controller tuning, leggedSOme basic properties of them are presented. After that,
robots, redundant robots, heat diffusion, digital circuit the implementation of collocation method based on RLFs
synthesis, viscoelastic materials, electricity, mecbgni and FRLFs is presented and a brief argument about
chaos and fractal4[2]. convergence is discussed. In Sectidnthe results of

By growing the applications of the fractional calculus, @PPIYing the proposed methods for solving fractional
it is required to extend methods for solving fractional ViScoelastic equation are summarized. Eventually, the
differential equations. Since fractional differentiatiand ~ SUmmary and conclusions are outlined in Secton
integration is a non-local property, obtaining solutiofis o
such equations comes with a high cost. In most problems,
it is impossible to have exact solutions, so approximatel 1 Preliminary definitions
techniques play an important role in finding the solution "
of these equations. Although numerous schemes are
introduced to solve fractional differential equationsnao In this section some notations of the fractional calculus
of them is a reliable method for solving all fractional that will be used throughout the paper, are presented. The
differential equations. In other words, our information base function in fractional calculus is the Euler's Gamma
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function, which generalizes the factorial function, and modeled as arrangements of lossless elastic springs and
allows to take non-integer values. lossy viscous dampers (dashpots). In fact, many common
models for viscoelasticity consider springs and dashpots
in various configurations. The viscoelastic properties of a
medium can be determined from multiple methods, such

® as stress—relaxation, creep, and dynamic testing. The

r(z) = / e 't (1) stress—relaxation experiment is particularly useful

0 because it contains a wide spectrum of storage and loss
which converges in the right half of the complex plane, properties. For a distributed material the stress due to the
Rez) > 0. elastic element is proportional to the strain and the stress

. . , . . due to the viscous element is proportional to the time rate
Mittag-Leffler is another important function in ¢ change of straind, 6,7,8].

fractional calculus. In fractional calculus, this functio Polymers in general show a weak frequency
plays a similar role of the exponential function in integer gependence of their viscoelastic characteristics. This
order calculus. In other words, is an alternative for thefrequency dependence is difficult to describe with
exponential function in fractional calculus. classical viscoelasticity. The classical models for patym

Definition 2(Mittag-Leffler function). For a,3 >0, the ~ Mmaterials are based on constitutive equations with
two parameter Mittag-Leffler function is defined dsJ, differential operators of integer order. A large number of

Definition 1(Euler's Gamma function). The Gamma
function for all complex z is defined a%, g, 3,4]:

3: derivative operators (or internal variables), resulting i
@ X many parameters, is required to obtain a reasonably
Eap(2) =) Fka<p)’ (2)  accurate description of the observed viscoelastic
k=0 characteristics.
Taking B = 1 gives the one parameter Mittag-Leffler Fractional order operators are very useful for
function, & (2). modeling viscoelastic materials. The fractional deriati

o ) .. model significantly reduces the number of elements, and

There are several definitions of fractional derivative. (orms  needed to robustly model viscoelasticity. The

In this paper, because of its benefits for initial value model replaces the dashpot of the Maxwell element with

problems, the Caputo’s definition of fractional derivative 5 fractional spring-pot. The spring-pot interpolates

is used. The fractional derivative in the Caputo sense i)etween spring and dashpot behavior, giving the
defined based on the Riemann-Liouville fractional fractional model more flexibility. Mathematically, this is

integral. described as: 4

Definition 3(Riemann-Liouville fractional integral). og=n —; (5)
Leta € R*. The Riemann-Liouville fractional integral of , ) dt )
ordera for 0 <t < a is defined as1,3,4]: wherea is a rational number between 0 and 1, ani a

material parameter similar to a damping coefficient. The
1 " ¢ a-1¢(1\g 3 nature of the spring-pot element is cleargif= 0 then the
m./o( -1) (r)dt. ()  element becomes a spring. ¢f = 1 then the element
becomes a dashpot. For amy between 0 and 1, the
Definition 4(Fractional derivative in the Caputo sense).  element has both spring and dashpot beha@pr [

Jft)=

Leta € R*. The Caputo’s fractional derivative of order An advantage of using fractional order operators in

fort > Ois defined as1): viscoelasticity is that a whole spectrum of viscoelastic

mechanisms can be included in a single internal variable.

pe £ (1) _ glal-apfal £(t) The stress—relaxation spectrum for the fractional order
ot =+ ; ; ; ;

. model is continuous vv_|th the relaxa_mon constant as the

- #/ (t_r)[a]—a—lD[fﬂf(T)d-[’ (4) most probable relaxation time, while the order of the

r([al—a)o operator plays the role of a distribution parameter. Note

that the spectrum is discrete for the classical model that is
whereD /! is the ordinary differential operator. based on integer order derivatives. By a suitable choice of
material parameters for the classical viscoelastic maddel i
is observed both numerically and analytically that the
2 Fractional viscoelastic model classical model with a large number of internal variables
(each representing a specific viscoelastic mechanism)
Viscoelasticity describes a material behavior that isconverges to the fractional model with a single internal
time-dependent, or retains memory of the materialvariable.
history. This is in contrast to an elastic material, which is It has been proven that fractional viscoelastic models
time invariant. A viscoelastic material exhibit both elast are thermodynamically consistent. Ever since fractional
(often Hookean) and viscous (often Newtonian) behavior.order models have been used to describe relaxation and
The mechanics of these viscoelastic materials can bereep behavior as well as damping properties. The
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fractional order viscoelastic model has successfully beerdenoted by Ry(t), is the nth eigenfunction of the

fitted to experimental data over a broad frequency rangdollowing singular Sturm-Liouville problem

for several polymers using only four parameters in the

uniaxial. The fractional order viscoelastic model has also 1 /

been successfully fitted to time domain rubber data at m (tR;(t)) +n(n+1Ra(t) =0, t=0,

small strains$,6,7]. n—0.12 (10)
By using the concept of internal variables the simplest T

uniaxial fractional viscoelastic model that can reproducewherew(t) is the weight function as follows

instantaneous and long time elastic responses, is

formulated as followsH] L

W) = o

(11)

o(t) =Ea(e(t) —e(t)) + E2e(t), (6)
(@) 1 1 L is a user-selective constant which is calleq “map.
eVt ge)=7£&W), O0<a<l (7)  parameter’ and sets the length scale of the mapping. This
parameter should be optimized by trial-and-error. The
where 0 and € represent the stress and (macroscopic)accuracy is usually quite insensitiveltso long as it is of
strain, respectively is an internal variable of strain type the same order of magnitude as the optimum value.
representing a distribution of irreversible microstruatu  Strategies for optimizing are given in §,11].
processes in the materidt; > 0 andE, > 0 are elastic RLFs are orthogonal on the semi-infinite interval with
stiffness andr > 0 is the relaxation constantt is the  respect tow(t) and satisfy the following orthogonality
order of fractional derivative, which is in the Caputo property
sense. Equation7f comes with the following initial
condition

| RRa(twit)ck = {O , T @)

€(0) =0, (8) g N=m

which means that the model predicts an initial respons

. ) . ®rhese functions can be obtained using the following
following Hooke'’s elastic law

recursive relation fon > 1

0(0) =(E1+E»)&(0) = E(p£(0), 9 2n+1 n
O EBrREO =R O R 0= 2  Rri - R0, 03)
whereEw) = E; + E; is the instantaneous stiffness of the
model. and initial functions
Ri) =1  Ryt)=—— (14)
o R

3 Rational approach _ , _ ,
Using the previous relations, we have the following

Rational Chebyshev functions were introduced byexpllcnrepresentatlonforRLFs:

Boyd [9] to solve problems on positive real line. This D (—1)(ni)! Lo
basis allows free use of the Fast Fourier Transform. Later, Ry(t) = Z) 5 i '- ( ) ) (15)
Guo et al. 10 developed Boyd’s idea and introduced S ()2(n—Dr \t+L

rational Legendre functions. The rational Chebyshev and

rational Legendre functions have been successfully used ) . .

in a wide range of application§[10,11,12,13,14,15,16, 3.2 Fractional rational Legendre functions
17,19].

In]this section, at first, RLFs are introduced and someRLFs are suitable basis for solving ordinary differential
basic properties of them are explained. Then, weequations on semi-infinite intervals, but their convergenc
generalize RLFs and construct FRLFs which have mordate for solving fractional differential equations is sldw
rapid convergence for solving fractional differential Present paper, we have introduced FRLFs to subdue this
equations. At last, implementation of the collocation Problem. While these new functions have all of the good

scheme and some points about convergence are given. features of RLFs, they converge more rapidly than RLFs
in solving fractional differential equations.

Similar to RLFs, FRLFs, which we denote By 4 (t),
are orthogonal functions on semi-infinite interval with

3.1 Rational Legendre functions respect to the weight function
RLFs are obtained from Legendre polynomials, using the ) = a L\ 16
algebraic function{;—'[. The RLF of ordern, which is Wa(t) = L\t+L (16)
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Their orthogonality property doesn’t differ from RLFs;.i.e function is constructed. Since the residual function is

./:o Rna (t)Rma ()Wa (t)dt = {0 LM gy

L N=m

Also, FRLFs are the eigenfunctions of the following

singular Sturm-Liouville problem

wal(t) (Wal(t) <(tiL)a - (HLL>20> R%,a(t)>/

+n(n+1)Ryq4(t) =0,

t>0, n=0,1,2,.... (18)
FRLFs satisfy the following recursive relation fo>
1
2n+1 n
Rn+1,a(t) - nt1 Rl,aRma (t) - n—_H_Rnfl,a(t)a (19)

and initial relations

L a
Roall) =1 Rua)=1-2(;77 )« (@)

which gives an explicit form for FRLFs

identically equal to zero for the exact solution, the
challenge is to choose the series coefficienisso that
the residual function is minimized. In the collocation
approach it is required that the residual function be
satisfied exactly at a set of collocation poiris,

rest) = 0. (23)

These equations together with the initial conditions form
a system of algebraic equations which should be solved to
give the expansion coefficientss.

3.4 Convergence

The order of the convergence of spectral methods is based
on the behavior of the series coefficients,. These
guantities, have the property of decaying to zero with
increasing n at the same qualitative rate, usually
exponentially. The smoother the function, the more
rapidly its spectral coefficients converge. It is shown that
representing the coefficients on a log-linear or log-log
graph gives the order of convergence. More details are
given in [11].

Definition 5(Algebraic index of convergence). The

(21) algebraic index of convergence, k, is the largest number
for which

0 (i) L\
Roal® =2 “izin—m! (HL) '

3.3 Function approximation

lim Jea|n' < o (24)

where the g are the coefficients of the series. In other

. ~words, k is the algebraic index of convergence, if for
Here, we present collocation scheme for solvingnp>>1

differential equations using RLFs and FRLFs. The first
step for solving differential equations, using collocatio
method, is to choose appropriate trial functions. Since we
are going to solve fractional differential equations on )
semi-infinite interval, we use FRLFs as the basis,4 Numerical Results
although we employ RLFs, for considering the rate of
convergence. In this section, collocation scheme based on RLFs and
By choosing FRLFs as the basis, the solution of theFRLFs is used to solve fractional viscoelasticity model
differential equation is approximated as introduced by equationa®); (7) and 8). The obtained
solutions for both basis are compared and the algebraic
N indexes of convergence for them are computed.
un(a,t) = ZOCana(t) Using appropriate replacements, Equatior) (s
n= converted to the following non-dimensional equatih [

ch~O (n—k) . (25)

Llal+1 ta

TN e e

(22) €D (1) +e(t) = £(t). (26)

wherec,s are unknown coefficients that should be found.By choosing the stress response due to the following step
The last term in the right hand side is included, since for allstrain

smooth functions, the fractional derivative in the Caputo 1, t>0,
sense, at origin, is zero. So, we add this term to surmount £t) = {O t<0 (@7)
difficulties. ’ ’

In the next step, the unknown function in the the exact solution of the model is as follows
differential equation and its initial condition are repgalc
by the approximating functionyy(a,t), and the residual o(t) = E1Eq (—t%) + Ex. (28)
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Fig. 1: The stress and strain functions of the model for differntigalofa.
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Fig. 2: Spectral coefficients of the solution of the fractional wislasticity model using FRLFs and RLFs fmr= % and
different values oN.

To obtain the approximate solution using collocation In the collocation technique, once the basis set has
scheme, the residual function is constructed by replacindeen chosen, the optimal sets for nodal points are the
€(t) in Equation 26) with en(t) = un(a,t) defined in  Gaussian points for each basidl]. Since the equation is
(22). So, we have defined on real positive line, fractional rational
Legendre-Gauss-Lobatto nodes are used as collocation

oints. These nodes are the roots of
res(t) = SDE en(t) + en(t) — £(t). @9 P
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Rut1a(t) — Ru—1q(t). By evaluating the residual order of convergence. As fast as the coefficients decay,
function at these nodes, we have the following system ofthe approximate solution converges to the exact solution.
algebraic equations Figure?2 illustrates that the spectral coefficients obtained
by FRLFs are approximately proportional to(©*),
regti) = while the spectral coefficients obtained by RLFs are
en(0) = proportional to less than (2. This fact is true for
other values ofx. From these graphs and DefinitiGnit
is found out that the collocation scheme with FRLFs has a
fourth-order convergence, whereas this scheme with
RLFs has a convergence rate less than two. The value
in these graphs is used to show a constant coefficient.

0, i=12,....,N+1,

(30)

The approximate solutionen(t), is determined after
solving this system for unknown coefficients. We
computed these coefficients usihgol ve command of
the Maple software. The approximate stressy(t), is
computed usingg) anden (t).

The graphs of stress and strain functions for different ]
values ofa, obtained by FRLFs, are shown in Figures 5 Conclusion
and 1b. Since the obtained graphs for RLFs and exact ] ) ] ]
solutions coincide with these graphs, they are omitted to~ractional rational Legendre functions and rational
prevent iteration. Legendre functions are employed to compute

Maximum errors between exact and approximate@Pproximate solutions of fractional ordgr vis_coelggticilt
solutions, || — ow||,,, obtained by FRLFs and RLFs are model. FRLFs are introduced for the first time in this
compared in Tabld. Considering this table we observe Paper. They enhance the convergence rate of RLFs
that although using RLFs give solutions which are in @pproximately twice. The results exhibit the high
good approximation with exact solution, but applying @ccuracy of the proposed methods. This property and
FRLFs give better solutions. Comparing obtained errorsSimple implementation of the methods demonstrate their
with errors reported ina], it is found that collocation rel|ab|l|ty fOI‘ SO.|V|ng other fractional pr0b|emS whicleli
scheme together with FRLFs or RLFs give more accuratén semi-infinite intervals.
solutions than discontinuous Galerkin method.
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