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Abstract: Fractional designs involve selection from a given set of experimental treatments as subset of treatments to make-

up a specified design measure that has such statistical properties as balance, high relative efficiency, D-optimality etc. For 

decades statisticians have relied on the use Defining Contracts (DC), and Latin Squares (LS) to construct fractional factorial 

designs. But these methods are shown to have very limited range of applications and sometimes produce designs that are 

singular. This paper introduces the method of Concentric Balls (CB) for constructing non-singular fractional designs. Each 

ball consists of treatments that are of equal distance from the center and using a set of rules for selecting treatments from a 

ball the CB method yields a small set of admissible designs. The best member of this admissible set is the desired 

design:{Best in the sense of maximizing the determinant of the normalized information matrix or maximizing the relative 

efficiency of the factorial effects.}Numerical examples show that the CB method covers every range of experimental design 

conditions and can produce fractional designs that are D-optimal. 

 

Keywords: Odd-fraction, concentric balls, relative efficiency 

1 Introduction 

Construction of fractional factorial designs is a 

topic that is extensively treated in most standard 

texts on design of experiments; see, e.g. Cochran 

and Cox (1957), Anderson and Mclean (1974). 

From n-independent, non-stochastic variables, 

where the ith variate, ix  appears at si-levels, we get 

nsssN  21

~
treatments and consider three 

kinds of treatment spaces :
~
X  

i)The uniform or symmetric form; 

 ,,,,2,1;,,,
~

2121 niins ssssxxxxX    

ii)The non-uniform or asymmetric type; 

 iiofpaironeleastatforssxxX iinA
 ,.;,,

~
1   

iii)The Irregular type; 

   ,,,2,1;,,,
~

..;
~~~

21121 iinR sxxxxXgeXXX    

 

 Other geometric forms can also occur.eg.

 nixxxxX in ,,2,1,11;,,,
~

21    is a 

product of continuous intervals; however, the 

coverage of this report does not include continuous 

intervals. 

As stated earlier, the problem of interest here is to 

construct an N-point design ),
~

( NNp  i.e. an 

nsss
N

N









21~ fractional factorial design, p 

being the number of parameters in the response 

function ).(xf  The fraction 
N

N
~ is considered an 

odd-fraction if  N is not divisible by any si, 

otherwise it is a regular fraction. 

 

For decades, the practice has been to construct 

fractional factorial designs using either Latin 

Squares (LS) or Defining Contrasts (DC); see, e.g. 

Anderson and Mclean. Two problems can arise 

from this approach:  

a) The DC and LS methods are inapplicable, as in 

333
27

13









. 
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b) The methods can produce singular or near singular designs as shown in table 3.3..., even  when the 

relative efficiency of the design is considered good. 

 This paper introduces the Concentric Balls (CB) method of construction that has a wide range of 

applications and can produce an admissible set of equivalent designs, leaving the scientist to make a 

choice. The CB method proceeds as follows: 

1) Arrange the N
~

support points into H groups or balls, so that support points that are of the same distance 

from the center are in one ball. Thus the hth ball,  ),,,( 21
 hnhhhh

xxxg  contains hn  support points, h = 

1,2, . . ., H, hkx is an n-component vector, k = 1,2, . . .,nh, 

where, 

 2
1

)( hkhkh xxd  is the distance from the center, and .21 Hddd    

2) Partition 
h

g into sub-groups according to the number of negative signs and zeros     appearing. at the 

support point ;hkx see section three (3) of this paper. 

3) Apply the selection rules; see section two (2) to build up the required design. 

These rules yield a small set of admissible designs whose determinants and relative efficiencies can be 

easily compared.  

Application of the idea of grouping of treatments towards construction of D-optimal exact designs have 

been employed by Onukogu and Iwundu (2007); and for D-optimals designs for 2-level factorial 

models and autoregressive error by Yeh and Huang(2005). Construction and analysis of fractional 

factorial designs on a wider platform has been considered by Gunst and Mason (2009).A range of 

techniques for construction of asymmetric fractional factorials as well as conditions for nonexistence of 

the designs have been given by Dey and Rahul (1999). A way has offered by Oludugba and Madukaife 

(2009) for segregating fractional factorial designs on the basis of their D-optimal and loss of 

information values. 

 As long as interest in a factorial experiment is restricted to a limited number of parameters 

(factorial effects) research in fractional designs will continue to flourish. 

In what follows, the basic algebra for the CB technique is discussed in section two, while numerical 

illustrations are given in section three. 

2. Algebraic Basis 

 The experimental space will be represented by the triple  

   nisxxxxXFX iinxx  ,2,1,,2,1;,,,
~

;,,
~

21   is a continuous, compact, metric space of trials, 

 ( );xF f x x X   is a set of continuous, differentiable functions.  ( );x x x X   is a set of 

continuous, non-negative error functions. Each set of the triple is considered finite and together they form a 

basis for in-depth study of the subject of design of experiments; see, e.g. Pazman (1987), Atkinson and 

Donev (1992), Onukogu (1997). 

 Let )(xf be a first-order interactive function defined by 

2.1)  ebXtXxf bt )(  

Xt = (xij) is an pN  extended design matrix; the p parameters comprising the linear and  interactive terms, 

),2( 2

2
1  nnp  

Xb is an bN  block incidence matrix;   jbbb kkkkdiagXX ;,,, 21  being the size of the jth  block, 

t  is a p-parameter vector of treatment effects 

e is an N-component vector of random error 

 The determinant of the information matrix in (2.1) equals, 

2.2)     tbbbbtttttj

b

j
XXXXXXXXRRIXXk 








 



11

1
)();det(det  

is the matrix of loss of information. 
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A geometric meaning of loss of information as cos
2
(.) of the angle of inclination of a treatment effect on 

the blocks has been treated by Onukogu. 

 Now, for an N-point design in one block (b = 1), 

 1 2; ( , , , ); 0 1, 1,2, , .;p i iR rr r r r r r i p r
 

    
 
is the loss of information on the ith treatment 

effect. Hence, the geometric mean, 

2.3)  
p

i

p

i
N rr

1

2

1
1)(












  

gives a measure of the overall efficiency of the design N relative to a complete block design. Notice that 

for (.),0 rri  is maximized when the design is balanced; ie. when .21 prrr    But (.)r does not 

take into account the determinant, ),det( tt XX  and therefore can take non-zero values for singular designs. 

But by including the determinant, we get the criterion for comparing designs: 

2.4) );()()( NNN rmd  
 

)/det()( NXXm ttN
  

To maximize (2.4) the following selection rules are to be applied when making-up the design measure 

:N  

i) 










N

i

ijx
1

2max   (ii) 
1

min
N

ij

i

x


 
 
 
  (iii) 

1

min , 1,2, , ,
N

ij ij

i

x x j p j j



 
  

 
  

We recall that )( ijt xX  is the extended treatment matrix. 

Realising that the number of support points in 
1

g is );2(2 2

2
1

1  nnpn n
 

then, for the response function (2.1),the optimal N-point design is constructed from 
1

g only. But, this is 

not the case for a complete quadratic function, 

2.5)   exaxxaxaaxf
n

i

iii

ii

iiii

n

i

ii  




 1

2

1

000)(  

 The starting point of the CB procedure is dependent on the relative values of N and p. When N = p, 

the procedure obtains the design as follows: 

a) At the initial step take (p – n – 1) support points from 
1

g and the rest of (N – p + n +1) from 
32

, gg

by application the rules in (2.4) above. This yields a set of r admissible designs 

 .))((),2(),1(

)0(

rNNNAS    

b) Compute    (0) (0)

( ) ( )max ;N N i N i A
i

m m S     

c) At the k
th
 step take (p + k – n – 1) support points from 

1
g and the rest from 

32
, gg and compute 

    )(

)()(

)(

)( ;max k

AiNiN
i

k

kN Smm    

d) Stop, if      )1()()1(   k

N

k

N

k

N mmm   

For N >> p, the above sequence can begin by taking p or p+1 points from g . It seems that by properly 

relating the number of points to be taken from 
1

g  to the ratio p/N, it should be possible to develop a non-

iterative procedure for constructing optimal fractional factorial designs for quadratic response functions. 

 

3. Numerical Examples 

 Given are trivariate first-order interactive response surface, 

3.1) exxaxxaxxaxaxaxaaxxxf  32233113211233012011000321 ),,(  

and a cubic surface,  .3,2,1,1,0,1;,,
~

3211  ixxxxX i  
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Using each of the three methods, we consider the construction of two fractional factorial designs: 

a) ,333
27

9









for a regular fraction, and 

b) ,333
27

11









for an odd-fraction.  

The treatment table is given by 

 

3.2 Table of Treatments For ),0,(),0,(),0,( 321  xxx cubic surface 

 

0
0 0 0

0

    
  
    

 

     0
0 0 0

0

    
  
    

         

0 0
0 0 0
0 0





  

  
0 0

0 0 0 0 0 0

0 0

         

     

         

 

Using for instance 3

2

21 xxx as defining contrast; see, e.g. Anderson and Mclean, for details, the DC method 

produces the design 























































0

0

00

0

00

00

)(9 DC

, whereas the Latin square method gives 























































0

0

00

00

0

0

)(9 LS

 

The groups and subgroups required for the CB method are: 


1

g     
2

g    
3

g     0004 g  

 

  

 

 

 

 

 

 

 

 

Application of the rules under (2.4) gives two equivalent designs, 
.,

13

1)2(

)(9

10

1)1(

)(9 


















g

g

g

g
CBCB 

 

The determinants of these designs are reported in Table (3.3) 

 

3.3 Determinants, Det(.) And Relative Efficiencies, RE(.) For Three Methods of  Constructing 

Fractional Designs for First-Order Interactive Functions 

 

 

 

 

- - -

 

10g

 
- - + 

- + - 

+ - -  

 

11
g

 

+ + - 

+ - + 

- + + 

 

12
g

 

+ + + 13g

 

- - 0 

- 0 - 

0 - - 

20
g  

- + 0 

+ - 0 
21

g  

- 0 + 

+ 0 - 
22

g  

0 - + 

0 + - 
23

g  

+ + 0 

+ 0 + 

0 + + 

24
g  

0 0 - 

0 - 0 

- 0 0 

 

30
g

 

0 0 + 

0 + 0 

+ 0 0 

 

31
g
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Serial 

Number 

Fractional 

Design 

METHOD OF CONSTRUCTION 

DC LS CB 

Det(.) RE(.) Det(.) RE(.) Det(.) RE(.) 

1 
333

27

9








  3.51246 

x E-05 

0.98331 3.51246 

x E-05 

0.98331 41.4103 

x E-02 

0.99985 

2 
333

27

11








  NA NA NA NA 69.9511 

x E-02 

0.9988 

3 14
2 3 5

30

 
   

 

 NA NA 31.3339 

x E-02 

1.0000 72.7571 

x E-02 

0.99875 

4 17
2 3 5

30

 
   

 

 NA NA NA NA 92.35486 

x E-02 

0.9999 

 

NA means Not Applicable. 

Similarly, for the 333
27

11








 odd-fraction the CB method produces two equivalent designs: 































12

1)2(

)(11

11

1)1(

)(11 ,
g

g

g

g
CBCB   

Both the DC and LS methods are inapplicable in this case of odd-fraction. 

If the space of trials is non-uniform asymmetric tri-variate surface, 

 ,)2,1,0,1,2(),0,(),(;,,
~

3213212  xxxxxxX  

We consider the construction of two designs: 

c) 532
30

14








  for regular fraction, and 

d) 532
30

17








  for odd-fraction. 

Just as in table 3.2, a corresponding treatment table is set-up and since 14 is divisible by 2, the Latin-

Square method can be applied. 

i)The first step is to set-up a Partial Latin Square (PLS), L using the letters a and b. 

ii) Next, superimpose L on the first batch of 15 treatments where ,11 x and then on the other batch of 15 

treatment at ,11 x  

 

























aba

bab

aba

bab

aba

L

 

iii) Finally, the treatments that coincide with the letter b are grouped together to form the design: 

 

















































































20

00

20

20

00

20

)(14 PLS

,        det(.) = 31.3339 x E
-02 

On the contrary the CB method produces an optimal designs; 
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















































































2

2

2

2

2

2

2

2

2

2

2

2

2

2

)(14 CB

   with det(.) =  72.759 x E
-02

 

The CB construction of 532
30

17









also gives two equivalent designs: 

 





















2
1

1
)1(

)(17 g

g

CB  and 





















2
1

1
)2(

)(17 g

g

CB   with  det(.) = 92.35486 x E
-02 

; 



















































2

2

2

2

2

2

2

2

1
g

 

Notice that all the CB designs for the first-order interactive functions are constructed from the first ball for 

all values of N. This however is not the case for quadratic response function defined in (2.5). 

Apparently, two concentric balls are required to construct a design for quadratic functions. For example, 

two equivalent designs are obtained by the CB method for a ;333
27

10









 namely, 























31

12

11

10

)1(

)(10

g

g

g

g

CB
   and   























30

13

12

11

)2(

)(10

g

g

g

g

CB
 with 04588.1(.) m x E

-04
. 

Similarly, for the asymmetric surface, the CB method gives two equivalent optimal designs for  

 ;532
30

10









namely, ;

42

1)2(

)(10

40

1)1(

)(10 





























g

g
and

g

g
CBCB   

 
14240

,
0

0
,

0

0
ggg 

























 is given above. 

 

Summary and Conclusion 

 
The paper has shown that DC method can be used to construct fractional factorial designs only when the factor levels are uniform 

and even at this, the relative efficiency of this method is comparatively inferior. On the other hand, the Latin square method can be 

applied both for uniform and non-uniform levels provided only that the fraction is regular. Of the three methods it is only the CB 
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method that can construct odd-fractional factorial designs; designs with the highest level of efficiency; designs that are required to 

be balanced in one replication as well as designs that are D-optimal. 
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