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Abstract: In this manuscript we consider the transmission probleronim space dimension, for linear dissipative waves withlipca
indirect stabilization. We study the wave propagation inediam with a component with attrition and another being $yngfastic.
We show that for this type of material, the dissipation pmtlby the frictional part is strong enough to produce expbakdecay of
the solution.
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1 Introduction respectively and the functiora = a(x) € L(0,L),
satisfies

Wave equation with localized damping has been studied

by many people, for instance se.[For locally indirect 0 <@ <a(x) <&, a.e.on[0,L], (6)

stabilization or indirect control, se€][ For semilinear ,ith ap anday are positive constants.

wave equation with localized damping in unbounded

domain seeJ|. Transmission problem to wave equation The energiesE, = Ey(t) and E, = E,(t) associated to
with localized frictional damping forms the centre of this equations{) and Q) are given by

work. In this paper, we consider the following model

where the material has one component purely elastic 10 2 2
and another has frictional localized dampiag)v; that Bu(t) = E[L(p1|w| + K1) (7)
produces a locally indirect stabilization 1 /L 5 )
. Ev(t)==

ot — ko 0in (L0 x (0w), (1) 0=, (et rahalae ®
P2Vit — KoVxx +a(X)vt = 0 in (O, L) x (0, ), (2)  We denote byE(t) = Eu(t) + Ey(t) the total energy
with boundary conditions associated to the systerf){(5).
u(—L,t) =v(L,t) =01in (0, ), (3)  From the mathematical point of view, a transmission
transmission conditions problem for Wﬁv?] phropagation cgnsistﬁ on a hyperbrc]JIic

. equation for which the corresponding elliptic operator has

u(0,t) = v(0.t), K1ux(0) = kavx(0) in (0, ), (4)  discontinuous coefficients, sed][Recently, in the work
and the initial data [5], the authors have pointed out that the systdpa(5)

0 T arises in many applications in the engineering and
sg’ 8; ;\ljo((:)) &&’ 8% ;3183 :2 ((OLI’_C)))’ (5)  evolution models of the displacement of an elastic body
’ RN s consisting of two different types of materials, one of them
Here,p1, K1, P2, K2 are positive constants, which represent simply elastic and the other is subject to the action of an
the density and tension in each part of the materialexternal force. The systenl)¢(2) with a(x) = a positive
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constant has been investigated i6] by Bastos and Let @ = u, ¥ = w. Denoting(u,v, @, ) € 5 we define
Raposo and has shown the exponential stability. Riverahe inner product iz’ as follows:

and Oquendo 7] looked at transmission problem of _ 0 _
viscoelastic waves and established that the dissipatiori(u,v, @, ), (U,V, @, Q)) » ::/ [K1UxUx + p1@]dX
produced by the viscoelastic part is strong enough to -L .

produce the exponential stability, no matter small its size —

is. See alsog]. In [9] the transmission problem for the +/o (kv + p2tppldx
longitudinal displacement of an Euler-Bernoulli beam, \ye can write 0)-(5) as a Cauchy problem

where one small part of the beam made of a viscoelastic

material with Kelvin-Voigt constitutive relation was {j U = @U, t>0, (10)
considered. The authors proved existence, uniqueness andV (0) = Uo = (o, Vo, g, va)',

exponential stability by semigroup approach and alsowhere the operatdkis defined by : D(«7) © 7 — A
numerical scheme was presented. About system with

frictional damping and delay we mention A. Benseghir o o1 O

[10] where the transmission problem in a bounded 0 0 0 |

domain was analyzed. Under suitable assumptions on th& = oz 0 0 0 (11)
weight of the damping and the weight of the delay, the K252 0 _aX))

existence and the uniqueness of the solution using the p2 X P2

semigroup theory and the exponential stability by energywith

method was analyzed. In this work, we establish the (uv) € H2, (¢, ) € H}
exponential stability of the semigroup associated to theP (<) = { 7K1Ux(0)7= K;Vx(O)- L’}
system {)-(5). The technique used here besides offering T )
the advantage of the semigroup theory, also allows tdtis easy to prove that/ is dissipative, that is,
obtain information about the infinitesimal generator L 5

associated to the system. This type of approach allowd#U,U)» = —Pz/oa(x)|ll/| dxforallU € D(«/). (13)

establishing, for example, the idea that the spectrum of . . e
the infinitesimal generator associated td)-(5) is The goal is to show that is the infinitesimal generator

constituted only by isolated eigenvalues. We use thePf @ Co-semigroup, thus proving thai@) is well-posed
Sobolev spaces and its properties as it [and and consequently, the systef)-(5) would have a unique
semigroup theory, seel®. We apply the semigroup solution with regularity depending on whedg is located.
technique for dissipative systems, see Liu and Zhash [ In this direction we consider the following corollary of the
which is different from some others in the literature, like Lummer-Phillips theorem.

as the energy method, see Rivetd][ the direct method,  Corollary 1.Let «# be a linear operator with domain
see Kormonik 1516] and Nakao's method, seel].  p(«) dense in a Hilbert space?. If < is dissipative
This manuscript is organized as follows. Section 2 dealsang 0 € p(«7) (wherep(«) is the resolvent set of).

with setting of the semigroup where we prove the Theny is the infinitesimal generator of ag@emigroup
well-posedness of the system. In section 3, we show theyf contractions in.

exponential stability using the Gearhart-Huang-Pruss o
theorem, 18,19,20). The next lemma then ensures that the operafas in the

conditions of corollaryi.

(12)

Lemma l.Let p(</) be the resolvent set @f. Then,0 €
p ().

Proofln fact, givenF = (1, f2, f3, f4) € # we must get
U=(uv,¢,P)eD(«),withU # 0 such that

In this section, we prove the existence and the uniqueness’U = F (14)
of solution of system X)-(5) by using the semigroup

2 The Semigroup Setting

theory. So let us define and

V[~ < ClIFlz, (15)
m _ m m —
H"=Hg'(-L,0) xHg'(O,L), m=1,2. for some positive constar@ independent ofJ and F.
L2 = L2(—L,0) x L2(O,L). Equation (4) leads to
H = {(u,v) € HY; u(-L) =v(L) =0, u(0) =v(0)}. 6 — fLin HL(—L,0), (16)
_ 2l

Now the energy space is defined by Y=1"inHOL), a7
Kilxx = p1 T2 in L?(—L,0), (18)
A =H x L2 9)  Kovx—a(X) P = pof*in L2(0,L). (19)
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From definition ofD(<) in (12) one must still have

u(—L) =v(L) =0, u(0)=v(0), (20)
¢(-L)=y(L)=0, ¢(0)=y(0), (21)
K1Ux(0) = Kavx(0). (22)

Consider the bilinear ford : H} x H} — C and the linear
functionalh : H — C given by

0

L
I(UV), (W, @) = Ky / B /0 Ve

0 L L
hw ) =—p1 | Fwdx—p [ fdx— [ aypax

Itis easy to get thal is continuous and coercive, ahds
continuous. By Lax-Milgram lemma

J((u,v), (w, @) = h(w, @) forall (w,¢) < Hﬁ (23)

has a unique solutiofu,v) € Ht. From Agmon-Douglis-
Niremberg theorem (se®]], page 135) it follows from
equations18), (19) that(u,v) € H? and (5) is assured, so
0ep(A).

Theorem 1.The operatore/ is the infinitesimal generator
of Co-semigroup of contractions(§ = € in 7.

ProofBy (13) we have that is a dissipative operator.
D(«) is dense in#’. Lemmal ensures that @ p(«).
The conditions of corollar} are satisfied and s¢ is the
infinitesimal generator of &p-semigroup of contractions
in 7.

The existence and uniqueness result is stated as follows.

Theorem 2.Let Uy € 2Z, then the system

U = «U, t >0,
U(0) = Uy,

has a unique weak solution g C((0, );.5#’). Moreover,
ifUp € D(«7) then Ue C((0,00); D(.«7)) NCL((0, 0); 7).

ProofThe proof is a direct consequence of the theoflem
and standard semigroup theory.

3 Exponential Stabilization

In this section we prove the exponential stability by using

the semigroup theory.

LemmaZ2.0(«/) the spectrum ofe/ consists only of
isolated eigenvalues with finite multiplicity.

ProofFrom the previous section, we havecOp ().
From Rellich-Kondrachov theoremD(«?) C 7

RemarkThe lemma2 asserts thapi € o(7), if and only
if, there existd) € D(«/), with U # 0 such that

(Ul — &)U = 0.

We then present the necessary and sufficient conditions for
exponential stability of a g2semigroup of contractions on

a Hilbert space. This result was obtained by GearHagt [
and Huang 19 independently (see also Prugg)]).

Theorem3Let St) = €“ be a G-semigroup of
contractions in a Hilbert space. Then, (t$ is
exponentially stable if, and only if,

iR={ip:peR}Cp()
and

limsup||(iul —.«) 7| < .

|H|—o
Lemma3.iR C p(«).

Proof From previous results, it is known that(.<) is
formed only by eigenvalues of7, so it must be shown
that no element inR can belong too(«) implying
therefore  that  such elements belong to
p(«/) = C\ o(«). By contradiction, suppose there
exists u € R, such thatip € o(«), in this way, there
existsU = (u,v, ¢, ) € D(«7), with U # 0 such that

(iul — /) U =0 (24)
that is equivalent to

itu—¢ =0, (25)

iuv— =0, (26)

iUpP1d — KiUxx = O, (27)

P2 — KaVxx +a(x) = 0, (28)

together with the condition20)-(22). Taking the real part
in (24) and using {3) we obtain

/OLa(x)|L[J|2dx: 0.

Therefore = 0. From @5) and @7) results
H2pLu+ Kilk = O,

from (20) and @2) we obtain

u(—L) = u(0) = ux(0) =0,

thusu = 0. From @5) we have¢ = 0. We conclude that
U = 0, which contradicts the fact that it is an eigenvector.

compactly and thuseZ has compact resolvent set, in Lemma4.

addition D(«7) is closed because it is infinitesimal
generator of &p-semigroup, so the result follows from
[22], theorem 6.29.

limsup||(iul —.«) 7| < .

|u|—eo
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ProofThe proof is performed using again a contradiction consequently

argument. Suppose that

limsupl||(iul —.27) || = oo.

|| o0

There are sequenced, = (f} 2 13 14 ¢ 7,
iuh €

[|(ipnl —27) " Fal|
[|Fall

- )

or equivalently

(il = )" Fal 7 = nl[Fal L (29)
and

itUn — @/Un = Fa. (30)
From 29 and 30) we have,

[Unlle = nl|Fal |z, (31)

that is,

1

-

Therefore,

Fn— 0 strongly in 7. (32)

|[Fnllr <

From @30) we have
iHn||Un||if —(2/Un,Un) s = (Fn,Un) »
and using 13)

L
4ol [Unl 2 + 02 /O a(X)| gn|2dx = (Fn, Un) -

Taking the real part, applying Schwarz’s inequality, using

thatU is limited and 82) we obtain

pazo [ 14nfPdx < py [ “alun ax
= Re(Fn,Un).» < |[Fallx — 0,
thus
Yn— 0 in L3(O,L). (33)
Multiplying (30) by i we have
— nUn — i.7Up = iFn,
o)
Hn|Unl |3, = —i(Fn,Un) s — (7 Un,Un) o,
thus
|bn[[Unl[3 < [(Fn,Un).z| + [ (7Un, Un) e,
from (13), (32), (33) and from Schwarz’s inequality

L
[l |Unl 13, < ||Fn||%’+/o a(x)|yn|*dx— 0

p() with [Un| — o and
Un - (Un,Vn, ¢n, Lljn) S D(ﬂ), W|th ||Un||% — 1, SUCh that

Hn|Und 72 — O, (34)

Nn|an|Ez — 0, (35)

Hn|én|Z2 — O, (36)

Hnl |72 — O. (37)
(30) can be written as

i ntin — ¢ = f2, (38)

Vo — Y = f2, (39)

iP1Hn®n — K1lngx = P1 fr?a (40)

iP21nWn — KoVnyx +a(X) Y = P2 f;‘, (41)

Multiplying (38) by unun and integrating orj—L,0] we
have

0 0
i“r%|un|52 = Un[L Prnundx+ IJn/—L fnlundx

Using Young and Poincare’s inequalities, we get a positive
constantg such that

1 Co
|Hn|2|un|fz < §|Un||¢n|52 + E|Un||unx|52

1 1
+ §|fnl|fz + §|I~ln|2|unlfz,

and then

|kl ?|Un|Z2 < |tnl|nlP2 + Coltnl[un P2 + | fa 22 (42)
From 32), (34) and 36) in (42) we obtain

Untn — 0 in L2(—L,0). (43)
Using (32) and @3) in (38) we obtain

¢n— 0 in L2(0,L). (44)
Using 32) and @3) in (39) we have

UnVn — 0 in L2(0,L). (45)

Now, replacing 88) in (40) and @9) in (41) we get the
system

—pluﬁun — K1Unxx = P1 fr? +ip1tn fn1 (46)

—P2lgVn — KaVingx +18(X) iV = P2y — ip2pin £

+a(x)f2. (47)
Since U, € D(«), u, and v, satisfies 20) and @2),
multiplying (46) by u, and @7) by vy, integrating on
[-L,0] and[0,L] respectively, adding and taking the real
part we obtain

K1|Unx|% + Ko|Viy|% < p1p2|un|?, + P22 |va %

pic1 (32 0 3
+2—k1|fn||_2pl/_L faundx (48)

L L
+p2 / fAvadx / a(x) f2vadx.
0 0
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By Poincare’s inequality we gef such that
|Un|Ez < Cl|Unx|Ez

and writing

0 0
3 _ Ve 3 vke
pl/,L fnundx_/inl—\/k_1 fa —\/C_lundx

by Young's inequality
0 2
pici ky
pl/,L f3undx < 21—k1|f,;°’|52 + §|Unx|fz. (49)
Similarly we getc,, c3 positive constants such that

L 2C k
0 /0 fAvndx < ‘12—k22|f,$|52 n Zz|vnx|fz. (50)

L a’cs
/0 a(x) f2vadx < 41—k2

Using @9), (50), (51) in (48) we have

k
[ 13152+ 5 2 (51)

K1 K2
7|Unx|Ez 3 VnxlF2 < PLUEUn|Z2 + P25 Vnl 2

p3ce

2
C
L Pic
4k;

2kq
ascs
4k,

32 42
|fn|L2+ |fn||_2

212
|fn||_2-

makingn — o in the previous inequality and taking into

account 82), (43), (45 we obtain

Unx — 0 in L2(—L,0), (52)
Vi = 0in L2(0,L). (53)
We conclude from33), (44), (52) and 63) that
[lUn]|z — 0 in 52,

which contradicts the fact thdtJy|| » = 1.

Finally we are in position to prove the principal result of

this work.

Theorem 4.The semigroup associated to the systdin
(5) is exponentially stable.

ProofThe result follows directly from the lemm&sand4
and theoren3.

4 Conclusion
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