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1 Introduction

The warped product Θ=I ×ψ Θ̃ of an open connected

interval (I,−dt2) of R and a Riemannian manifold Θ̃
with warping function ψ : I → R+ is called a generalized
Robertson-Walker space-time (or GRW space-times) [25,
16]. This family of Lorentzian space-times broadly
extends the CRW space-times, Friedmann cosmological
models, Einstein-de Sitter space-times and many others
[4,16]. The CRW space-time is regarded as cosmological
models since it is spatially homogeneous and spatially
isotropic whereas GRW space-times serve as
in-homogeneous extension of RW space-times that admit
an isotropic radiation [4,16]. A Lorentzian manifold is

called a PFST if the Ricci tensor R̃i j takes the for

R̃i j = αgi j +βTiT j, (1)

where α , β are scalars and T is a 1-form metrically
equivalent to a unit time-like vector field [17]. The PFST
in the language of differential geometry are called QES
where T is metrically equivalent to a unit space-like
vector field. Recently, in [17], it is proven that a PFST
with divergence-free conformal curvature tensor is a
GRW space-time with Einstein fibers given that the scalar
curvature is constant.
Recently, in [24] proved that the Ricci tensor of a GRW

space-time in all classes of Gray’s decomposition [14],

but C̃ ⊕ D̃ is either Einstein or takes the form of a perfect

fluid whereas C̃ ⊕ D̃ is not restricted. The class C̃ ⊕ D̃ is
characterized by ∇R=0, that is, the scalar curvature is
constant. Now, the following question arises. Does the

Ricci tensor of all GRW space-times in C̃ ⊕ D̃ reduce to
be Einstein or take the form of a perfect fluid ?.

A (pseudo-) Riemannian manifold (Θ̃ ,g) is called a
generalized quasi-Einstein manifold (briefly, G(QE)ñ) if
its Ricci tensor satisfies

R̃i j = αgi j +βTiT j + γNiN j, (2)

where α , β and γ are non-zero constants, T and N are
1-forms corresponding to two orthonormal vector field [6,

13,19]. If γ=0, then (Θ̃ ,g) reduces to a quasi-Einstein
manifold.
A non-flat Riemannian manifold (Θ̃ ,g)is said to be a
mixed generalized quasi-Einstein manifolds (briefly,
MG(QE)ñ), if its Ri j 6= 0 subjected to [3]:

R̃i j = αgi j +βTiT j + γNiN j + δ (TiN j +T jNi), (3)

where α , β , γ and δ are non-zero scalars and T and N

are 1-forms, such that TiT
i=N jN

j=1 and TiN
j=0.

After that MG(QE)ñ and GRW space-times have been
studied by various geometer in different ways [10,11,1,8,
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5,27,28,29,30,31] and many others. The trace of
equation (3) gives,

τ = ñα +β + γ

. A vector field ξ on (Θ̃ , g) is called torse-forming vector
field (briefly,TFVF) if it fulfill the condition ∇ρ1

ξ =ρρ1 +
σ(ρ1)ξ , where ρ1 ∈ TΘ , σ(ρ1) is a linear form and ρ is
a function, [26]. In term of local transcription, it can be
written as

ξ l
,i = ρδ l

i + ξ lσi, (4)

where ξ l and σi are the components of ξ and σ
respectively, and δ l

i is the Kronecker symbol. A TFVF ξ
is called [26]:

i) recurrent if ρ=0, i.e.,

ξ l
,i = ξ lσi, (5)

ii) concircular if the σi is gradient covector (i.e., σi=σ,i),
i.e.,

ξ l
,i = ρδ l

i , (6)

iii) convergent if it is concircular and ρ=const.exp(σ).

A ϕ(R̃ic)-vector field is a vector field on (Θ̃ ñ
,g) with

metric g and Levi-Civita connection ∇̃, which satisfies the
condition [15]:

∇̃ϕ = θ R̃ic, (7)

where θ is a constant and R̃ic is the Ricci tensor.
Obviously, when (Θ ,g) is an Einstein space, the vector
field ϕ is concircular. Moreover, if θ=0, the vector field ϕ
is covariantly constant. Thus in our study we suppose that
θ 6= 0 and (Θ ,g) is neither an Einstein space nor a
vacuum solution of the Einstein equations. In a locally
coordinate neighborhood U (ρ1), the equation (7) takes
the form

ϕ l
,i = θR̃ l

i , (8)

where ϕ l and R̃ l
i are components of ϕ and R̃ic,

respectively. In term of lowering indices, i.e.,

ϕi, j = θR̃i j, (9)

where ϕi = ϕagia, R̃i j = giaR̃
a
j .

In the whole paper we use the concise as PFST:Perfect
fluid space-time, CRW:Classical Robertson-Walker
space-time, GRR:Generalized Ricci recurrent, QES:
Quasi-Einstein space, RVF:Recurrent vector field, CVF:
Concircular vector field and TEM:Total energy
momentum.
In this work we characterize MG(QE)ñ in view of the
Z -tensor. As follows: After introduction in Section 2, we
deduce the basics results of Z -tensor on MG(QE)ñ.
Section 3 is devoted to the study of MG(QE)ñ using the
properties of Z -tensor. In Section 4 we analysis
MG(QE)-GRW space-times with Z -tensor and find the
crucial results. Finally, we construct an example of
MG(QE)

4̃
.

2 Z -Tensor on MG(QE)ñ

A generalized symmetric tensor of type (0,2) on (Θ̃ ,g)
which is called Z -tensor is given by [20]:

Zi j = R̃i j +φgi j, (10)

where φ is an arbitrary scalar function. In Refs. [20,21,
22,23] various properties of the Zi j-tensor were pointed
out. The classical Z -tensor is obtained with the choice
φ= τ

ñ
. In particular cases, the Z -tensor gives the several

well known structures on (Θ̃ , g). For example, i) if Zi j=0
(i.e, Z -flat), then this manifold reduces to an Einstein
manifold [2]; ii) if ∇kZi j=λkZi j(i.e., Z -recurrent), then
this manifold reduces to a GRR manifold [12]; iii) if
∇kZi j=∇iZkl (i.e., Codazzi tensor), then we find

∇kR̃i j-∇iR̃k j=
1

2(ñ−1)(gi j∇k − gk j∇i)τ[7]. iv) The relation

between the Z -tensor and the energy-stress tensor of
Einstein’s equations with cosmological constant Γ is
Zk j=κ̃T ∗

k j[9], where φ=- τ
2
+ Γ and κ̃ is the

gravitational constant. In this case, the Z -tensor may be
considered as a generalized Einstein gravitational tensor
with arbitrary scalar function φ . The vacuum solution

(Z =0) determines an Einstein space Γ =( (ñ−2)
2ñ

)τ; the

conservation of TEM (∇lT ∗
kl=0) gives (∇ jT

∗
kl=0) then

this space-time gives the conserved energy-momentum
density.
In a MG(QE)ñ, from the equation (10) we have

Zi j = (α +φ)gi j +βTiT j + γNiN j + δ (TiN j +T jNi),
(11)

and scalar Z ⋆, one can get

Z
⋆ = gi j

Zi j = (α +φ)ñ+β + γ. (12)

Also, from (11) we yields

T
i
T

j
Zi j = α +β +φ , T

i
N

j
Zi j = δ , (13)

N
i
N

j
Zi j = α + γ +φ , (T i

T
j −N

i
N

j)Zi j = β − γ.
(14)

So we state that:

Proposition 1. The trace of Z -tensor on a MG(QE)ñ with

generators T and N , is given by

Z
⋆ = (ñ− 1)T i

T
j
Zi j +N

i
N

j
Zi j −β (ñ− 2)

or,

Z
⋆ = (ñ− 1)N i

N
j
Zi j +T

i
T

j
Zi j −β (ñ− 2)

Also, let T is an eigenvector of the Z -tensor with
eigenvalue λ1, i.e., T iZi j=λ1T

j. Then from (11), we get

T
i
Zi j = (α +φ)T igi j +βT

i
TiT j + γT

i
NiN j

+ δ (T i
TiN j +T

i
T jNi), (15)
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which implies that (λ1 −α −φ −β )T j=δN j, that is, δ=0
and λ1=α + β + φ . Similarly, for the eigenvector N

corresponding to the eigenvalue λ2, we have

N
i
Zi j = (α +φ)N igi j +βN

i
TiT j + γN

i
NiN j

+ δ (N i
TiN j +N

i
T jNi), (16)

which is equivalent to (λ2 −α − γ − φ)N j=δN j. In this
sequel we get λ2=α + γ + φ and δ=0. For conversely, we
get from (2) that

T
i
Zi j = (α +φ)T igi j +βT

i
TiT j + γT

i
NiN j

= (α +β +φ)T j (17)

Also,

N
i
Zi j = (α +φ)N igi j +βN

i
TiT j + γN

i
NiN j

= (α + γ +φ)N j.

Thus we set up the result:

Theorem 1. If a MG(QE)ñ admitting Z -tensor then the

manifolds reduces to G(QE)ñ iff one of the generators is

an eigenvector of the Z -tensor.

Again, taking covariant derivative of the equation (11), we
have

∇kZi j = (∇kφ)gi j +β [(∇kTi)T j +Ti(∇kT j)]

+ γ[(∇kNi)N j +Ni(∇kN j)]

+ δ [(∇kTi)N j +Ti(∇kN j)+ (∇kT j)Ni

+ T j(∇kNi)], (18)

also we write

∇iZk j = (∇iφ)gk j +β [(∇iTk)T j +Tk(∇iT j)]

+ γ[(∇iNk)N j +Nk(∇iN j)]

+ δ [(∇iTk)N j +Tk(∇iN j)+ (∇iT j)Nk

+ T j(∇iNk)] (19)

So, the Codazzi deviation tensor H is given by

Hki j = ∇kZi j −∇iZk j = (∇kφ)gi j − (∇iφ)gk j

+ β [(∇kTi)T j +Ti(∇kT j)− (∇iTk)T j −Tk(∇iT j)]

+ γ [(∇kNi)N j +Ni(∇kN j)− (∇iNk)N j −Nk(∇iN j)]

+ δ [(∇kTi)N j +Ti(∇kN j)+(∇kT j)Ni +T j(∇kNi)]

− δ [(∇iTk)N j +Tk(∇iN j)+(∇iT j)Nk +T j(∇iNk)], (20)

which implies that

T
j
Hki j = (∇kφ)Ti − (∇iφ)Tk +β [(∇kTi)− (∇iTk)]

+ δ [(∇kNi)− (∇iNk)].

and

N
j
Hki j = (∇kφ)Ni − (∇iφ)Nk + γ[(∇kNi)− (∇iNk)]

+ δ [(∇kTi)− (∇iTk)].

So, we conclude that:

Theorem 2. Let a MG(QE)ñ is Einstein-like of class D(i.e.

the Z -tensor is a Codazzi tensor), then the generators T

and N are closed, provided φ=constant.

3 Properties of Z -tensor on MG(QE)ñ

Throughout this section, we obtain some interesting
outcomes by using the Z -tensor on a MG(QE)ñ. First, we
examine the following findings.

Theorem 3. The vector field φl and the RVF λl on a

MG(QE)ñ admitting Z -tensor must be parallel and given

by

φk =

(
(α +φ)ñ+β + γ

ñ

)
λk.

Proof. If the Z -tensor is recurrent with λk as the RVF.
Then from (10) we have

λkZi j = R̃i j,k +φkgi j, (21)

Multiplying (21) by gi j, we get

λkZ
⋆ = τ,k + ñφk. (22)

Since τ must be constant so from (22) and (12) we yields

λk[(α +φ)ñ+β + γ] = ñφk, (23)

which implies that

φk =

(
(α +φ)ñ+β + γ

ñ

)
λk. (24)

Hence, the proof is finished.

Theorem 4.If a MG(QE)ñ admitting Z -tensor, then τ
ñ

is

an eigenvalue of the Ricci tensor R̃ jk as the eigenvector

ρ1 given by λ (ρ1)=g(ρ1,υ).

Proof. Let Z -tensor is recurrent, we have

Zi j,k = λkZi j. (25)

Multiplying (25) by gik, we get

Z
k
j,k = λ k

Z jk. (26)

Using the Ricci identity, R̃k
j,k=0. Then we have

Z
k
j,k = φ j. (27)

In view of (10),(26) and (27), we yields

φ j = λ k(R̃ jk +φg jk). (28)

Using (24) in (28), we obtain

λ k
R̃ jk =

(
(α +φ)ñ+β + γ

ñ

)
λ j. (29)

So the proof is done.
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Theorem 5.A necessary and sufficient condition for a

vector field φ k generated by the scalar function φ on a

MG(QE)ñ to be divergence-free is that the divergence of

λk is of negative value and has the form

λ k
,k =−‖λ‖2

.

Proof. Taking the covariant derivative of (24), we get

φk,p = φpλk +[
(α +φ)ñ+β + γ

ñ
]λk,p. (30)

Again using (24) in (30), we have

φk,p = [
(α +φ)ñ+β + γ

ñ
](λkλp +λk,p). (31)

Multiplying (31) by gkp, we obtain

φ k
,k = [

(α +φ)ñ+β + γ

ñ
](‖λ‖2 +λ k

,k). (32)

If the vector field φk is divergence-free and φ 6=- τ
ñ
, then

(32) implies that

λ k
,k =−‖λ‖2

. (33)

Conversely, from (33) and (32) we get φ k
,k=0. Now the

proof is finished.

Theorem 6.If the vector field λk on a MG(QE)ñ is

divergence-free then the divergence of the vector field φk

has the form

φ k
,k =

ñ

ñ(α +φ)+β + γ
‖φ‖2

.

Proof. Since the relation (30) holds on a MG(QE)ñ, using
(24) in (30), we get

φk,p =
ñ

ñ(α +φ)+β + γ
φpφk +

ñ(α +φ)+β + γ

ñ
λk,p

(34)
Multiplying gkp in (34), we obtain

φ k
,k =

ñ

ñ(α +φ)+β + γ
‖φ‖2 +

ñ(α +φ)+β + γ

ñ
λ k
,k.

(35)
If the vector field λk is divergence-free then from (35) the
divergence of the vector field φk has the form

φ k
,k =

ñ

ñ(α +φ)+β + γ
‖φ‖2

. (36)

So, the proof is over out.

Theorem 7.If a MG(QE)ñ admits a TFVF as per the 1-

form φk in the relation φk,p=εgkp+µpφk, then the vector

field λk is also TFVF satisfies the following equation

λk,p = π̃gkp + π̃pλk

where π̃= ñε
ñ(α+φ)+β+γ and π̃p=(µp −λp).

Proof. Let φk is a TFVF with a scalar function ε and a
vector field µk. Then from (4) we have

φk,p = εgkp + µpφk (37)

By virtue of (30), we get

φpλk +[
(α +φ)ñ+β + γ

ñ
]λk,p = εgkp + µpφk (38)

Again, using (24), we obtain

λk,p =
ñε

ñ(α +φ)+β + γ
gkp +(µp −λp)λk (39)

In this case, let π̃= ñε
ñ(α+φ)+β+γ and π̃p=(µp − λp), then

(39) takes the form

λk,p = π̃gkp + π̃pλk. (40)

which implies that λk is a TFVF. Thus, the proof is
finished. Next, we suppose that µp=λp, then (39) reduces
to as

λk,p =
ñε

ñ(α +φ)+β + γ
gkp. (41)

For fix; π̃= ñε
ñ(α+φ)+β+γ , we get from (41) that

λk,p = π̃gkp, (42)

which implies that λk is a CVF. This leads to the result:

Corollary 1.If a MG(QE)ñ admits a TFVF in view of the

1-form φk in the relation φk,p=εgkp+µpφk, then λk forms a

CVF given by λk,p=π̃gkp, where π̃= ñε
ñ(α+φ)+β+γ .

Theorem 8.If φk of a MG(QE)ñ is a CVF, then the vector

field λk forms a TFVF given by (45).

Proof. Let φk is a CVF with a scalar function ε then we
have

φk,p = εgkp. (43)

Using (43) in (31), we get

εgkp = [
(α +φ)ñ+β + γ

ñ
]λkλp +[

(α +φ)ñ+β + γ

ñ
]λk,p

(44)
which implies that

λk,p = [
ñε

ñ(α +φ)+β + γ
]gkp −λkλp. (45)

It notify that λk forms a TFVF. So the proof is over out.

Theorem 9.If the vector field λk of a MG(QE)ñ has

constant length and the φk is a CVF, then the relation (47)
holds.
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Proof. We suppose that λk is of constant length, i.e.,
λkλ k=σ2, then multiplying (50) by λ k, we have

λ kλk,p = [
ñε

ñ(α +φ)+β + γ
−λ kλk]λp. (46)

Since λ kλk,p=0 due to constant length λk, then (46) implies
that

ε = [
ñ(α +φ)+β + γ

ñ
]σ2

. (47)

where ‖λ‖=σ . So the proof is finished.

Theorem 10.If λk of a MG(QE)ñ is a CVF in the form

λk,p=εgkp, then the vector field φk is a TFVF satisfies the

relation (49).

Proof. Let λk of a MG(QE)ñ is a CVF. Then

λk,p = εgkp, (48)

holds. In view of (48), equation (44) turn up

φk,p =
ñ

(α +φ)ñ+β + γ
φpφk +

ε ñ(α +φ)+β + γ

ñ
gkp,

(49)
which means that φk is a TFVF. Therefore, the proof is
finished.

Theorem 11.If the vector field λk of a MG(QE)ñ is a CVF

in the form λk,p=εgkp and φk has constant length, then the

scalar function ε generating by λk has negative value and

it satisfies the equation (52).

Proof. Suppose that λk be a CVF and the vector field φk is
of constant length. Then multiplying (49) by φ k, we have

φ kφk,p =
ñ

(α +φ)ñ+β + γ
φ kφpφk+

ε ñ(α +φ)+β + γ

ñ
φp.

(50)
Since φ kφk,p=0 and using ‖φ‖=σ , equation (50) reduces

0 =
ñ

(α +φ)ñ+β + γ
φp +

ε ñ(α +φ)+β + γ

ñ
φp, (51)

which implies that

ε =

(
ñσ

ñ(α +φ)+β + γ

)2

. (52)

Therefore, the proof is turn out.

Theorem 12.If the vector field φk of a MG(QE)ñ is a RVF

in the φk,p=ρpφk, then the vector field λk is also RVF in the

form λk,p=(ρp −λp)λk.

Proof. Let φk is RVF, i.e.,

φk,p = ρpφk (53)

In view of (53) and (30), we get

ρpφk = φpλk +[
ñ(α +φ)+β + γ

ñ
]λk,p. (54)

With the help of (24), equation (54) implies that

λk,p = (ρp −λp)λk. (55)

Thus, the proof is over out. Also, if ρp=λp, then from
(55), we get λk,p=0 which means the vector field λk is
covariantly constant. Conversely, if the relation λk,p=0 is
holds on MG(QE)ñ. Then from (55) we have ρp=λp.
Similarly, let the λk has constant length then multiplying
the equation (55) by λ k, we have ρp=λp. The converse is
also true. Thus we have:

Corollary 2.A RVF φp with the RVF ρp of MG(QE)ñ

admits the relation ρp=λp iff the vector field λp is

covariantly constant, or is of constant length.

Theorem 13.If the vector field λk on a MG(QE)ñ be a

λ R̃ic vector field then necessary and sufficient condition

for a vector field φk to be divergence free is that the scalar

function θ to be in the form

θ =−

(
ñ

ñ(α +φ)+β + γ

)2 ‖φ‖2

τ
.

Proof. Let λk is a λ R̃ic vector field then from (7), we
obtain

λk,p = θR̃kp, (56)

In view of (56), equation (34) reduces

φk,p =
ñ

ñ(α +φ)+β + γ
φpφk +θ

ñ(α +φ)+β + γ

ñ
R̃kp

(57)
Multiplying (57) by gkp, we yields

φ k
,k =

ñ

ñ(α +φ)+β + γ
‖φ‖2 +θ

ñ(α +φ)+β + γ

ñ
τ.

(58)
If the vector field φk is divergence-free, then (58) takes the
form

θ =−

(
ñ

ñ(α +φ)+β + γ

)2 ‖φ‖2

τ
. (59)

Conversely, statement is obvious from (59) and (58). Thus
the proof is finished.
Again, in view of Theorem 13, if φk is of constant length.
Then multiplying (57) by φ k we have

φ kφk,p =
ñ

ñ(α +φ)+β + γ
‖φ‖2φp

+ θ
ñ(α +φ)+β + γ

ñ
φ k

R̃kp (60)

Since φ kφk,p=0, so equation (60) implies that

φ k
R̃kp =−

1

θ

(
ñ‖φ‖

ñ(α +φ)+β + γ

)2

φp. (61)

In view of (61), we achieve the following:
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Corollary 3.If λk is a λ R̃ic vector field related by

λk,p=θR̃kp and the vector field φk of a MG(QE)ñ has

constant length, then the value - 1
θ

(
ñ‖φ‖

ñ(α+φ)+β+γ

)2

is an

eigenvalue of the Ricci tensor R̃kp as per the eigenvector

ρ1 defined by T (ρ1)=g(ρ1,δ ).

Theorem 14.If λk is a λ R̃ic vector field given by

λk,p=θR̃kp and the vector field φk of MG(QE)ñ is a CVF,

then the manifold reduces to a QE manifold.

Proof. Let λk is a λ R̃ic vector field, that is λk,p=θR̃kp and
φk of a MG(QE)ñ is a CVF. Then from (57) and (43), we
have

εgkp =
ñ

ñ(α +φ)+β + γ
φpφk +

ñ(α +φ)+β + γ

ñ
θR̃kp,

(62)
From (62), one can find

R̃kp =

(
ε ñ

ñ(α +φ)+β + γ

)
1

θ
gkp

−
1

θ

(
ε ñ

ñ(α +φ)+β + γ

)2

φpφk, (63)

which implies that

R̃kp = υ1gkp +υ2φpφk. (64)

where υ1=
(

ε ñ
ñ(α+φ)+β+γ

)
1
θ , υ2=- 1

θ

(
ε ñ

ñ(α+φ)+β+γ

)2

.

Thus, a MG(QE)ñ reduces to a QE manifold. So, the
Theorem 14 is finished.

Theorem 15.If the vector fields λk and φk of a MG(QE)ñ

are λ R̃ic and φ R̃ic vector fields in the forms λk,p=θR̃kp

and φk,p=νR̃kp, respectively. Then the manifold reduces

to a QE manifold.

Proof. Let λk and φk of a MG(QE)ñ are λ R̃ic and φ R̃ic

vector fields. Then from (7) that

λk,p = θR̃kp, and φk,p = νR̃kp (65)

In view of (65), equation (34) can be written as

νR̃kp =
ñ

ñ(α +φ)+β + γ
φpφk+

ñ(α +φ)+β + γ

ñ
θR̃kp,

(66)
which indicate that

R̃kp = ϑφpφk, (67)

where ϑ= ñ2

{ñ(α+φ)+β+γ}{ν ñ−θ(ñ((α+φ)+β+γ)} and ñ(α +

φ)+β + γ 6= 0,

ν 6= θ
ñ
[ñ(α +φ)+β + γ]. Therefore, the proof is over out.

Theorem 16.If the vector fields λk and φk of a MG(QE)ñ

are λ R̃ic and φ R̃ic vector fields in the forms λk,p=θR̃kp

and φk,p=νR̃kp, respectively. Then the eigenvalue

determined by the vector field θl and νl are equal to τ .

Proof. From (65) and (31), we get

R̃kp

[
ν −θ

(
ñ(α +φ)+β + γ

ñ

)]

=

[
ñ(α +φ)+β + γ

ñ

]
λkλp (68)

After taking the covariant derivative of (68) and by the use
of (24), we obtain

[
νl −

(
ñ(α +φ)+β + γ

ñ

)
(λlθ +θl)

]
R̃kp

+

[
ν −θ

(
ñ(α +φ)+β + γ

ñ

)]
R̃kp,l

=

(
ñ(α +φ)+β + γ

ñ

)
[θ (λkR̃pl +λpR̃kl)+λkλpλl ](69)

On multiplying (69) by gkp, we yields
[

νl −

(
ñ(α +φ)+β + γ

ñ

)
θl

]
τ

=

(
ñ(α +φ)+β + γ

ñ

)
[2θ (λ k

R̃kl + ‖λ‖2λl +λlθτ] (70)

Next, multiplying (70) by glk, we have
[

νk
R̃kl −

(
ñ(α +φ)+β + γ

ñ

)
θ k

R̃kl

]

=

(
ñ(α +φ)+β + γ

ñ

)
[2θλ k

R̃kl + ‖λ‖2λl +λlθτ] (71)

Subtracting (70) from (71), we get

νk
R̃kl −νlτ =

(
ñ(α +φ)+β + γ

ñ

)
(θ k

R̃kl −θlτ). (72)

So the proof is finished.
Also, we get from (12) that

Z
⋆
,k = ñφ,k. (73)

Again taking the covariant derivative of (73), we have

Z
⋆
,kp = ñφ,kp. (74)

If the vector field φk of a MG(QE)ñ is a φ R̃ic, that is,

φk,p=νR̃kp, then (74) have the form

Z
⋆
,kp = ñνR̃kp. (75)

After multiplying (75) by gkp, we get

gkp
Z

⋆
,kp = ∇Z

⋆ = ñν(α ñ+β + γ). (76)

So, we state:
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Corollary 4.If φk of a MG(QE)ñ is a φ R̃ic vector field in

the form φk,p=νR̃kp, then the Laplacian of the trace

function of the Z -tensor is give by the relation

∇Z
⋆ = ñν(α ñ+β + γ).

Also, let φk of a MG(QE)ñ is a φ R̃ic, that is, φk,p=νR̃kp,
then from (31), we yields

νR̃kp = [
ñ(α +φ)+β + γ

ñ
](λkλp +λk,p) (77)

After multiplying (77) by gkp, it gives

ντ = [
ñ(α +φ)+β + γ

ñ
](‖λ‖2 +λ k

,k) (78)

which implies that

τ = [
ñ(α +φ)+β + γ

ñν
]ς , (79)

where ς=(‖λ‖2 +λ k
,k) So, we obtain the next corollary as

Corollary 5.If φk of a G(QE)ñ is a φ R̃ic vector field in

the form φk,p=νR̃kp, then the scalar curvature satisfies the

relation

τ = [
ñ(α +φ)+β + γ

ñν
]ς .

4 MG(QE) GRW space-times

A Lorentzian manifold Θ is a GRW space-time iff Θ has a
unit time-like vector field vi such that

∇kv j = ϖ(gk j + viv j), (80)

which is also an eigenvector of the Ricci tensor, i.e.,

R̃i jv
i=ζv j for some scalar functions ϖ and ζ [24,16,18].

On contracting (10) by vi yields

vi
Zi j = vi

R̃i j +φvigi j = (ζ +φ)v j. (81)

On contracting (11) by vi and using (81) we have

(ζ −α)v j = [β (vi
Ti)+δ (vi

Ni)]TJ+[γ(vi
Ni)+δ (vi

Ti)]NJ .

(82)
Again taking contractions (82) by two different generators
it yields

δ (vi
Ni) = (ζ −α −β )(vi

Ti), δ (vi
Ti) = (ζ −α)(vi

Ni).
(83)

So, in view of (83), equation (82) takes the form

(ζ −α)[(v j − (vi
Ti)T j − (vi

Ni)N j] = γ(vi
Ni)N j. (84)

It is obvious that v j is not a linear combination of the

generators only since vi is time-like. If T i and N i

orthonormal space-like fields, then ζ=α . Thus from (83),
we obtain γ=δ=β =0, if (viTi) 6= 0, (viNi) 6= 0, it means
Θ is an Einstein. If γ 6= 0, then from (83) and (84), we
conclude that (viNi)=(v

iTi)=0. Thus we state:

Theorem 17.Let Θ be a MG(QE) GRW space-time

admitting Z -tensor. Then viR̃i j=αv j, that is, α is the

eigenvalue of the eigenvector vi and Θ reduces to be

Einstein spacetime if vi is orthogonal to both the

generators provided γ 6= 0.

Finally, if φ=constant, γ 6= 0 and vi is orthogonal to both
the generators then contraction (18) by vi we have

∇k(v
i
Zi j)−Zi j(∇kvi) = 0. (85)

Using (80) and (81) in (85), we get

(ζ +φ)(∇kv j)−ϖδ i
kZi j −ϖvk(v

i
Zi j) = 0,

(ζ +φ)[ϖ(gk j + vkv j]−ϖZk j −ϖvk(ζ +φ)v j = 0,

which implies that

ϖ [(ζ +φ)gk j −Zk j] = 0.

Thus we conclude that Θ is Einstein if ϖ 6= 0. So, we state
that

Theorem 18.Let Θ be a MG(QE) Lorentzian manifold

admitting Z -tensor with a unit time-like non-trivial

TFVF. Then Θ reduces to an Einstein GRW space-time, or

a perfect fluid GRW space-time, provided φ=constant.

5 Example of MG(QE)4 space-times

We define g on Lorentzian manifold (Θ 4
,g) as follows

ds2 = gi jdxidy j =(1+4ex2

)[(dx1)2+(dx2)2+(dx3)2−(dx4)2],
(86)

where x1, x2, x3, x4 are standard coordinates of Θ 4,
i, j=1,2,3,4. Here, the signature of g is (+,+,+,−),
which is Lorentzian. Then the non-vanishing components
of the Christoffel symbols, the curvature tensor are

Γ 2
11 = Γ 2

33 =−
2ex2

(1+4ex2
)
, Γ 2

22 = Γ 2
44 = Γ 1

12 = Γ 3
23 =

2ex2

(1+4ex2
)
.

R1221 = R2332 =
4ex2

(2+ex2

)

(1+4ex2
)

, R1331 =
4ex2

(1+4ex2
)

R3443 = R1441 = −
4(ex2

)2

(1+4ex2
)

R2442 = −
4ex2

(2+ex2

)

(1+4ex2
)

Also the non-vanishing components of the Ricci tensors

R̃i j are:

R̃11 =
4ex2

(1+ 4ex2
)
, R̃22 = R̃33 =

8ex2

(1+ 4ex2
)2

R̃44 =−
8ex2

(1+ 4ex2)
. (87)
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Now, the scalar curvature τ of (R̃4
,g) is τ=

4ex2
(3−4ex2

)

(1+4ex2
)3

6= 0.

We define the associated scalars α , β , γ and δ as

α =
ex2

(1+ 4ex2
)2
, β =

3ex2

(1+ 4ex2
)2
,

γ =
2ex2

(1+ 4ex2
)2
, δ =

−ex2

(1+ 4ex2
)2
.

Also the 1-form

Ti(x) = Ni =

{√
1+ 4ex2

, if i = 1.

0, it i = 2,3,4.

at any point x ∈ R̃
4. Then (3) gives

R̃11 = αg11 +βT1T1 + γN1N1 + δ (T1N1 +T1N1),
(88)

R̃22 = αg22 +βT2T2 + γN2N2 + δ (T2N2 +T2N2),
(89)

R̃33 = αg33 +βT3T3 + γN3N3 + δ (T3N3 +T3N3).
(90)

R̃44 = αg44 +βT4T4 + γN4N4 + δ (T4N4 +T4N4).
(91)

Now the R.H.S. of (88)

= αg11 +βT1T1 + γN1N1

+ δ (T1N1 +T1N1)

=
4ex2

(1+ 4ex2
)

= R̃11

= L.H.S. of (88).

By same fashion we can also verify (89), (90) and (91).
Hence, (R4

,g) is a MG(QE)4.

Next we define a scalar function φ in (10) as φ= 1

1+4ex2 .

Thus the nonvanishing components of the Z -tensor Zi j

as

Z11 =
8ex2

+ 1

(1+ 4ex2
)
, Z22 = Z33 =

16(ex2
+ 1)+ 1

(1+ 4ex2
)2

,

Z44 =
16ex2

+ 1

(1+ 4ex2
)2
.

Now the R.H.S. of (11) = (α +φ)g11 +βT1T1 + γN1N1

+ δ (T1N1 +T1N1)

=
8ex2

+ 1

(1+ 4ex2
)

= Z11

= L.H.S.of(11)

Thus we ensure the following result.

Theorem 19.Let (R4
,g) be a 4-dimensional Lorentzian

manifold with metric g given by

ds2 = gi jdxidy j = (1+4ex2

)[(dx1)2+(dx2)2+(dx3)2−(dx4)2],

where i=1,2,3,4. Then (R4
,g) is a M(GQE)4 space-times

admitting the Z -tensor.
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