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1 Introduction

The warped product @=I xy, O of an open connected

interval (I,—dt?) of % and a Riemannian manifold @
with warping function y : I — %" is called a generalized
Robertson-Walker space-time (or GRW space-times) [25,
16]. This family of Lorentzian space-times broadly
extends the CRW space-times, Friedmann cosmological
models, Einstein-de Sitter space-times and many others
[4,16]. The CRW space-time is regarded as cosmological
models since it is spatially homogeneous and spatially
isotropic  whereas GRW  space-times serve as
in-homogeneous extension of RW space-times that admit
an isotropic radiation [4,16]. A Lorentzian manifold is

called a PFST if the Ricci tensor %;; takes the for

Hij = ogij+ BT, (D

where o, B are scalars and .7 is a 1-form metrically
equivalent to a unit time-like vector field [17]. The PFST
in the language of differential geometry are called QES
where .7 is metrically equivalent to a unit space-like
vector field. Recently, in [17], it is proven that a PFST
with divergence-free conformal curvature tensor is a
GRW space-time with Einstein fibers given that the scalar
curvature is constant.

Recently, in [24] proved that the Ricci tensor of a GRW

space-time in all classes of Gray’s decomposition [14],
but ¢ @ Z is either Einstein or takes the form of a perfect
fluid whereas ¥ @ Z is not restricted. The class € ® Z is
characterized by V#=0, that is, the scalar curvature is
constant. Now, the following question arises. Does the
Ricci tensor of all GRW space-times in 4 & Z reduce to
be Einstein or take the form of a perfect fluid ?.

A (pseudo-) Riemannian manifold (@,g) is called a
generalized quasi-Einstein manifold (briefly, G(QE);) if
its Ricci tensor satisfies

Rij = agij+ BT T+ v NN, 2

where @, B and y are non-zero constants, .7 and .4 are
1-forms corresponding to two orthonormal vector field [6,
13,19]. If y=0, then (©,g) reduces to a quasi-Einstein
manifold. _

A non-flat Riemannian manifold (@, g)is said to be a
mixed generalized quasi-Einstein manifolds (briefly,
MG(QE)y), if its Z#;; # 0 subjected to [3]:

Hij = 08ij+ BT Tj+ Y NiNi+ 8(TiNj+ TpH), (3)

where o, B, vy and § are non-zero scalars and .7 and .4
are 1-forms, such that %§i=</1§</1/j=1 and Z;.N7=0.
After that MG(QE); and GRW space-times have been
studied by various geometer in different ways [10,11,1,8,
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5,27,28,29,30,31]
equation (3) gives,

and many others. The trace of

T=na+B+y

. A vector field & on (0, g) is called torse-forming vector
field (briefly, TFVF) if it fulfill the condition V, E=pp; +
o(p1)&, where p; € TO, o(py) is a linear form and p is
a function, [26]. In term of local transcription, it can be
written as

Ei=ps/+&la, 4)

where &/ and o; are the components of & and o
respectively, and &/ is the Kronecker symbol. A TFVF &
is called [26]:

i) recurrent if p=0, i.e.,

gh=¢Eo, 5)

ii) concircular if the o; is gradient covector (i.e., 6,=0 ),
i.e.,
&i=pd, ©)
iii) convergent if it is concircular and p=const.exp(o).
A @(Ric)-vector field is a vector field on (©",g) with

metric g and Levi-Civita connection V, which satisfies the
condition [15]: _
Vo = ORic, 7)

where 6 is a constant and Ric is the Ricci tensor.
Obviously, when (0,g) is an Einstein space, the vector
field ¢ is concircular. Moreover, if 6=0, the vector field ¢
is covariantly constant. Thus in our study we suppose that
0 # 0 and (®,g) is neither an Einstein space nor a
vacuum solution of the Einstein equations. In a locally
coordinate neighborhood % (p;), the equation (7) takes
the form

ol = 02!, @®)

where @' and %! are components of @ and Ric,
respectively. In term of lowering indices, i.e.,

¢ij = 0%ij, )
where ¢ = 0“ia,  Xij = giaZy.
In the whole paper we use the concise as PFEST:Perfect
fluid space-time, CRW:Classical Robertson-Walker
space-time, GRR:Generalized Ricci recurrent, QES:
Quasi-Einstein space, RVF:Recurrent vector field, CVF:
Concircular vector field and TEM:Total energy
momentum.
In this work we characterize MG(QE); in view of the
Z -tensor. As follows: After introduction in Section 2, we
deduce the basics results of % -tensor on MG(QE);.
Section 3 is devoted to the study of MG(QE); using the
properties of % -tensor. In Section 4 we analysis
MG(QE)-GRW space-times with Z’-tensor and find the
crucial results. Finally, we construct an example of
MG(QE);.

2 Z-Tensor on MG(QE);

A generalized symmetric tensor of type (0,2) on (é,g)
which is called 2 -tensor is given by [20]:

Zij :@ij‘i“i’gija (10)

where ¢ is an arbitrary scalar function. In Refs. [20,21,
22,23] various properties of the Z;;-tensor were pointed
out. The classical Z-tensor is obtained with the choice
d):%. In particular cases, the 2 -tensor gives the several

well known structures on (0, g). For example, i) if Z7;=0
(i.e, Z-flat), then this manifold reduces to an Einstein
manifold [2]; ii) if V;Z5;=A2(i.e., Z-recurrent), then
this manifold reduces to a GRR manifold [12]; iii) if
Vi %4;=ViZu (e., Codazzi tensor), then we find

Vk%ij-V,-%kFﬁ(giij — gij,»)r[7]. iv) The relation
between the Z-tensor and the energy-stress tensor of
Einstein’s equations with cosmological constant I is
2j=KT*j[9], where ¢=-3 + ' and K is the
gravitational constant. In this case, the Z'-tensor may be
considered as a generalized Einstein gravitational tensor
with arbitrary scalar function ¢. The vacuum solution
(Z=0) determines an Einstein space I’ =(("2}2))T; the
conservation of TEM (V!.7*,=0) gives (V 7 *1=0) then
this space-time gives the conserved energy-momentum
density.

In a MG(QE);, from the equation (10) we have

= @+ 0)gy + BIT;+ VNN +8( TN+ T M),
an

and scalar Z*, one can get
L =g L= (a+)n+p+y. (12)

Also, from (11) we yields
T T %j=a+B+o, TN/ % =34, (13)

NN By =a+y+0, (T T - NN %j=B .
(14)
So we state that:

Proposition 1. The trace of 2 -tensor on a MG(QE); with
generators 7 and N, is given by

P =0T T L+ N N 25— B(—2)

P = V)N N L+ T T2~ B(—2)
Also, let .7 is an eigenvector of the % -tensor with
eigenvalue Ay, i.e., 7' Z=A1.7/. Then from (11), we get
T % = (a+0)T'gi+ BT TT;+ v T NH;

+ 8(T GN;+ T T ), (15)
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which implies that (A} — o — ¢ — 8).7;=0.4], that is, §=0
and Aj=a + B + ¢. Similarly, for the eigenvector .4
corresponding to the eigenvalue A,, we have
N By = (a+ )N 'gij+ BN T T+ y N NN

+ SN G+ N TN, (16)
which is equivalent to (A, — & —y— ¢).4j=0.4;. In this
sequel we get ALr=o + Y+ ¢ and 6=0. For conversely, we
get from (2) that

T %= (a+9)T'gij+ BT T+ 1T NiH;
= (a+B+9¢)7 (17)
Also,
N L = @+ )N 'gij+ BN T T+ 7N Nk
=(a+y+9)A;

Thus we set up the result:

Theorem 1. If a MG(QE); admitting % -tensor then the
manifolds reduces to G(QE); iff one of the generators is
an eigenvector of the Z -tensor.

Again, taking covariant derivative of the equation (11), we
have
Vi = (Vi9)gij + BI(ViTh) T+ Ti(ViT;)]

+ YV N+ (Vi)

+ 8[(ViZ) N+ Ti(VieH) + (ViTj) N

+ Ti(Vie )], (18)
also we write
ViZij = (Vi®)grj +BI(ViTk) Tj+ T(ViT))]

+ YNVit) A+ M(ViA))]

+ 8[(Vigh) N+ Ti(Vih)) + (ViT)) N

+ T (Vi) (19)
So, the Codazzi deviation tensor .77 is given by

Hij = VieZij—ViZij = (Vid)gij — (Vi) g
+ﬁ[<vk DT+ Ti(ViTh) — (Vi) T — F(ViT;)]
Y(VeAD) NG+ (VA7) = (Vi) N — M (Vih))]
+ 8[(VeT) N+ Ti (Vi) + (VieT)) N+ T (Vi)
= 8[(ViF) N+ T (ViH;) + (Vi) N+ T (Vi) (20)

which implies that

T = (Vi9) T — (Vi) T+ BI(ViTh) — (Vi)
- SI(Vih) — (Vi)

and

N %{1/ (Vk(P) (V,(b)e/%( + Y[(Vkﬁ/%) - (Vl’/%()]
+ 5[(%«%) — (ViZh)).

So, we conclude that:

Theorem 2. Let a MG(QE); is Einstein-like of class Y(i.e.
the & -tensor is a Codazzi tensor), then the generators 7
and N are closed, provided ¢ =constant.

3 Properties of 2 -tensor on MG(QE);

Throughout this section, we obtain some interesting
outcomes by using the Z’-tensor on a MG(QE);. First, we
examine the following findings.

Theorem 3. The vector field ¢, and the RVF A; on a
MG(QE); admitting % -tensor must be parallel and given

” ((erompin)
g = (EEONEPETY 5

n

Proof. If the & -tensor is recurrent with A; as the RVF.
Then from (10) we have

M= R i+ 0egiis (21

Multiplying (21) by g%/, we get
MZ* = Ty + ngy. (22)
Since T must be constant so from (22) and (12) we yields
Ael(a+@)n+ B +v] = noy, (23)

which implies that

o = (—(‘” Jikd ”) i (24)

n
Hence, the proof is finished.

Theorem 4.If a MG(QE); admitting % -tensor, then % is

an eigenvalue of the Ricci tensor X as the eigenvector

p1 given by A(p1)=g(p1, V).

Proof. Let & -tensor is recurrent, we have
Zijik=MZ;. (25)
Multiplying (25) by g/*, we get

=22 (26)

Using the Ricci identity, 7 k=0 Then we have

k=9, )

In view of (10),(26) and (27), we yields

0 = 2 (Zj+ 0g0). (28)
Using (24) in (28), we obtain
~ o+ @)n+ B+
Ak%jk — (%) )Lj- (29)

So the proof is done.
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Theorem 5.A necessary and sufficient condition for a
vector field ¢* generated by the scalar function ¢ on a
MG(QE); to be divergence-free is that the divergence of
Ai is of negative value and has the form

A= —lIA ]2
Proof. Taking the covariant derivative of (24), we get
o+ ¢)n+p+
= phact [PEIEBEYp )

Again using (24) in (30), we have

(a+¢)r’f+ﬁ+7

Orp = | [(Mdp+ i p)- B

Multiplying (31) by g*”, we obtain

R Y e

k=1

If the vector field ¢ is divergence-free and ¢ #-L, then
(32) implies that

A= —lIA|, (33)

Conversely, from (33) and (32) we get d)’j(:O. Now the
proof is finished.

Theorem 6.If the vector field A, on a MG(QE); is
divergence-free then the divergence of the vector field ¢y
has the form

ko n
£ (e 9)+B+y

Proof. Since the relation (30) holds on a MG(QE);, using
(24) in (30), we get

¢ l91I*.

B n nla+¢)+p+y
Pp = ﬁ(a+¢)+ﬁ+y¢P¢k+ n Moy
(34)
Multiplying g*” in (34), we obtain
k_ n 2 o+ 9)+B+7Y,
¢’k7ﬁ(a+¢)+ﬁ+7”¢” + P3 x,k'
(35)

If the vector field A is divergence-free then from (35) the
divergence of the vector field ¢ has the form

o -

_ 2

So, the proof is over out.

Theorem 7.If a MG(QE);; admits a TFVF as per the 1-
Sform @ in the relation @y ,=€gip+UyPr, then the vector
field Ay is also TFVF satisfies the following equation

Akp = %gkp + Tp i

ne

where ﬂ':m

and T,=(lp, — Ap).

Proof. Let ¢ is a TFVF with a scalar function € and a
vector field y;. Then from (4) we have

Ok p = E8kp + UpPk (37)
By virtue of (30), we get

(a+9)i+B+7

¢p)~k + [ ]Ak,p =E8p+ lep‘Pk (38)

Again, using (24), we obtain

ne

Mep ==~ =8kt (Lp— Ap)A 39

In this case, let ﬁ:ﬁ(a+§+ﬁ+7 and 7,=(U, — Ap), then
(39) takes the form

M p = Tgkp + Tpy. (40)

which implies that A; is a TFVFE Thus, the proof is
finished. Next, we suppose that ,=A,, then (39) reduces

to as "
né

Mp=——""-—ogp,. 41
For fix; ﬁ:m, we get from (41) that
A'k,p = ﬁgkpv (42)

which implies that A; is a CVF. This leads to the result:

Corollary 1.If a MG(QE); admits a TFVF in view of the

1-form @y in the relation ¢y ,=€gy,+ Uy P, then Ay forms a
CVF given by Ay p=Ttgxp, where T= ﬁ(a+$)8+ﬁ+7'

Theorem 8.If ¢, of a MG(QE); is a CVE, then the vector
field Ay forms a TFVF given by (45).

Proof. Let ¢ is a CVF with a scalar function € then we
have

Prp = E8kp- (43)
Using (43) in (31), we get

(a+9)i+B+7

(a+9)i+B+7

€8kp = | JAdp + [ Ak p
(44)

which implies that
ne

Mo =liaT o By

]gkp - A'kﬂvp- (45)

It notify that A; forms a TFVFE. So the proof is over out.

Theorem 9.If the vector field A, of a MG(QE); has
constant length and the ¢ is a CVE, then the relation (47)
holds.
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Proof. We suppose that A; is of constant length, i.e., In view of (53) and (30), we get
M A¥=c2, then multiplying (50) by A¥, we have _
noe+¢)+p+
e pp¢k = ‘Pplk + [%]ﬂ%,p- (54)
k _ n 9k
A hp = [ﬁ(a +O)+B+y A M 2. (46) With the help of (24), equation (54) implies that
Mep = (Pp = Ap) A (55)

Since A A,p=0 due to constant length A, then (46) implies
that

e = [W](ﬂ_ 47

n

where ||A||=0. So the proof is finished.

Theorem 10./f A; of a MG(QE); is a CVF in the form
M. p=E€8kp then the vector field ¢ is a TFVF satisfies the
relation (49).

Proof. Let A of a MG(QE);; is a CVFE. Then

ﬂvk,p = E&kp, (48)

holds. In view of (48), equation (44) turn up

n en(a+¢)+p+y
@t o)t Byt ﬁ 8

Pep =

kp>s

(49)
which means that ¢ is a TFVFE. Therefore, the proof is
finished.

Theorem 11.1f the vector field A of a MG(QE);; is a CVF
in the form A ,=€gy, and ¢y has constant length, then the
scalar function € generating by Ay has negative value and
it satisfies the equation (52).

Proof. Suppose that A; be a CVF and the vector field ¢ is
of constant length. Then multiplying (49) by ¢*, we have

(a+¢)n+p+y

nla+¢)+p+y

¢k¢k,p =

(50)
Since ¢¥¢y ,=0 and using ||¢||=0, equation (50) reduces

n en(a+¢)+p+y

0:(a+¢)ﬁ+ﬁ+y¢p+ P

¢p7 (5])

which implies that

no 2
(e @

Therefore, the proof is turn out.

Theorem 12.1f the vector field ¢, of a MG(QE); is a RVF
in the @y ,=pp P, then the vector field A is also RVF in the

form A p=(pp — Ap) Ak
Proof. Let ¢ is RVF i.e.,

Okp = PpPx (53)

¢k¢p¢k+8 P ¢p-

Thus, the proof is over out. Also, if p,=A4,, then from
(55), we get At ,=0 which means the vector field A is
covariantly constant. Conversely, if the relation 2; ,=0 is
holds on MG(QE);. Then from (55) we have p,=A4,.
Similarly, let the A; has constant length then multiplying
the equation (55) by AX, we have pp=Ap. The converse is
also true. Thus we have:

Corollary 2.A RVF ¢, with the RVF p, of MG(QE);
admits the relation pp=2, iff the vector field A, is
covariantly constant, or is of constant length.

Theorem 13.If the vector field A, on a MG(QE); be a
ARic vector field then necessary and sufficient condition
for a vector field ¢y to be divergence free is that the scalar
function 0 to be in the form

~ 2
_ n o]
o= (ﬂa+w+ﬁ+7> T

Proof. Let A; is a ARic vector field then from (7), we
obtain _
Mep = 0Zsp, (56)

In view of (56), equation (34) reduces

n no+9)+B+v 5
¢k,]) n(OC—i—(P)—l—ﬁ +Y¢P¢k 7 kp

(57)
Multiplying (57) by g, we yields

(LW o gi@td)thty
d),k* ﬁ(a+¢)+ﬁ+y”¢” +0 = T.
(58)

If the vector field ¢y is divergence-free, then (58) takes the

o i VIeE
_ n ¢
- <ﬁa+w+ﬁ+y) e

Conversely, statement is obvious from (59) and (58). Thus
the proof is finished.

Again, in view of Theorem 13, if ¢ is of constant length.
Then multiplying (57) by ¢* we have

ky o omo

N eﬁ(a+¢)~+ﬁ+7

n

0 Ly (60)
Since ¢kq)k, »=0, so equation (60) implies that

¢kj :,l (&)ip ©61)
g \a(a+ o)+ B+y)

In view of (61), we achieve the following:

© 2024 NSP
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Corollary 3.If A is a ARic vector field related by
kk,p=9%kp and the vector field ¢ of a MG(QE); has

N 2
constant length, then the value -% (W%ﬁﬁﬂ/) is an

eigenvalue of the Ricci tensor %y, as per the eigenvector

p1 defined by 7 (p1)=g(p1, ).

Theorem 14.If A, is a ARic vector field given by

Ak, —9%/(,, and the vector field ¢, of MG(QE);; is a CVE,
then the manifold reduces to a QF manifold.

Proof. Let A, is a ARic vector field, that is 7Lk7,,=9@k,, and
¢ of a MG(QE); is a CVFE. Then from (57) and (43), we
have

n noe+¢)+p+v, 5
=0V ——— 0%,
E8kp n(OC—l—d))—l—ﬁ-i-)’qbpq)kjL n kp
(62)
From (62), one can find
~ en 1
Ky = | =———————
& ((a+¢)+ﬁ+7) R
1 en 2
S A — , 63
9<n<a+¢>)+ﬁ+y) %o ©y
which implies that
Ry = V18kp + V201 (64)

» _ 2
_ 1 _ 1
where v]_(ﬁ(a+(;;l+[3+y) 9> V2=3g (ﬁ(a+q§)rl+ﬁ+y) :
Thus, a MG(QE); reduces to a QE manifold. So, the
Theorem 14 is finished.

Theorem 15.If the vector fields A, and ¢y of a MG( QE);
are ARic and @Ric vector fields in the forms Ay ,,—9%/(,,

and q)k,p_v%kp, respectively. Then the manifold reduces
to a QF manifold.

Proof. Let A and ¢ of a MG(QE); are ARic and @Ric
vector fields. Then from (7) that

Mip = 0%y, and @y, = V%, (65)

In view of (65), equation (34) can be written as

~ n noa+o)+B+y, 5
VRyy = =————————— +——0Z s
v iar o) By 0 k”
(66)
which indicate that
Hip = OPpPr (67)
52

whete 0= g prrvi-enare gy and Aot
¢)+p+v#0,
v £ %[ﬁ((x + @)+ B + 7]. Therefore, the proof is over out.

Theorem 16. Ifthe vector fields Ay and ¢y of a MG(QE);
are ARic and ¢Rlc vector fields in the forms lkp—&@kp

and ¢y, p_v%k,,, respectively. Then the eigenvalue
determined by the vector field 6; and v; are equal to 7.

Proof. From (65) and (31), we get
Gy {v e <M) ]

n

(68)

n

_ [ﬁ(a+¢)~+ﬁ+y} Ay

After taking the covariant derivative of (68) and by the use
of (24), we obtain

[v, (ﬁ(“d’i*ﬁ“’) (,1,9+9,)]9'27k,,
[ 9< (ot+9) +B+y>}%pl

( (a+¢>)+ﬁ+v) [0(AZpt + ApHit) + Midop M(69)

On multiplying (69) by g7, we yields
{w B <n(a+ ¢%+ﬁ + }/> 91] .

_ <W) 202 % + |22+ 167] (70)
Next, multiplying (70) by g, we have

{vk@kl - <w> ek@kl}
_ <%fﬁ”) 20A* % + | A + 4,67] (71)

Subtracting (70) from (71), we get

VR — vt = (%W) (6% % — 6,7). (72)

So the proof is finished.
Also, we get from (12) that
Tk =ndy. (73)
Again taking the covariant derivative of (73), we have
L kp =10 sp-

If the vector field ¢ of a MG(QE); is a @Ric, that is,
O, )=V X, then (74) have the form

(74)

P 1y = VRsp. (75)
After multiplying (75) by g*”, we get
P T, =V =nv(ai+B+7). (76)

So, we state:

© 2024 NSP
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Corollary 4.If ¢ of a MG(QE); is a §Ric vector field in

the form @ ,=V%yp, then the Laplacian of the trace
function of the % -tensor is give by the relation

VZ*=nv(on+p+7).

Also, let ¢ of a MG(QE); is a ¢Ric, that is, @ ,=V%s,
then from (31), we yields

VB = flato)+h+y, (Mdp+Aep) (A7)

n
After multiplying (77) by g7, it gives

o= OB ey ay s

which implies that

o= (OO EPE (19)

nv
where ¢=(||1]|> + A%) So, we obtain the next corollary as

Corollary 5.If ¢ of a G(QE); is a §Ric vector field in

the form ¢y ,=V %y, then the scalar curvature satisfies the

relation

e [ﬁ(a+ d;)erB + }/]g'

4 MG(QE) GRW space-times

A Lorentzian manifold © is a GRW space-time iff ® has a
unit time-like vector field v; such that

Vivj :m(gkj-l—vivj'), (80)

which is also an eigenvector of the Ricci tensor, i.e.,
%ijvi:Cvj for some scalar functions @ and { [24,16,18].
On contracting (10) by v' yields

V% = VR 0vigi = (C+9)v;. 1)

On contracting (11) by v/ and using (81) we have

(C—a)v; =B T0)+8( M) Tr+[y(VA) +8( )] A

Again taking contractions (82) by two different generafti%g

it yields

S(A) = (L —a=P)('T), 8('F) = (£ — @) (V')

So, in view of (83), equation (82) takes the form ®9
(&~ o)(vj— (VTo) Ty — (VA)N] = YV AN (84)

It is obvious that v; is not a linear combination of the

Theorem 17.Let ©® be a MG(QE) GRW space-time
admitting % -tensor. Then v"@,’jﬂxvj, that is, o is the
eigenvalue of the eigenvector vl and © reduces to be
Einstein spacetime if V' is orthogonal to both the
generators provided y # 0.

Finally, if ¢=constant, y # 0 and V' is orthogonal to both
the generators then contraction (18) by v' we have

V(v Zi) — Z5j(Viv') = 0. (85)
Using (80) and (81) in (85), we get
(C+9)(Vav)) — B8 Z; — oV Z) =0,
(C+9)[@(gkj +vivj| — O 2y — @vi(C+9)v; =0,
which implies that
B[(C+ )8k — 2] =0.

Thus we conclude that @ is Einstein if @ # 0. So, we state
that

Theorem 18.Let ® be a MG(QE) Lorentzian manifold
admitting % -tensor with a unit time-like non-trivial
TFVFE. Then © reduces to an Einstein GRW space-time, or
a perfect fluid GRW space-time, provided ¢ =constant.

5 Example of MG(QE), space-times

We define g on Lorentzian manifold (©%, g) as follows

ds* = gigdx'dyl = (144" )[(dx >+ (d?)? + (@) — (dn*)?),

(86)
where x', x%, x3, x* are standard coordinates of ©®%,
i,j=1,2,3,4. Here, the signature of g is (+,+,+,—),
which is Lorentzian. Then the non-vanishing components
of the Christoffel symbols, the curvature tensor are

2% 2%
== 5, B=Ii=TH=G= ——.
11 =133 (1+4e7) 22 = laa =112 =123 (1+4e7)
4% (2+¢7) 4"
Bl = Bz = ——— L Riag = —0—
1221 2332 (1+4€"52) 1331 (1+4e~"2)
4(e")?
Rsasy = Riag) = ——————
3443 1441 (l+4e‘x')
4% (2+€°)
Ry = —————
e (1+4e7)

Also the non-vanishing components of the Ricci tensors
K are:

generators only since V' is time-like. If 7/ and A4 ~ 4¢* ~ ~ 8"

orthonormal space-like fields, then {=c. Thus from (83), Hn = mv Ty = K33 = (11 4e)2

we obtain y=6=8=0, if (v'.%) # 0, (V'.4;) # 0, it means 5

O is an Einstein. If y = 0, then from (83) and (84), we 7 8e* 87

conclude that (v/.4;)=(v'.7;)=0. Thus we state: T 0 +4e?) (87)
@© 2024 NSP

Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

S. K. Yadav, X. Chen: Z-Tensor on Mixed Generalized Quasi-Einstein...

2 2
4 (3-46)
(1+4e2)3 #0
We define the associated scalars ¢, 3, Y and § as

Now, the scalar curvature 7 of (R*, g) is 7=

& 3¢
(x = 2 ) ﬁ: 2 )
(1+44e)? (1+4e)?
2
2e" —e°
Y= 2\ 6= 2\
(1+4e<) (1+4e<)

Also the 1-form

Ti(x) =

(/‘/{\/1+4ex2, ifi=1.
-

0, iti=2,3,4.
at any point x € R*. Then (3) gives

G = agn + BT+ Y MN A+ 8(TiM + AN,
(88)

Ry = agn + BPTn + Y NoMs+ 8(Tos + Tohh),
(89)

Rz = 0gsz+ BRI+ Yy NN+ 6( TN+ TF3Nj3).
(90)

Ry = 0gas+ BT Ty + Y NaNa+ 8(TaMa+ TaMi).
2]
Now the R.H.S. of (88)
= agu+BA T +y MM
+ 8(AM+ TAM)
_de”
(1+44e%)
= @11
= L.H.S. of (88).
By same fashion we can also verify (89), (90) and (91).
Hence, (R*,g) is a MG(QE)y.
Next we define a scalar function ¢ in (10) as ¢=

1

1+4e
Thus the nonvanishing components of the Z-tensor Z;;
as
8¢ + 1 16(¢* + 1)+ 1
2= o =23 =—————
(1+4e7) (1+4e7)
2
16¢* +1
T = ——5.
T (1 4e)2

Now the R.H.S. of (11) = (ot + ¢)g11 + BT + Y MM
+ 8(AM + AM)
2
8¢ +1
(14 4e%)
=20
= L.H.S.of(11)

Thus we ensure the following result.

Theorem 19.Let (R* g) be a 4-dimensional Lorentzian
manifold with metric g given by

ds® = gijdxidyj =(1 +4é‘2)[(dx1 )2+ (dx2)2 + (dx3)2 - (dx4)2]7

where i=1,2,3,4. Then (R*,g) is a M(GQE)y space-times
admitting the % -tensor.
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