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Abstract: Recently, much interests have been paid in studying fractional calculus due to its effectiveness in modeling many of the
natural phenomena. Motivated essentially by the success of the applications of the orthogonal polynomials, this paper is mainly devoted
to developing Laguerre equation and Laguerre polynomials in the fractional calculus setting. We provide some type of generalizations
of the classical Laguerre polynomials, via conformable fractional calculus. We start by solving the fractional Laguerre equation in
the sense of conformable calculus about the fractional regular singular point. Next, we write the conformable fractional Laguerre
polynomials (CFLPs), through various generating functions. Subsequently, Rodrigues’ type representation formula of fractional order
is reported, besides certain types of recurrence relations are then developed. The conformable fractional integral and the fractional
Laplace transform, and the orthogonal property of CFLPs, are established. As an application, we present a numerical technique to
obtain solutions of interesting differential equations in the frame of conformable derivative. For this purpose, a new operational matrix
of the fractional derivative of arbitrary order for CFLPs is derived. This operational matrix is applied together with the generalized
Laguerre tau method for solving general linear multi-term fractional differential equations (FDEs). The method has the advantage of
obtaining the solution in terms of the CFLPs’ parameters. Finally, some examples are given to illustrate the applicability and efficiency

of the proposed method.
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1 Introduction

Orthogonal polynomials such as Laguerre, Hermite,
Legendre, Chebyshev, and Gegenbauer can be obtained
through the well-known linear algebra method via
Sturm-Liouville theory. The Sturm-Liouville theory is
covered in most advanced physics and engineering
courses. Over the last decades, the interest in Laguerre
polynomials is considerably increased among engineers
and scientists due to their vast potential of applications in
several applied problems. For a detailed account of
various properties, generalizations, and applications, in
the classical case and in fractional context, the reader may
be referred to earlier works of [1,2,3]. Further
applications in various fields of mathematical physics, we
mention the solving of delay differential equations [4,5],
pantograph type Volterra integro-differential equations [6]
and fractional differential equations [7,8,9,10,11,12,13,
14,15,16,17].

The Laguerre differential equation can be derived from
the following hypergeometric differential equation which

may be written as

p)f"(X)+q@) f (x)+Af(x)=0 (L)

where f (x) is a real function of a real variable f : I — R,
where I C R is an open interval of the real line, and A € R
a corresponding eigenvalue, and the functions p (x) and
¢ (x) are real polynomials of at most second order and first
order, respectively. When p (x) is a polynomial of the first
degree, Eq. (1.1) takes the form

xf" (1) + (—ax+b+1) f (x) + A f (x) =0,

and when @ = 1 and b = 0 one obtains the Laguerre
equation.

The Laguerre differential equation and its solutions,
that is, Laguerre polynomials, are found in many
important physical problems, such as in the description of
the transversal profile of Laguerre-Gaussian laser beams
[18].

The practical importance of Laguerre polynomials
was enhanced by Schrodinger’s wave mechanics, where

* Corresponding author e-mail: haifashihab431 @ gmail.com

@© 2022 NSP
Natural Sciences Publishing Cor.


http://dx.doi.org/10.18576/isl/110305

726 N 5SS ¥

H. Shihab, T. Al-khayat: Certain Developments of Laguerre Equation and Laguerre ...

they occur in the radial wave functions of the hydrogen
atom [19, 1]. These polynomials are also used in problems
involving the integration of Helmholtz’s equation in
parabolic coordinates, in the theory of propagation of
electromagnetic waves along transmission lines, in
describing the static Wigner functions of oscillator
systems in quantum mechanics and in phase space [20],
etc.

Nowadays, fractional calculus is regarded as a
powerful and effective tool for modeling many physical
phenomena. It appears in many fields of science and
engineering, such as signal processing, finance and
plasma physics, aerodynamics, control systems,
viscoelasticity, bioengineering and biomedical [21,22,
23].

Many researchers tried to define fractional derivatives.
Most of them used an integral form of fractional
derivatives, such as Riemann-Liouville, Caputo,
Grunwald-Letnikov, Riesz and Weyl, etc. Most of them
are defined via fractional integrals, thus they inherit
non-local properties from integral. Heredity and
nonlocality are typical properties of these definitions [24],
which are important in many application fields and are
different from classical Newton-Leibniz calculus.

Although non-local fractional derivatives give natural
memory and genetic effects in the physical system, the
fractional derivatives obtained in this kind of calculus
seem very complicated and lose some basic properties of
general derivatives, such as product rule, quotient rule,
and chain rule. Accordingly in 2014, the authors in [25]
proposed another type of local fractional derivative which
is considered as a well-defined fractional derivative
named ‘conformable fractional derivative” (CFD)
depending just on the fundamental definition of the limit
of the usual derivative. This new proposal of CFD enjoys
most properties which coincide with Newton derivative
and can be used to solve fractional differential equations
more easily (see[26,27,28]).

The CFD runs as follows

Definition 11/25] Let .7 (x) be a real function such that
F @ [0,00) — R. Then the conformable fractional
derivative of order o € (0,1] of F (x) is defined by

23F (x) = lim F et 0 -7
* 6—0 1) ’

x>0. (1.2)

If F (x) is a—differentiable in some (0,a), a > 0 and

lim 2% (x) exists, then define
x—0t

287 (0) = lirgl+ DEF (x).
xX—
Note that if .F (x) is differentiable, then 2%.F (x) =

x!'"¢F' (x), where F'(x) = (%im 79(“”6(%79(@.
—0

Also, the conformable fractional integral was suggested in
[25] in the following way

Definition 12Ler 0 < o < 1, and % : (0,00) — R be
a-differentiable, then the conformable fractional integral
denoted by I}, is defined by

)

t
I.F (1) = I (t°\.7) :/ xf;) dx, 1 > 0.
a

(1.3)

Remark 11

(1)Unlike the classical fractional calculus, the authors in
[25] showed that the CFD satisfies the product rule
and the chain rule.

(2)As an amazing fact, the derivative of a constant in
conformable sense vanishes whereas the case for
Riemann-Liouville FD is not.

(3)In the case of a =1 in (1.2), it is easy to get the
first-order derivative in the classical case. Further,
note that a function can be a-differentiable at a point
even though it is not differentiable, for instance, take
F(x) = 2y/x, then @%y(x) = 1. Thus
@%9(0) = 1. However, 2'.7 (0) does not exist,
which is different from the classical derivatives.

(4)It is worth noting that the solution of the fractional
equation .@%d) + ¢ = 0, by using Caputo or
Riemann-Liouville definitions, is required to apply
either the fractional power series technique or the
Laplace transform. However, the use of conformable

.. , 1 1 .
definition with 2% (ea™") = ea** | one can easily see
that ¢ = ce 2V s the general solution.

For more details about conformable derivatives, we refer
to [29,30,31,32,33,34,35].

Motivated by the above-mentioned discussion, the goal of
this work is to present further investigations on the above
mentioned Laguerre equation and the associated Laguerre
polynomials in the context of conformable fractional
calculus. The distinct results obtained through the current
work will be useful for investigators in various disciplines
of applied sciences and engineering.

The outline of the paper is as follows. In section 2, we
present some basic concepts which will be used in the
sequel. Through section 3, a solution of the fractional
Laguerre equation in the sense of conformable calculus
about the fractional regular singular point is obtained.
Various generating functions of CFLPs are established in
section 4. Rodrigues’ type representation formula of
fractional order in sense of conformable derivative is
reported in section 5. The pure recurrence relations and
differential recurrence relations are the subject of section
6. The conformable fractional integral and the fractional
Laplace transform of CFLPs is derived in section 7. In
section 8, we introduce a detailed study on orthogonality
property and an overview of approximation theory. In
section 9, a new operational matrix of fractional
derivative of arbitrary order for CFLPs is derived. In view
of tau method, numerical solutions of some linear
multi-term  fractional  differential equations are
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established. The obtained results showed the efficiency
and applicability of the provided method. Finally,
concluding remarks are appended in section 10.

2 Certain basic tools

In the sequel, the following formula of Gauss
hypergeometric function »F} (a,b;c;x), is in need.

o ananas§) = ¥ STy oy

n=0 (a3 )n

where (a), denotes the Pochhammer symbol defined, in
terms of Gamma functions, by

I'(a+n)

(a), = ) =ala+1)(a+2)...(a+n—-1),

neNand(a),=1
In many places of the work here the rearrangement of
terms in iterated series, is commonly used. To simplify

many proofs of the presented results the following useful
lemma is needed (see [36])

Lemma 21
o oo o m o 1
Y Y Shu=Y Y S =Y Y Fhnt (21)
n=0k=0 m=0j=0 n=0k=0
L n oo oo
Y)Y Bin=Y Y Brnii (2.2)
n=0k=0 n=0k=0

3 Solutions of the conformable fractional
Laguerre differential equation

In our current study, we are interested to consider a
generalization of fractional Laguerre differential
equation, where the involving derivative is CFD. More
precisely, we study the equation in the form

x* 2%+ a (1 —x*) 2%+ o’ny =0 (3.1)

It is clear that x = 0 is a c¢—regular singular point, Hence,
to find the solution of (3.1), we proceed as follows.

Lety= Y} akxa(k”), ap # 0 be the series solution of
k=0

equation (3.1) about x = 0. Then from the basic properties

of the CFD we get

=

9% = Z Oc(k—i—c) akxoz(kwtcfl)
k=0
and

2°9% =Y &® (k+c)(k+c— 1)au*Ete?
k=0

Thus, owing to (1.2), we have

x* Z o (k+c) (k+c— 1) qx®¥+e=2)

k=0
+a(1-x%) Y] o (k+ ¢) qx® ke (3.2)
k=0
+a2n Z akx(l(k+c) — O
k=0
Therefore,

= =

Z (k+¢)(k+c— 1)akx0‘(k+c*') + Z (k+c)akxa(k+c")
k=0 k=0

oo

=Y (k+ ) ax® ) + ¥ nax®* ) = 0
k=0 k=0

oo =

Y (k+ ¢)* qpx®kre=) Y (k+c— n) ax®*k+e) =0
k=0 k=0

Equaling the coefficient of x*=1) we have ¢ = 0
Again, equaling the coefficient of x**+¢) we have the
recursion formula

k+c—n

g+l = ————7dk
(k+c+1)>

Substituting by ¢ = 0, we get

(—D)n—k
g1 = —— 5 dk
* (k+1)?
at k =0, we have
—1)n
alz( 12) ap
atk =1, we have
“1?nn—1
at k = 2, we have
(—1)3n(n—1)(n—2)
= 122233 @0

In general, we have

Y (—l)kn(n—1)(n—2)...(n—k+1)a
k (k!)2 0

(—Dn! .
(DZ(n—k) "

The constant aq is usually chosen so that the polynomial
solution at x = 1 equal 1. So, the value to be given to ay is
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ap = 1. Since (3.1) has x = 0, as a regular singular point,
its solution is written as

oo oo k
y= Z akxoc(k+c)
k=0

_y U
BT Y

Keeping in mind that the factorial function is always
chosen to be non-negative, thus n —k > 0 and hence
k<n.

Therefore (3.3) becomes

y=:L%(x) = zn: ﬂxak; ac€(0,1]. (34)
=0 (k1)* (n—k)!

which is the ak®™ conformable fractional Laguerre
polynomials. Clearly, the first four terms of L% (x) are

Ly (x)=1, LY (x) =1—1%, —41%+2),

3.5)

1
L3 (x) = 31 (>

LY (x) = 4 (—£3% +9r7% — 18¢% 4-6)
F1gs 1 and 2 show graphs of CFLPs (3.4) for various values
of n and «.

Fig. 1: Graph of the CFLPs with n = 5 and various values of
0 =0.2,04,0.6,0.8,1.

Fig. 2: Graph of CFLPs with o = 0.5 and various values of n =
1,2,...,5.

4 Generating functions

Generating functions are important way to transform
formal power series into functions and to analyze
asymptotic properties of sequences. In what follows we
characterize the CFLPs by means of various generating
functions.

Theorem 41For « € (0,1), the generating relation of

conformable fractional Laguerre polynomials L* (x), can
be written as

glnr) =g (2/) = Y O

n=0

4.1

n!
where J§ (x) is the conformable fractional Bessel function
[37].

Proof.Directly from (3.4), we have

oo L,‘f (x)t“" o n (_1)kxak

Lo T Lr oW

Using lemma 21, one obtains

Z LOC ( tOCn

n=0

)k ok
A o(n+k)

e J() (2\/.5)
as required.

Theorem 42Let o € (0,1] and ¢ an arbitrary real
numbers, then the generating function of CFLPs L% (x),
can be given by the following formula:

> (), L% (x)t*n 1 —x%t®
Z()" "’1'() = Ty 1Fy (c;l;—lta) 4.2)
n=0 :
Proof.In view of (3.4), we get
(c ) Loc )1on k ak

Y

n=0 n=0k=0 ”—

_ZZ C"x) fon

Using lemma 21 and the identity (c), = (¢ +k), (¢),, we

have
i (©)p Ly (15" & i (€+ K am (=1)* () x* 1k

= n! n! ' (k!)?

Owing to the binomial series we obtain

i () Ly ()t i 1 (—1)* () x ek
=0 n! o (1— 1) (k!)?
1 () [ —x%t® k
:(1—#%)0Z N2\ 1—¢
i=o (k!)
1 —x%t®
- Fle1 2
(=) 1 1(6, ; 1t°‘)
as desired.
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Corollary 41For ¢ = 1 in the previous theorem, we get
o0 1 oo
Y LY ()1 = s 1 Fy <1;1;—x >
= (1—1%) 1 —t@
1 —x%¢
= €eX .
(1—r2) P\ T

5 Rodrigues Formula for CFLPs

(4.3)

Rodrigues Formula is one of the main tools to define a
sequence of orthogonal polynomials [38]. Once we have
this formula, a lot of interesting properties of the
polynomials can be characterized. For this reason,
generalizations of these formulas paid much attention to
mathematicians in the last two decades, both to include
fractional order differentiation and to define new classes
of special functions.

Owing to the notation of CFD we have
99 = P°D*P* ... 2%, n— times, and relying on the fact
P%x* = kx*=* one can provide the Rodrigues formula
for CFLPs LY (x) through the following result

Theorem 51The Laguerre polynomials LY (x), can be
formulated in the sense of conformable derivative as:

Ly (x) =

ex_a'gocn [xocn ﬂc"‘} 5.1)

e
o'"n!

Proof.In virtue of the conformable derivative, we have

(0% kn k o
g*(n=k) yan =X X% and 2% = (1) ofe™
' (5.2)
Using (3.4) and (5.2), it follows that
L @a(rsz om_@(xkefx“
o)
Ln (x)_k;o ( )'k!oc"
* n g (n k) x0n_ ok, —x“
~ nlan Z’ —k)k! -3

a(n—k) X ock —x¢
n!()c"kf‘o<k>9 7

Noting that, the CFD achieves well both the product and
Leibniz rules unlike the case of the old fractional calculus.
Hence, in view of Leibniz rule, (5.3) becomes

e gon {x(xnefxa}

LY (x) = pe

as required.

6 Certain types of recurrence relations

This section is devoted to establishing pure recurrence
relation and then characterizes some differential formulas.
Our first result is:

Theorem 61The Laguerre polynomials L% (x) in the
conformable sense, satisfy the following pure recurrence
formula

(n+ DL (x) =

o€ (0,1]

(2n+1=x®) L (x) = nLy (x),

(6.1)

Proof.Acting by the conformable fractional operator 2%
on the generating function (4.3) with respect to ¢, we get

> —x% % o 1 —x% %
L% (x) naut®n=1) = « e1-1% ox e1 1@
5 N (O
(6.2)
Using (4.3), we have
Yre e = Ly e ge . XY pae 63
=0 -1 = (1=1%)" 25
Multiplying throughout by (1 —¢%)*, we have
(1= Y nL ()%= = (1—-1%) Y L¥ (x) 1>
n=0 n=0
_x Z La( )tom

=0
Therefore

=) oo

Y nLY (x) =)

n=0 n=0

I
—~
[\)
S
_|_
|
=
~
h
R

— X (n+ 1)LG ()0
n=0

Relabeling the summation so that the general power
appear as t*" in each gives

=

Y (DL, (0™ = Z(2n+1*x ) Ly

n=-—1 n=0

(x) t(xni
(6.4)
Y nL% | (x)t*"
n=0

Equating the coefficient of *" on both sides of (6.4),
we obtain

(n+ 1Ly (x) =

and the proof is therefore established.

(2n+1—=x%) Lf (x) = nLy; (x)

For fractional differential formulas, we give the next result.

Theorem 62For a € (0, 1], the a—Laguerre polynomials

L% (x), are characterized through the following
differential formulas

DLY (x) = P°LY | (x) — aLy | (x) (6.5)

LY (x) = —a Z LY (x (6.6)

x*POLY (x) =na [LY (x) — LY (x)] 6.7)
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Proof.According to the conformable fractional differential
operator and in view of (4.3), it follows that

1 o0 oo
_@a{]_tae 1O }@a [ Lg(x)ta”]
0

n=

—oit? 1
1—1%" 1 —¢@

e = Y 9% (LY ()"
n=0

Also, using (4.3), it is easily verify
—at® &

I Y L) = Y 7L ()
- n=0 n=0

Therefore,

—a i L% (x) 10 = i YL (0)]1%"—  (6.8)
n=0 n=0

Y PU[LY (x)] 0D
n=0

Equating the coefficient of t*" in both sides of (6.8), we
get

—aLy (x) = 2% Ly ()] = 2% L (x)]

Thus, the result (6.5) is therefore performed.
Applying relation (6.5) recursively, we obtain

DLy (x) = —ot [ (x) + Ly (x)]

Repeating the relation (6.5), n—times and noting that
DL (x) =0, we obtain (6.6).

To deduce relation (6.7), applying the conformable
derivative by (6.1), we get

(n+1)2%LY, | (x)+ (x*—1-2n)2°LY (x)  (6.9)
FLE (x) +nPLE | (x) =0
and by writing (6.5), in the equivalent useful forms:
2Ly, (x) = DLy (x) — oL (x) (6.10)
DULY | (x) = D*LY (x)+ aL?  (x) (6.11)

substituting from (6.10) and (6.11) in (6.9), we obtain
(6.7).

7 Conformable fractional integral and
fractional Laplace transform of CFLPs

7.1 Conformable fractional integral of CFLPs

Taking into account the ¢-integral given in Definition 12,
we provide the integral of CFLPs.
Thus according to Definition 12, it follows that

X

Taf (%) :/t“”f(t)dt.

0

(7.1)

In this regard, we state the following important result given
in [25].

Lemma 71Let f : [0,00) — R be a-differentiable for o €
(0, 1], then for all x > 0 one can write:

1e2%(f (x)) = f (x) = £(0)
With the use of (7.1) and (7.2), we give the following result

(7.2)

Theorem 71For y € (0, 1], then the conformable fractional
integral of order v, of CFLPs, L% (x) can be written as

/! —1)*n!
L=y —

xakﬂ
&0 (n— k) (k1)? (ak+7)

(7.3)

Proof.In view of (7.1) and (3.4), we obtain

R

72takdt
R = RIS

_ < (*Uknl [ ak+y—1

_,;)(n—k)!(k!)zo/t T

- (=1)*n!
kg()(nfk)!(k!)z(aker)

and the result follows.

xakﬂ

Remark 711f o = v in (7.3), we have

o 71 - (*1)1{”!
ol (%) = a,;) (n— k) (k!)* (k+1)

o(k+1)

(7.4)

Now, the following result allows us to express the
conformable fractional integral of Laguerre polynomials
in terms of CFLPs.

Theorem 72Let a € (0,1], the conformable fractional
integral 1y, of CFLPs, satisfies the relation

(L5 () = Lt ()] (7.5)
ProofRelation (6.5) gives
aL (x) = 2°Ly (x) — 2°LY, (x)

Acting by the conformable fractional integral on both
sides, we obtain

aloLy (x) =1, 2Ly (x) — 1, 2Ly, | (x)
Using (7.2) and noting that LY (0) = 1, we have
oLy (x) = Ly (x) = Ly (%)

just as required in theorem 72.
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7.2 Fractional Laplace transform of the CFLPs,
Ly (x)

In [26], Abdeljawad defined the fractional Laplace
transform in the conformable sense as follows:

Definition 71/26] Let o € (0,1] and f : [0,00) — R be real
valued function. Then the fractional Laplace transform of
order o is defined by

r(l

Zalf 0] =Fa) = [ Ff0 dt a6
0

Remark 72If oo = 1, then (7.6) is the classical definition
of the Laplace transform of integer order.

Also, the author in [26] gave the following interesting
results.

Lemma 72/26] Let o € (0,1] and f : [0,00) — R be real
valued function such that

Loulf ()] = Fuls) exist. Then Fy(s) = & [f(at)%],
where Z[f (1)] = Zw‘f 7).

Lemma 73/26] The following the conformable fractional
Laplace transform of certain functions:
(DZa(l]=1; s>0
E
2027 = ok TE) 55
k) a

(3)%a [ ] = 12

Owing to the definition of CFLPs and applying the
conformable fractional Laplace transform operator of an
arbitrary order y € (0, 1], we have

a . (71)](”! ok
£ L =% _— 7.7
(L ()] VL;)(n_k)!(k!)zx a7
- (_])k”! ak
=y ——— %
)T At
Using (2) of lemma 73, we obtain
n (1) LI (1+5
21w =y (1) (1.8)

k=0 (n—k)!(k!)zy S
Remark 73If y = o in (7.8) we have

no(=1)fn! ok D (1+k)
= (n—k) (kD siTE

1 n
-L0-9)
N N

Lo [ Ly (x)] =

8 Orthogonality

Along the same lines in scalar case, one can use the
conformable derivative to introduce the orthogonality
relation as follows

Theorem 817he  conformable  fractional — Laguerre
polynomials LY (x), are orthogonal with respect to the
weight function w(x) = x*~1 ¢

[0,00) as follows

, over the interval

o

r 1
/xafl e LY (x) L% (x)dx = 56,,,,1, o€ (0,1]. (8.1)
0

where Oy, is the familiar Kronker delta.

Proof.Since LY (x) is a solution of the conformable
fractional Laguerre equation (3.1), then it satisfies the
equation

e 7D () + ae ™ (1-2%) 7L (x) (8.2)

+0one " L% (x) = 0.
For our propose we rewrite (8.2) in the more useful form:

70 [x“efxa %Ly (x)} +o2ne L% (x) =0, (8.3)
as is easily verified. Eq. (8.3) together with
7 {xaefxa DLY (x)} +ome L% (x) =0, (8.4)

Multiplying (8.3) by L%(x) and (8.4) by L%(x) and

subtracting the resulting equations, we have

o (n—m)e L% (x) L% (x) = LY (x) 2% [xaﬂ“ 2L (x)]
—L% (x) 2* [xaefxa %L (x)]

Applying the conformable fractional integral (1.3) over the
interval [0, 0), we obtain

=)

o (n— m)/efxaLg (x) L% (x) dox
0

= /L,‘f (x) 2% {xaefxa.@aL% (x)} dox
0

—/ng (x) 2“ {xaefxa@aLg (x)} dox
0

Performing integration by parts [26] on the right-hand
side, we get

=

o (n—m) /efxaLg (x) LY (x)dgx =0
0
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For n # m, we have

=) o

/efxaLff (x) L% (x) dox = /xo‘*1 e L% (x) L% (x)dx = 0.
0 0
(8.5)

Now, for n = m. In the view of the generating function
(4.3), we can easily write

i a a 1 —2x%t*
Y e Ly (0)]2 2% = ¢, exp ( I ft"‘ )

n=0 (1 - ta)z
Applying the conformable fractional integral (1.3) over the
interval [0,00), we get

Z/e [LY (x ]2 2ang x

n=0 0

1 r 14+1%\ 4
= - d
oo ()

=)

) l(l o (]i+;z ) -G ij)x“HO

1 1 &
T o112« nZ
Equating the coefficient of 2%, we have
r r “ 1
/e [LY (x N2 2% dgx = /)coc*1 e LY ()] dx = P
0 0
(8.6)

Hence, the result is established.

8.1 Overview of approximation theory

Analogously to the scalar case and due to the
orthogonality property we say that a set of conformable
fractional polynomials forms a simple set of fractional
polynomials '. Consequently, the following results can be
determined.

Proposition 81Suppose that {Wu, (x)} is a simple set of
the conformable fractional polynomials. If P(x) is a
polynomial of degree an, then for certain constants we
have the expansion

(8.7)

= Z ax Yo (x)
k=0

where ay. are functions of k and of any parameters involved
in P (x).

' The definition of the simple set of polynomials can be found
in [36].

8.1.1 Approximation in terms of LY (x)

It is useful to seek an expansion in terms of CFLPs, L% (x)
of the form

(8.8)

- Zanl‘g (x), x € (0,00).
n=0

Noting that convergence of (8.8) is actually guaranteed
provided that f(x) is sufficiently well behaved. The
formula (8.8) can be determined in terms of
x®" o € (0,1] which can be characterized by means of
L% (x). Proposition 81 concludes that any polynomial can
be expanded in a series of CFLPs merely due to the fact
that L% (x) forms a simple set. In fact the orthogonality
property of {LY (x)} has an important role in determined
the coefficients. So that it is necessary to have the
expansion of x*' in a series of CFLPs. For such
application in function theory we refer to the work [39,
40,41,42,43,44].

8.1.2 The expansion of x*" ¢ € (0,1]

Theorem 82The expansion of x*'.a € (0,1],n is
non-negative integer, can be characterized in terms of
L% (x) as follows

n o (_1\k n! 2
k=0

(n—k)k!
Proof.In view of (4.1), we obtain

L ok
g (i) =y B

k=0

Using the definition of conformable fractional Bessel
function and lemma 21, we get

o (_1)nxomtom o (71)'!14;(1 (x) po(n+k)

I
 ngk

n=0 (”!)2 n=0k=0 n'k!
gy CDTE W e
=i (n fk)!k!

Equating the coefficient of *", we obtain

o (1)L ()
k) k!

(_ 1 )nxom B

(n!)? = (n=

Hence, the result (8.9), is established.
Example 81Using theorem 82, we can write for example

1 1 1
and x3 = 6L (x) — 18L (x )+18L2( ) —6L3 (x).

®© 2022 NSP
Natural Sciences Publishing Cor.



Inf. Sci. Lett. 11, No. 3, 725-737 (2022) / www.naturalspublishing.com/Journals.asp

8.1.3 The expansion of analytic functions

Classically, the expansion theory was treated through
several approaches, see for example [45,46]. For
approximation theory of analytic functions by means of a
sequence of polynomials, we refer to the classical works
of Whittaker [40], Boas [41] and recently in higher
dimensions [42,43,44]. The previous theorem 82 is then
useful to determinate an explicit representation of analytic
function by means of CFLPs series. Beforehand let us
recall the following amazing fact.

In classical analysis, Taylor’s series expansion of a
function f near certain points does not always exist,
unlike the situation in the conformable fractional analysis.
This fact was illustrated by Abdeljawad [26] who showed
the existence of the conformable fractional power series
representation for an infinity o—differentiable function,
for o € (0,1]. In fact, the following interesting result was
proved in [26].

Theorem 83Given xy be fixed and assume that f is an
infinity conformable fractional differentiable function for

€ (0,1). Then there exist a Taylor conformable
fractional representation in the form.

s a (k)x
Fy=y L) (e

o (8.10)

X()<)C<X()+R1/a, R>0

where (2%f)% (xy) means acting by the CFD
repeatedly k times at xg.

Consequently when xp = 0, we immediately get the o-
Maclaurin expansion.

_ v @D"M0) 1o

f(x)—];)Wx y 0<x<R y R>O,

8.11)

where also (2% f)(k) (0) means as we pointed above at
x=0.

With the aid of the formula (8.11) and applying theorem

(82) attain the following.

o n L (L1 ()2
fo=y y @D e

==n! (n—k)k!

Hence,

+k n
Z Z Z'k' < +kLk ()C) (8]2)

n=0k=
Using the orthogonality relation and theorem 82. it can be
easy to establish the following result
Theorem 84For o € (0,1], the conformable fractional
Laguerre polynomials L% (x), satisfy the following
integral relations

=

/efxaxakal‘ (xX)dgx=0, k=0,1,2,....(n—1),

0
(8.13)

[ e —1)"n!
/efx XM LY (x)dgx = — (8.14)
0

where dgx = x*1dx.

9 Applications

9.1 Fundamental Results

Let u(x) is a square integrable function over (0,c0) i.e

[ u?(x)dx < oo, then u(x) may be expressed in terms of

0
CFLPs LY (x), as

x)=Y a;L¥(x) 9.1)
j=0
where
_ a/x“”e*xau X)L (x)dx, j=0,1,2,.. (9.2)

0

In practice, only the first (M + 1) —terms of CFLPs, are
considered. Then, we have

M
x) = Zbaj LY (x) = Ty (x) 9.3)
j=

where the conformable fractional Laguerre coefficient
vector A and the conformable fractional Laguerre vector
¥ (x) are given by
T
Al = [a07a15a27"'5

= [L§ (%), L (x), L5 (x) .,

ay] and ¥ (x) 9.4

L (0]

Now, the main objective of this subsection is to drive a new
operational matrix of conformable fractional derivative for
the conformable fractional Laguerre vector as:

Theorem 91Ler o € (0,1], ¥ (x) be the conformable
fractional Laguerre vector defined in (9.4), and A > 0,
then

P (x) ~

where Y* is (M+1) x (M+1) operational matrix of
fractional derivative of order A in the conformable sense
and is defined as follows:

W (x), 9.5)

n(0,0) n(0,0) ... n(0,0)
n(1,0) n(1,1) ... n(1,M)
= 12,0 n21) .. n(2,M) (9.6)

n(M,0) n(M,1) ... 1 (M,M)
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where 1 (n, j) = 0 when ok € Ny and ak < A, in the other

wise

n Jj _ k+rn )
N )=y y — U

202 (=)L (K)? (=) (r)*

9.7)

r(ak+1)C (k+ r—44 1)
T (ak—[A]+1)

where [A] is the usual ceil function i.e ( the least integer
greater than or equal to A ).

Proof.Using the analytic form of the CFLPs L% (x) of
degree an (3.4) and the conformable fractional operator
(1.2), we have

X oA ok
Z k') ———=9"x
i O‘k"’l) ak—A

“TAl+n

QAL(X
9.8)

where, by, = 0 when ak € Ny and ak < A, in the other
(—=1)kn!

(n—k)\(k1)*

Now, approximate x*~* by (M + 1) —terms of CFLPs, we

have

case by, =

M
“re Y a; L% (x) 9.9)
j=0
where a; is given from (9.2) with u (x) = x®*~* that is

S (1) A ,
ajzz% (k—)—r———b—]),]:O,],Z,m,M

r=0 (/ I‘) (I"
9.10)
In virtue of (9.8) and (9.9), we get
M
DMLY (x) =Y. n(n,j)L% (x), n=0,1,2,...M. (9.11)
j=0

where 1 (n, j) = 0 when ok € Ny and atk < A, in the other

wise

(71)k+rn!j|
—K)! (k) (=)t (r1)?

-EL;

r(ak+1)C <k+ r—44 1)
[ (ak—[A]+1)

Accordingly, (9.11) can be written in a vector form as
follows:

DMLY (x) = N (n, M) ¥ (x),

9.12)

N (n,0),1(n,1),1(n,1),...,

n=0,1,2,..M

9.2 Proposed scheme

Now, we consider the generalized linear multi-order
conformable fractional differential equation in the form:

P u(x)+ Z csPMu

s=1

(%) 4 cmr1u (X) = cmyoag (x) (9.13)

with the initial conditions

W0y =d;, i=0,1,2,...,[y] -1, 9.14)
where 2%, 0 < A1 < Ay,....,An < A referes to the
conformable fractional derivative of order A and
di, i=0,1,2,...,[y] — 1 are given constant.

To solve the problem in equations (9.13) and (9.14), it is
required to approximate u(x), 2*u(x), 2™u(x) and
g (x) by the conformable fractional Laguerre polynomials
as follows:

Ty (x) (9.15)

M
X) =~ ZajL;Z(x) =
=0

M

P u(x)~ Y a; 7MY (x) = AT MW (x) = AT TMP (x)
=0

(9.16)

M
D u(x) ~ Z()aj PMLY (x) =AT PP (x) = AT TR (x)

9.17)
and
M
)~ Y gl (x)=G"¥(x), 9.18)
j=0
where the vector G = [go,gl,...,gM]T is known but the

vector A = [ag,ay, ...,aM]T is unknown
Inserting equations (9.15)-(9.18) into (9.13), we can find
the residual for equation (9.13) as

m
Ry (x) = [AT Y2 (x) + AT Y e, Y2 (x) + e AT ()

s=1

T

—ck2G" W (x)]
ie
Ry (x) ~ (AT Tl +AT Z CSTAY +Ck+1AT _Ck+2GT 'P(X)
s=1

9.19)
Owing to tau method (see [47,48]) we generate (M — [7])
linear equations by helpful of orthogonal property by using

=

/x“'*XRM x).LY (x)dx=0.

0

(Ru (x),L
(9.20)
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From (9.14) we can obtain:
u(0) = AT¥(0) = d,
u (0)=ATwW (0) =4,

u® (0)=AT¥? (0) = ds,
9.21)

£ 0y = AT @D (0) = dpy,

The equations (9.20) and (9.21) generate (M — [y]) and
([7] +1) set of linear equations respectively.

Solving these linear equations for unknown coefficient of
the vector A, then u (x) can be established.

9.3 Illustrative examples

Example 91As the first example, we consider the

inhomogeneous Bagley-Torvik fractional differential
equation
P*u(x)+ 2% %u(x) +u(x) = 1+x, (9.22)
subject to the initial conditions:
u(0)=1, «'(0)=1. (9.23)

The exact solution of this problem is u(x) = 1 + x. (see
[49,50,51]).

Applying the proposed scheme with M =2, and x =1 we
have the approximate solution

u(x) = aoL¥ (x) + a1 L¥ (x) + ar LS (x) = AT ¥ (x).

(9.24)
Hence, Eq. (9.22), becomes
AT [W FY2 41| W () = GT (v) (9.25)
Here, we have
0 00 000
r'=|(-100/|, Y>=|000],
—-1-10 100
(9.26)
0O 0 0 2
132 0 0 0 |andG=|-1
VT —/E —JE 0
2 4 16
Therefore, using Eq. (9.20), we obtain
aop+ (1+?) a =2 9.27)
Applying Eq. (9.21), we have
apg+ai+a;=1 (9.28)

ap+a; =1 (9.29)
Solving Eqgs. (9.27), (9.28) and (9.29), we get
ay=2, aj=—1,and ay =0. (9.30)
Thus, we have
Ly (x)
u(x)=(2, —=1,0) | L{ (x) | =1+x,
L} (x)
which is the exact solution.
Example 92Consider the following CFDE
FZ*u(x)+u(x)=0, 2€(0,1], 0<x<1, (931
with
u(0)=1. (9.32)
The problem (9.31) has an exact solution in the form

it
u(x):e< * ),(see [50,517).
This problem has been treated using different methods in
Caputo sense, (see[50,51]).
We solve the problem (9.31), by applying the technique
described in the previous subsection. The absolute error
for M = 10, and various values of @ = A are shown in
table 1, and we can see that we can achieve a good
approximation with the exact solution using a few terms
of conformable fractional Laguerre polynomials. Also,
the numerical result for u(x) at M = 10 with
oa=A=04,0.6,0.8, 0.9, and 1 are plotted in Fig. 3.

-—y=0.4]

~=7=0.6]
7=0.8

—=09|
=1

Fig. 3: Graph of the numerical solution u<x) of Example 92 for
M = 10 with various values of & = A = 0.4, 0.6, 0.8, 0.9, and
1.
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Table 1: The absolute error for M = 10, and various values of @ = A = 0.4, 0.6, 0.8, 0.9, and 1, for Example 92

y=0.8

y=1

X y=04 rY=0.6

0.1 4.0256833578.1073  3.053252644754.10~%
0.2  6.9221049938.1073  5.553962049349.10~4
0.3  7.4914126535.1073  1.125596510475.1073
0.4 7.0045089315.1073  1.407650550408.103
0.5 5.9881878156.1073  1.462666989978.10~3
0.6 4.7050760526.1073  1.350034699207.103
0.7  3.2999503461.1073  1.119073935016.10~3
0.8 1.8575168159.1073  8.090853661598.10~4
0.9 4.2906650059.10~%  4.509086007730.10~4

1

9.5386883330.10*

6.854369738516.107>

1.80817274715639.10~*
4.61879235811313.107°
1.20890231216475.10~*
2.54670049942785.10~*
3.34703362446343.10~%
3.58743647587700.10*
3.32711340581993.10~*
2.66056667450276.10~%
1.69384005589968.10~*
5.31792314418302.107>

5.237431361688823.1075
4.287895424511354.1075
4.693164363294121.10~°
3.987324972045628.1073
7.691936263802814.1073
9.890731483230397.10~
1.029759044721605.10~4
8.956447421627215.10~5
6.130357176535860.10~
2.213388537324782.1075

10 Concluding Remarks

The main purpose of the present paper is to develop a
study on the fractional Laguerre equation and fractional
Laguerre polynomial initiated recently in [3] in the sense
of conformable derivative. We obtained solutions of the
conformable fractional Laguerre equation about the
fractional regular singular point. Several basic properties
of the conformable fractional Laguerre polynomials are
reported. Because of the orthogonality property of the
conformable fractional Laguerre functions, it can be
employed as a basic of operational matrix together with
generalized tau method for solving general linear
multi-term fractional differential equations. The main
advantage of this method lies in its easiness since it relies
on conformable fractional Laguerre polynomials. This
method contrasts in simplicity with standard methods
based on solving the fractional differential equations
using other techniques found in the literature. Supported
examples are given to ensure the applicability and
efficiency of the introduced method. Therefore, the results
of this work are variant, significant and so it is interesting
and capable to develop its study in the future such as
generalized Laguerre polynomials eg. [1,2].
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