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Abstract: Recently, much interests have been paid in studying fractional calculus due to its effectiveness in modeling many of the

natural phenomena. Motivated essentially by the success of the applications of the orthogonal polynomials, this paper is mainly devoted

to developing Laguerre equation and Laguerre polynomials in the fractional calculus setting. We provide some type of generalizations

of the classical Laguerre polynomials, via conformable fractional calculus. We start by solving the fractional Laguerre equation in

the sense of conformable calculus about the fractional regular singular point. Next, we write the conformable fractional Laguerre

polynomials (CFLPs), through various generating functions. Subsequently, Rodrigues’ type representation formula of fractional order

is reported, besides certain types of recurrence relations are then developed. The conformable fractional integral and the fractional

Laplace transform, and the orthogonal property of CFLPs, are established. As an application, we present a numerical technique to

obtain solutions of interesting differential equations in the frame of conformable derivative. For this purpose, a new operational matrix

of the fractional derivative of arbitrary order for CFLPs is derived. This operational matrix is applied together with the generalized

Laguerre tau method for solving general linear multi-term fractional differential equations (FDEs). The method has the advantage of

obtaining the solution in terms of the CFLPs’ parameters. Finally, some examples are given to illustrate the applicability and efficiency

of the proposed method.

Keywords: Conformable fractional calculus, Fractional differential equations, Laguerre polynomials.

1 Introduction

Orthogonal polynomials such as Laguerre, Hermite,
Legendre, Chebyshev, and Gegenbauer can be obtained
through the well-known linear algebra method via
Sturm-Liouville theory. The Sturm-Liouville theory is
covered in most advanced physics and engineering
courses. Over the last decades, the interest in Laguerre
polynomials is considerably increased among engineers
and scientists due to their vast potential of applications in
several applied problems. For a detailed account of
various properties, generalizations, and applications, in
the classical case and in fractional context, the reader may
be referred to earlier works of [1,2,3]. Further
applications in various fields of mathematical physics, we
mention the solving of delay differential equations [4,5],
pantograph type Volterra integro-differential equations [6]
and fractional differential equations [7,8,9,10,11,12,13,
14,15,16,17].

The Laguerre differential equation can be derived from
the following hypergeometric differential equation which

may be written as

p(x) f ′′ (x)+ q(x) f ′ (x)+λ f (x) = 0 (1.1)

where f (x) is a real function of a real variable f : I → R,
where I ⊂R is an open interval of the real line, and λ ∈R

a corresponding eigenvalue, and the functions p(x) and
q(x) are real polynomials of at most second order and first
order, respectively. When p(x) is a polynomial of the first
degree, Eq. (1.1) takes the form

x f ′′ (x)+ (−ax+ b+ 1) f ′ (x)+λ f (x) = 0,

and when a = 1 and b = 0 one obtains the Laguerre
equation.

The Laguerre differential equation and its solutions,
that is, Laguerre polynomials, are found in many
important physical problems, such as in the description of
the transversal profile of Laguerre-Gaussian laser beams
[18].

The practical importance of Laguerre polynomials
was enhanced by Schrödinger’s wave mechanics, where
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they occur in the radial wave functions of the hydrogen
atom [19,1]. These polynomials are also used in problems
involving the integration of Helmholtz’s equation in
parabolic coordinates, in the theory of propagation of
electromagnetic waves along transmission lines, in
describing the static Wigner functions of oscillator
systems in quantum mechanics and in phase space [20],
etc.

Nowadays, fractional calculus is regarded as a
powerful and effective tool for modeling many physical
phenomena. It appears in many fields of science and
engineering, such as signal processing, finance and
plasma physics, aerodynamics, control systems,
viscoelasticity, bioengineering and biomedical [21,22,
23].

Many researchers tried to define fractional derivatives.
Most of them used an integral form of fractional
derivatives, such as Riemann-Liouville, Caputo,
Grunwald-Letnikov, Riesz and Weyl, etc. Most of them
are defined via fractional integrals, thus they inherit
non-local properties from integral. Heredity and
nonlocality are typical properties of these definitions [24],
which are important in many application fields and are
different from classical Newton-Leibniz calculus.

Although non-local fractional derivatives give natural
memory and genetic effects in the physical system, the
fractional derivatives obtained in this kind of calculus
seem very complicated and lose some basic properties of
general derivatives, such as product rule, quotient rule,
and chain rule. Accordingly in 2014, the authors in [25]
proposed another type of local fractional derivative which
is considered as a well-defined fractional derivative
named ”‘conformable fractional derivative”’ (CFD)
depending just on the fundamental definition of the limit
of the usual derivative. This new proposal of CFD enjoys
most properties which coincide with Newton derivative
and can be used to solve fractional differential equations
more easily (see[26,27,28]).

The CFD runs as follows

Definition 11[25] Let F (x) be a real function such that

F : [0,∞) → R. Then the conformable fractional

derivative of order α ∈ (0,1] of F (x) is defined by

D
α
x F (x) = lim

δ→0

F
(

x+ δx1−α
)

−F (x)

δ
, x > 0. (1.2)

If F (x) is α−differentiable in some (0,a) , a > 0 and

lim
x→0+

Dα
x F (x) exists, then define

Dα
x F (0) = lim

x→0+
Dα

x F (x).

Note that if F (x) is differentiable, then Dα
x F (x) =

x1−αF ′ (x) , where F ′ (x) = lim
δ→0

F (x+δ )−F (x)
δ .

Also, the conformable fractional integral was suggested in
[25] in the following way

Definition 12Let 0 < α ≤ 1, and F : (0,∞) → R be

α-differentiable, then the conformable fractional integral

denoted by Ia
α is defined by

Ia
αF (t) = Ia

1

(

tα−1
F

)

=

t
∫

a

F (x)

x1−α
dx, t ≥ 0. (1.3)

Remark 11

(1)Unlike the classical fractional calculus, the authors in

[25] showed that the CFD satisfies the product rule

and the chain rule.

(2)As an amazing fact, the derivative of a constant in

conformable sense vanishes whereas the case for

Riemann-Liouville FD is not.

(3)In the case of α = 1 in (1.2), it is easy to get the

first-order derivative in the classical case. Further,

note that a function can be α-differentiable at a point

even though it is not differentiable, for instance, take

F (x) = 2
√

x, then D
1
2 F (x) = 1. Thus

D
1
2 F (0) = 1. However, D1F (0) does not exist,

which is different from the classical derivatives.

(4)It is worth noting that the solution of the fractional

equation D
1
2 φ + φ = 0, by using Caputo or

Riemann-Liouville definitions, is required to apply

either the fractional power series technique or the

Laplace transform. However, the use of conformable

definition with Dα(e
1
α xα

) = e
1
α xα

, one can easily see

that φ = ce−2
√

x is the general solution.

For more details about conformable derivatives, we refer
to [29,30,31,32,33,34,35].
Motivated by the above-mentioned discussion, the goal of
this work is to present further investigations on the above
mentioned Laguerre equation and the associated Laguerre
polynomials in the context of conformable fractional
calculus. The distinct results obtained through the current
work will be useful for investigators in various disciplines
of applied sciences and engineering.

The outline of the paper is as follows. In section 2, we
present some basic concepts which will be used in the
sequel. Through section 3, a solution of the fractional
Laguerre equation in the sense of conformable calculus
about the fractional regular singular point is obtained.
Various generating functions of CFLPs are established in
section 4. Rodrigues’ type representation formula of
fractional order in sense of conformable derivative is
reported in section 5. The pure recurrence relations and
differential recurrence relations are the subject of section
6. The conformable fractional integral and the fractional
Laplace transform of CFLPs is derived in section 7. In
section 8, we introduce a detailed study on orthogonality
property and an overview of approximation theory. In
section 9, a new operational matrix of fractional
derivative of arbitrary order for CFLPs is derived. In view
of tau method, numerical solutions of some linear
multi-term fractional differential equations are
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established. The obtained results showed the efficiency
and applicability of the provided method. Finally,
concluding remarks are appended in section 10.

2 Certain basic tools

In the sequel, the following formula of Gauss
hypergeometric function 2F1 (a,b;c;x) , is in need.

2F1 (a1,a2;a3;ζ ) =
∞

∑
n=0

(a1)n (a2)n

(a3)n

ζ n

n!
(|ζ |< 1)

where (a)n denotes the Pochhammer symbol defined, in
terms of Gamma functions, by

(a)n =
Γ (a+ n)

Γ (a)
= a(a+ 1)(a+ 2)...(a+ n− 1),

n ∈ N and(a)0 = 1
In many places of the work here the rearrangement of

terms in iterated series, is commonly used. To simplify
many proofs of the presented results the following useful
lemma is needed (see [36])

Lemma 21

∞

∑
n=0

∞

∑
k=0

Ak,n =
∞

∑
m=0

m

∑
j=0

A j,m− j =
∞

∑
n=0

n

∑
k=0

Ak,n−k (2.1)

∞

∑
n=0

n

∑
k=0

Bk,n =
∞

∑
n=0

∞

∑
k=0

Bk,n+k (2.2)

3 Solutions of the conformable fractional

Laguerre differential equation

In our current study, we are interested to consider a
generalization of fractional Laguerre differential
equation, where the involving derivative is CFD. More
precisely, we study the equation in the form

xα
D

α
D

α y+α (1− xα)Dα y+α2ny = 0 (3.1)

It is clear that x = 0 is a α−regular singular point, Hence,
to find the solution of (3.1), we proceed as follows.

Let y =
∞

∑
k=0

akxα(k+c), a0 6= 0 be the series solution of

equation (3.1) about x = 0. Then from the basic properties
of the CFD we get

D
α y =

∞

∑
k=0

α (k+ c)akxα(k+c−1)

and

D
α
D

α y =
∞

∑
k=0

α2 (k+ c)(k+ c− 1)akxα(k+c−2)

Thus, owing to (1.2), we have

xα
∞

∑
k=0

α2 (k+ c)(k+ c− 1)akxα(k+c−2)

+α (1− xα)
∞

∑
k=0

α (k+ c)akxα(k+c−1)

+α2n
∞

∑
k=0

akxα(k+c) = 0

(3.2)

Therefore,

∞

∑
k=0

(k+ c)(k+ c− 1)akxα(k+c−1)+
∞

∑
k=0

(k+ c)akxα(k+c−1)

−
∞

∑
k=0

(k+ c)akxα(k+c)+
∞

∑
k=0

nakxα(k+c) = 0

∞

∑
k=0

(k+ c)2
akxα(k+c−1)−

∞

∑
k=0

(k+ c− n)akxα(k+c) = 0

Equaling the coefficient of xα(c−1) we have c = 0

Again, equaling the coefficient of xα(k+c) we have the
recursion formula

ak+1 =
k+ c− n

(k+ c+ 1)2
ak

Substituting by c = 0, we get

ak+1 =
(−1)n− k

(k+ 1)2
ak

at k = 0, we have

a1 =
(−1)n

12
a0

at k = 1, we have

a2 =
(−1)2

n(n− 1)

12.22
a0

at k = 2, we have

a3 =
(−1)3

n(n− 1)(n− 2)

12.22.33
a0

. . .

In general, we have

ak =
(−1)k

n(n− 1)(n− 2)...(n− k+ 1)

(k!)2
a0

=
(−1)k

n!

(k!)2 (n− k)!
a0

The constant a0 is usually chosen so that the polynomial
solution at x = 1 equal 1. So, the value to be given to a0 is
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a0 = 1. Since (3.1) has x = 0, as a regular singular point,
its solution is written as

y =
∞

∑
k=0

akxα(k+c) =
∞

∑
k=0

(−1)k
n!

(k!)2 (n− k)!
xαk (3.3)

Keeping in mind that the factorial function is always
chosen to be non-negative, thus n − k ≥ 0 and hence
k ≤ n.
Therefore (3.3) becomes

y =: Lα
n (x) =

n

∑
k=0

(−1)k
n!

(k!)2 (n− k)!
xαk; α ∈ (0,1]. (3.4)

which is the αkth conformable fractional Laguerre
polynomials. Clearly, the first four terms of Lα

n (x) are

Lα
0 (x) = 1, Lα

1 (x) = 1− tα, Lα
2 (x) =

1

2!

(

t2α − 4tα + 2
)

,

(3.5)
Lα

3 (x) = 1
3!

(

−t3α + 9t2α − 18tα + 6
)

Figs.1 and 2 show graphs of CFLPs (3.4) for various values
of n and α .

Fig. 1: Graph of the CFLPs with n = 5 and various values of

α = 0.2,0.4,0.6,0.8,1.

Fig. 2: Graph of CFLPs with α = 0.5 and various values of n =
1,2, ...,5.

4 Generating functions

Generating functions are important way to transform
formal power series into functions and to analyze
asymptotic properties of sequences. In what follows we
characterize the CFLPs by means of various generating
functions.

Theorem 41For α ∈ (0,1], the generating relation of

conformable fractional Laguerre polynomials Lα
n (x) , can

be written as

g(x, t) = etα
Jα

0

(

2
√

xt
)

=
∞

∑
n=0

Lα
n (x)tαn

n!
(4.1)

where Jα
0 (x) is the conformable fractional Bessel function

[37].

Proof.Directly from (3.4), we have

∞

∑
n=0

Lα
n (x) tαn

n!
=

∞

∑
n=0

n

∑
k=0

(−1)k
xαk

(n− k)!(k!)2
tαn

Using lemma 21, one obtains

∞

∑
n=0

Lα
n (x) tαn

n!
=

∞

∑
n=0

∞

∑
k=0

(−1)k
xαk

n!(k!)2
tα(n+k)

=
∞

∑
n=0

tαn

n!
.

∞

∑
k=0

(−1)k (xt)αk

(k!)2

= etα
Jα

0

(

2
√

xt
)

as required.

Theorem 42Let α ∈ (0,1] and c an arbitrary real

numbers, then the generating function of CFLPs Lα
n (x) ,

can be given by the following formula:

∞

∑
n=0

(c)n Lα
n (x)tαn

n!
=

1

(1− tα)c 1F1

(

c;1;
−xαtα

1− tα

)

(4.2)

Proof.In view of (3.4), we get

∞

∑
n=0

(c)n Lα
n (x)tαn

n!
=

∞

∑
n=0

n

∑
k=0

(−1)k (c)n xαk

(n− k)!(k!)2
tαn

Using lemma 21 and the identity (c)n = (c+ k)n (c)k , we
have

∞

∑
n=0

(c)n Lα
n (x) tαn

n!
=

∞

∑
k=0

∞

∑
n=0

(c+ k)n

n!
tαn.

(−1)k (c)k xαktαk

(k!)2

Owing to the binomial series we obtain

∞

∑
n=0

(c)n Lα
n (x) tαn

n!
=

∞

∑
k=0

1

(1− tα)c+k

(−1)k (c)k xαktαk

(k!)2

=
1

(1− tα)c

∞

∑
k=0

(c)k

(k!)2

(−xαtα

1− tα

)k

=
1

(1− tα)c 1F1

(

c;1;
−xα tα

1− tα

)

as desired.
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Corollary 41For c = 1 in the previous theorem, we get

∞

∑
n=0

Lα
n (x)tαn =

1

(1− tα)
1F1

(

1;1;
−xα tα

1− tα

)

=
1

(1− tα)
exp

(−xα tα

1− tα

)

.

(4.3)

5 Rodrigues Formula for CFLPs

Rodrigues Formula is one of the main tools to define a
sequence of orthogonal polynomials [38]. Once we have
this formula, a lot of interesting properties of the
polynomials can be characterized. For this reason,
generalizations of these formulas paid much attention to
mathematicians in the last two decades, both to include
fractional order differentiation and to define new classes
of special functions.
Owing to the notation of CFD we have
Dαn = Dα DαDα ...Dα ;n− times, and relying on the fact
Dα xk = kxk−α , one can provide the Rodrigues formula
for CFLPs Lα

n (x) through the following result

Theorem 51The Laguerre polynomials Lα
n (x) , can be

formulated in the sense of conformable derivative as:

Lα
n (x) =

exα

αnn!
D

αn
[

xαne−xα
]

(5.1)

Proof.In virtue of the conformable derivative, we have

D
α(n−k)xαn =

αn−kn!

k!
xαk, and D

αke−xα
= (−1)k αke−xα

(5.2)
Using (3.4) and (5.2), it follows that

Lα
n (x) =

n

∑
k=0

exα
Dα(n−k)xαn.Dαke−xα

(n− k)!k!αn

=
exα

n!αn

n

∑
k=0

n!Dα(n−k)xαn.Dαke−xα

(n− k)!k!

=
exα

n!αn

n

∑
k=0

(

n

k

)

D
α(n−k)xαn.Dαke−xα

(5.3)

Noting that, the CFD achieves well both the product and
Leibniz rules unlike the case of the old fractional calculus.
Hence, in view of Leibniz rule, (5.3) becomes

Lα
n (x) =

exα

αnn!
D

αn
[

xαne−xα
]

as required.

6 Certain types of recurrence relations

This section is devoted to establishing pure recurrence
relation and then characterizes some differential formulas.
Our first result is:

Theorem 61The Laguerre polynomials Lα
n (x) in the

conformable sense, satisfy the following pure recurrence

formula

(n+ 1)Lα
n+1 (x) = (2n+ 1− xα)Lα

n (x)− nLα
n−1 (x) ,

(6.1)
α ∈ (0,1]

Proof.Acting by the conformable fractional operator Dα

on the generating function (4.3) with respect to t, we get

∞

∑
n=0

Lα
n (x)nαtα(n−1) =

α

(1− tα )2
e

−xα tα

1−tα − αxα

(1− tα )2

1

1− tα
e

−xα tα

1−tα

(6.2)
Using (4.3), we have

∞

∑
n=0

Lα
n (x)ntα(n−1) =

1

1− tα

∞

∑
n=0

Lα
n (x) tαn − xα

(1− tα )2

∞

∑
n=0

Lα
n (x) tαn (6.3)

Multiplying throughout by (1− tα)2 , we have

(1− tα)2
∞

∑
n=0

nLα
n (x) tα(n−1) = (1− tα)

∞

∑
n=0

Lα
n (x) tαn

−xα
∞

∑
n=0

Lα
n (x)tαn

Therefore,

∞

∑
n=0

nLα
n (x)tα(n−1) =

∞

∑
n=0

(2n+ 1− xα)Lα
n (x)tαn

−
∞

∑
n=0

(n+ 1)Lα
n (x) tα(n+1)

Relabeling the summation so that the general power
appear as tαn in each gives

∞

∑
n=−1

(n+ 1)Lα
n+1 (x) tαn =

∞

∑
n=0

(2n+ 1− xα)Lα
n (x) tαn−

(6.4)
∞

∑
n=0

nLα
n−1 (x)tαn

Equating the coefficient of tαn on both sides of (6.4),
we obtain

(n+ 1)Lα
n+1 (x) = (2n+ 1− xα)Lα

n (x)− nLα
n−1 (x)

and the proof is therefore established.

For fractional differential formulas, we give the next result.

Theorem 62For α ∈ (0,1] , the α−Laguerre polynomials

Lα
n (x) , are characterized through the following

differential formulas

D
α Lα

n (x) = D
α Lα

n−1 (x)−αLα
n−1 (x) (6.5)

D
α Lα

n (x) =−α
n−1

∑
s=0

Lα
s (x) (6.6)

xα
D

α Lα
n (x) = nα

[

Lα
n (x)−Lα

n−1 (x)
]

(6.7)
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Proof.According to the conformable fractional differential
operator and in view of (4.3), it follows that

D
α

{

1

1− tα
e
−xα tα

1−tα

}

= D
α

[

∞

∑
n=0

Lα
n (x)tαn

]

−αtα

1− tα
.

1

1− tα
e
−xα tα

1−tα =
∞

∑
n=0

D
α [Lα

n (x)] tαn

Also, using (4.3), it is easily verify

−αtα

1− tα

∞

∑
n=0

Lα
n (x) tαn =

∞

∑
n=0

D
α [Lα

n (x)] tαn

Therefore,

−α
∞

∑
n=0

Lα
n (x) tα(n+1) =

∞

∑
n=0

D
α [Lα

n (x)] tαn− (6.8)

∞

∑
n=0

Dα [Lα
n (x)] tα(n+1)

Equating the coefficient of tαn in both sides of (6.8), we
get

−αLα
n−1 (x) = D

α [Lα
n (x)]−D

α
[

Lα
n−1 (x)

]

Thus, the result (6.5) is therefore performed.
Applying relation (6.5) recursively, we obtain

D
α Lα

n (x) =−α
[

Lα
n−2 (x)+Lα

n−1 (x)
]

Repeating the relation (6.5), n−times and noting that
Dα Lα

0 (x) = 0, we obtain (6.6).
To deduce relation (6.7), applying the conformable
derivative by (6.1), we get

(n+ 1)Dα Lα
n+1 (x)+ (xα − 1− 2n)Dα Lα

n (x) (6.9)

+Lα
n (x)+ nDαLα

n−1 (x) = 0

and by writing (6.5), in the equivalent useful forms:

D
α Lα

n+1 (x) = Dα Lα
n (x)−αLα

n (x) (6.10)

D
α Lα

n−1 (x) = D
α Lα

n (x)+αLα
n−1 (x) (6.11)

substituting from (6.10) and (6.11) in (6.9), we obtain
(6.7).

7 Conformable fractional integral and

fractional Laplace transform of CFLPs

7.1 Conformable fractional integral of CFLPs

Taking into account the α-integral given in Definition 12,
we provide the integral of CFLPs.
Thus according to Definition 12, it follows that

Iα f (x) =

x
∫

0

tα−1 f (t)dt. (7.1)

In this regard, we state the following important result given
in [25].

Lemma 71Let f : [0,∞)→ R be α-differentiable for α ∈
(0,1], then for all x > 0 one can write:

IαD
α ( f (x)) = f (x)− f (0) (7.2)

With the use of (7.1) and (7.2), we give the following result

Theorem 71For γ ∈ (0,1], then the conformable fractional

integral of order γ, of CFLPs, Lα
n (x) can be written as

IγLα
n (x) =

n

∑
k=0

(−1)k
n!

(n− k)!(k!)2 (αk+ γ)
xαk+γ (7.3)

Proof.In view of (7.1) and (3.4), we obtain

IγLα
n (x) =

x
∫

0

tγ−1
n

∑
k=0

(−1)k
n!

(n− k)!(k!)2
tαkdt

=
n

∑
k=0

(−1)k
n!

(n− k)!(k!)2

x
∫

0

tαk+γ−1dt

=
n

∑
k=0

(−1)k
n!

(n− k)!(k!)2 (αk+ γ)
xαk+γ

and the result follows.

Remark 71If α = γ in (7.3), we have

IαLα
n (x) =

1

α

n

∑
k=0

(−1)k
n!

(n− k)!(k!)2 (k+ 1)
xα(k+1) (7.4)

Now, the following result allows us to express the
conformable fractional integral of Laguerre polynomials
in terms of CFLPs.

Theorem 72Let α ∈ (0,1], the conformable fractional

integral Iα of CFLPs, satisfies the relation

Iα =
1

α

[

Lα
n (x)−Lα

n+1 (x)
]

(7.5)

Proof.Relation (6.5) gives

αLα
n (x) = D

α Lα
n (x)−D

αLα
n+1 (x)

Acting by the conformable fractional integral on both
sides, we obtain

αIα Lα
n (x) = IαD

α Lα
n (x)− IαD

α Lα
n+1 (x)

Using (7.2) and noting that Lα
n (0) = 1, we have

αIα Lα
n (x) = Lα

n (x)−Lα
n+1 (x)

just as required in theorem 72.
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7.2 Fractional Laplace transform of the CFLPs,

Lα
n (x)

In [26], Abdeljawad defined the fractional Laplace
transform in the conformable sense as follows:

Definition 71[26] Let α ∈ (0,1] and f : [0,∞)→R be real

valued function. Then the fractional Laplace transform of

order α is defined by

Lα [ f (t)] = Fα (s) =

∞
∫

0

e
−s

(

tα

α

)

f (t) dα t (7.6)

=

∞
∫

0

e
−s

(

tα

α

)

f (t)tα−1dt.

Remark 72If α = 1, then (7.6) is the classical definition

of the Laplace transform of integer order.

Also, the author in [26] gave the following interesting
results.

Lemma 72[26] Let α ∈ (0,1] and f : [0,∞) → R be real

valued function such that

Lα [ f (t)] = Fα (s) exist. Then Fα (s) = L

[

f (αt)
1
α

]

,

where L [ f (t)] =
∞
∫

0

e−st f (t)dt.

Lemma 73[26] The following the conformable fractional

Laplace transform of certain functions:

(1)Lα [1] = 1
s
; s > 0

(2)Lα [t p] = α
p
α

Γ (1+ p
α )

s1+
p
α

; s > 0

(3)Lα

[

ek tα

α

]

= 1
s−k

Owing to the definition of CFLPs and applying the
conformable fractional Laplace transform operator of an
arbitrary order γ ∈ (0,1], we have

Lγ [ Lα
n (x)] = Lγ

[

n

∑
k=0

(−1)k
n!

(n− k)!(k!)2
xαk

]

(7.7)

=
n

∑
k=0

(−1)k
n!

(n− k)!(k!)2
Lγ

{

xαk
}

Using (2) of lemma 73, we obtain

Lγ [ Lα
n (x)] =

n

∑
k=0

(−1)k
n!

(n− k)!(k!)2
γ

kα
γ

Γ
(

1+ kα
γ

)

s
1+ kα

γ

(7.8)

Remark 73If γ = α in (7.8) we have

Lα [ Lα
n (x)] =

n

∑
k=0

(−1)k
n!

(n− k)!(k!)2

αk Γ (1+ k)

s1+k

=
1

s

(

1− α

s

)n

8 Orthogonality

Along the same lines in scalar case, one can use the
conformable derivative to introduce the orthogonality
relation as follows

Theorem 81The conformable fractional Laguerre

polynomials Lα
n (x) , are orthogonal with respect to the

weight function w(x) = xα−1 e−xα
, over the interval

[0,∞) as follows

∞
∫

0

xα−1 e−xα
Lα

n (x)Lα
m (x)dx =

1

α
δnm, α ∈ (0,1]. (8.1)

where δnm is the familiar Kronker delta.

Proof.Since Lα
n (x) is a solution of the conformable

fractional Laguerre equation (3.1), then it satisfies the
equation

xα e−xα
D

α
D

α Lα
n (x)+αe−xα

(1− xα)Dα Lα
n (x) (8.2)

+α2ne−xα
Lα

n (x) = 0.
For our propose we rewrite (8.2) in the more useful form:

D
α
[

xα e−xα
D

α Lα
n (x)

]

+α2ne−xα
Lα

n (x) = 0, (8.3)

as is easily verified. Eq. (8.3) together with

D
α
[

xα e−xα
D

α Lα
m (x)

]

+α2me−xα
Lα

m (x) = 0, (8.4)

Multiplying (8.3) by Lα
m (x) and (8.4) by Lα

n (x) and
subtracting the resulting equations, we have

α2 (n−m)e−xα

Lα
n (x)Lα

m (x) = Lα
n (x)Dα

[

xα e−xα

D
α Lα

m (x)
]

−Lα
m (x)Dα

[

xα e−xα

D
α Lα

n (x)
]

Applying the conformable fractional integral (1.3) over the
interval [0,∞), we obtain

α2 (n−m)

∞
∫

0

e−xα
Lα

n (x)Lα
m (x)dα x

=

∞
∫

0

Lα
n (x)Dα

[

xα e−xα
D

α Lα
m (x)

]

dα x

−
∞
∫

0

Lα
m (x)Dα

[

xα e−xα
D

α Lα
n (x)

]

dα x

Performing integration by parts [26] on the right-hand
side, we get

α2 (n−m)

∞
∫

0

e−xα
Lα

n (x)Lα
m (x)dα x = 0
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For n 6= m, we have

∞
∫

0

e−xα

Lα
n (x)Lα

m (x)dα x =

∞
∫

0

xα−1 e−xα

Lα
n (x)Lα

m (x)dx = 0.

(8.5)

Now, for n = m. In the view of the generating function
(4.3), we can easily write

∞

∑
n=0

e−xα
[Lα

n (x)]2 t2αn = e−xα
.

1

(1− tα)2
exp

(−2xαtα

1− tα

)

Applying the conformable fractional integral (1.3) over the
interval [0,∞), we get

∞

∑
n=0

∞
∫

0

e−xα
[Lα

n (x)]2 t2αndαx

=
1

(1− tα)2

∞
∫

0

exp

[

−
(

1+ tα

1− tα

)

xα

]

dαx

=

[

1

(1− tα)2

1

−α
(

1+tα

1−tα

) exp

[

−
(

1+ tα

1− tα

)

xα

]

]∞

0

=
1

α (1− t2α)
=

1

α

∞

∑
n=0

t2αn

Equating the coefficient of t2αn, we have

∞
∫

0

e−xα
[Lα

n (x)]2 t2αndα x =

∞
∫

0

xα−1 e−xα
[Lα

n (x)]2 dx =
1

α
.

(8.6)
Hence, the result is established.

8.1 Overview of approximation theory

Analogously to the scalar case and due to the
orthogonality property we say that a set of conformable
fractional polynomials forms a simple set of fractional
polynomials 1. Consequently, the following results can be
determined.

Proposition 81Suppose that {ψαn (x)} is a simple set of

the conformable fractional polynomials. If P(x) is a

polynomial of degree αn, then for certain constants we

have the expansion

P(x) =
n

∑
k=0

akψαk (x) , (8.7)

where ak are functions of k and of any parameters involved

in P(x).

1 The definition of the simple set of polynomials can be found

in [36].

8.1.1 Approximation in terms of Lα
n (x)

It is useful to seek an expansion in terms of CFLPs, Lα
n (x)

of the form

f (x) =
∞

∑
n=0

anLα
n (x) , x ∈ (0,∞) . (8.8)

Noting that convergence of (8.8) is actually guaranteed
provided that f (x) is sufficiently well behaved. The
formula (8.8) can be determined in terms of
xαn, α ∈ (0,1] which can be characterized by means of
Lα

n (x) . Proposition 81 concludes that any polynomial can
be expanded in a series of CFLPs merely due to the fact
that Lα

n (x) forms a simple set. In fact the orthogonality
property of {Lα

n (x)} has an important role in determined
the coefficients. So that it is necessary to have the
expansion of xαn in a series of CFLPs. For such
application in function theory we refer to the work [39,
40,41,42,43,44].

8.1.2 The expansion of xαn,α ∈ (0,1]

Theorem 82The expansion of xαn,α ∈ (0,1],n is

non-negative integer, can be characterized in terms of

Lα
n (x) as follows

xαn =
n

∑
k=0

(−1)k (n!)2

(n− k)!k!
Lα

k (x) (8.9)

Proof.In view of (4.1), we obtain

Jα
0

(

2
√

xt
)

= e−tα
∞

∑
k=0

Lα
k (x) tαk

k!

Using the definition of conformable fractional Bessel
function and lemma 21, we get

∞

∑
n=0

(−1)n
xαntαn

(n!)2
=

∞

∑
n=0

∞

∑
k=0

(−1)n
Lα

k (x) tα(n+k)

n!k!

=
∞

∑
n=0

n

∑
k=0

(−1)n−k
Lα

k (x) tαn

(n− k)!k!

Equating the coefficient of tαn, we obtain

(−1)n
xαn

(n!)2
=

n

∑
k=0

(−1)n−k
Lα

k (x)

(n− k)!k!

Hence, the result (8.9), is established.

Example 81Using theorem 82, we can write for example

x
1
2 = L

1
2
0 (x)−L

1
2
1 (x) ,

and x
3
2 = 6L

1
2
0 (x)− 18L

1
2
1 (x)+ 18L

1
2
2 (x)− 6L

1
2
3 (x) .
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8.1.3 The expansion of analytic functions

Classically, the expansion theory was treated through
several approaches, see for example [45,46]. For
approximation theory of analytic functions by means of a
sequence of polynomials, we refer to the classical works
of Whittaker [40], Boas [41] and recently in higher
dimensions [42,43,44]. The previous theorem 82 is then
useful to determinate an explicit representation of analytic
function by means of CFLPs series. Beforehand let us
recall the following amazing fact.

In classical analysis, Taylor’s series expansion of a
function f near certain points does not always exist,
unlike the situation in the conformable fractional analysis.
This fact was illustrated by Abdeljawad [26] who showed
the existence of the conformable fractional power series
representation for an infinity α−differentiable function,
for α ∈ (0,1]. In fact, the following interesting result was
proved in [26].

Theorem 83Given x0 be fixed and assume that f is an

infinity conformable fractional differentiable function for

α ∈ (0,1]. Then there exist a Taylor conformable

fractional representation in the form.

f (x) =
∞

∑
k=0

(Dα f )(k) (x0)

αkk!
(x− x0)

αk , (8.10)

x0 < x < x0 +R1/α , R > 0

where (Dα f )(k) (x0) means acting by the CFD
repeatedly k times at x0.

Consequently when x0 = 0, we immediately get the α-
Maclaurin expansion.

f (x) =
∞

∑
k=0

(Dα f )(k) (0)

αkk!
xαk, 0 < x < R1/α , R > 0,

(8.11)

where also (Dα f )(k) (0) means as we pointed above at
x = 0.
With the aid of the formula (8.11) and applying theorem
(82) attain the following.

f (x) =
∞

∑
n=0

n

∑
k=0

an

n!

(−1)k (n!)2

(n− k)!k!
Lα

k (x) .

Hence,

f (x) =
∞

∑
n=0

∞

∑
k=0

(−1)k (n+ k)!an+k

n!k!
Lα

k (x) . (8.12)

Using the orthogonality relation and theorem 82. it can be
easy to establish the following result

Theorem 84For α ∈ (0,1], the conformable fractional

Laguerre polynomials Lα
n (x) , satisfy the following

integral relations

∞
∫

0

e−xα
xαkLα

n (x)dα x = 0, k = 0,1,2, ...,(n− 1),

(8.13)

∞
∫

0

e−xα
xαnLα

n (x)dα x =
(−1)n

n!

α
. (8.14)

where dα x = xα−1dx.

9 Applications

9.1 Fundamental Results

Let u(x) is a square integrable function over (0,∞) i.e
∞
∫

0

u2(x)dx < ∞, then u(x) may be expressed in terms of

CFLPs Lα
n (x) , as

u(x) =
∞

∑
j=0

a j Lα
j (x) , (9.1)

where

a j = α

∞
∫

0

xα−1e−xα
u(x)Lα

j (x)dx, j = 0,1,2, ... (9.2)

In practice, only the first (M+ 1)−terms of CFLPs, are
considered. Then, we have

uM (x) =
M

∑
j=0

a j Lα
j (x) = AT Ψ (x) (9.3)

where the conformable fractional Laguerre coefficient
vector A and the conformable fractional Laguerre vector
Ψ (x) are given by

AT = [a0,a1,a2, ...,aM] and Ψ (x) (9.4)

= [Lα
0 (x) ,Lα

1 (x) ,Lα
2 (x) , ...,Lα

M (x)]T

Now, the main objective of this subsection is to drive a new
operational matrix of conformable fractional derivative for
the conformable fractional Laguerre vector as:

Theorem 91Let α ∈ (0,1], Ψ (x) be the conformable

fractional Laguerre vector defined in (9.4), and λ > 0,
then

D
λΨ (x)≃ϒ λ Ψ (x) , (9.5)

where ϒ λ is (M+ 1)× (M+ 1) operational matrix of

fractional derivative of order λ in the conformable sense

and is defined as follows:

ϒ λ =











η (0,0) η (0,0) ... η (0,0)
η (1,0) η (1,1) ... η (1,M)
η (2,0) η (2,1) ... η (2,M)

... ... ... ...
η (M,0) η (M,1) ... η (M,M)











(9.6)
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where η (n, j) = 0 when αk ∈N0 and αk < λ , in the other

wise

η (n, j) =
n

∑
k=0

j

∑
r=0

(−1)k+r
n! j!

(n− k)!(k!)2 ( j− r)!(r!)2
. (9.7)

Γ (αk+ 1)Γ
(

k+ r− λ
α + 1

)

Γ (αk−⌈λ⌉+ 1)

where ⌈λ⌉ is the usual ceil function i.e ( the least integer

greater than or equal to λ ).

Proof.Using the analytic form of the CFLPs Lα
n (x) of

degree αn (3.4) and the conformable fractional operator
(1.2), we have

D
λ Lα

n (x) =
n

∑
k=0

(−1)k
n!

(n− k)!(k!)2
D

λ xαk

=
n

∑
k=0

bk,n.
Γ (αk+ 1)

Γ (αk−⌈λ⌉+ 1)
xαk−λ ,

(9.8)

where, bk,n = 0 when αk ∈ N0 and αk < λ , in the other

case bk,n =
(−1)kn!

(n−k)!(k!)2 .

Now, approximate xαk−λ by (M+ 1)−terms of CFLPs, we
have

xαk−λ ≃
M

∑
j=0

a j Lα
j (x) (9.9)

where a j is given from (9.2) with u(x) = xαk−λ that is

a j =
j

∑
r=0

(−1)r
j!

( j− r)!(r!)2
.Γ

(

k+ r− λ

α
+1

)

, j = 0,1,2, ...,M.

(9.10)

In virtue of (9.8) and (9.9), we get

Dλ Lα
n (x) =

M

∑
j=0

η (n, j)Lα
j (x) , n = 0,1,2, ...,M. (9.11)

where η (n, j) = 0 when αk ∈N0 and αk < λ , in the other
wise

η (n, j) =
n

∑
k=0

j

∑
r=0

(−1)k+r
n! j!

(n− k)!(k!)2 ( j− r)!(r!)2

.
Γ (αk+ 1)Γ

(

k+ r− λ
α + 1

)

Γ (αk−⌈λ⌉+ 1)

Accordingly, (9.11) can be written in a vector form as
follows:

Dλ Lα
n (x) = [η (n,0) ,η (n,1) ,η (n,1) , ...,η (n,M)]Ψ (x) ,

(9.12)

n = 0,1,2, ...,M.

9.2 Proposed scheme

Now, we consider the generalized linear multi-order
conformable fractional differential equation in the form:

D
λ u(x)+

m

∑
s=1

csD
λsu(x)+ cm+1u(x) = cm+2g(x) (9.13)

with the initial conditions

u(i) (0) = di, i = 0,1,2, ...,⌈γ⌉− 1, (9.14)

where Dλ , 0 < λ1 < λ2, ...,λm < λ referes to the
conformable fractional derivative of order λ and
di, i = 0,1,2, ...,⌈γ⌉− 1 are given constant.
To solve the problem in equations (9.13) and (9.14), it is

required to approximate u(x) ,Dλ u(x) , Dλs u(x) and
g(x) by the conformable fractional Laguerre polynomials
as follows:

u(x)≃
M

∑
j=0

a j Lα
j (x) = AT Ψ (x) (9.15)

D
λ u(x)≃

M

∑
j=0

a j D
λ Lα

j (x) = AT
D

λΨ (x) = AT ϒ λΨ (x)

(9.16)

D
λsu(x)≃

M

∑
j=0

a j D
λs Lα

j (x)=AT
D

λsΨ (x)=AT ϒ λsΨ (x)

(9.17)
and

g(x)≃
M

∑
j=0

g jL
α
j (x) = GTΨ (x) , (9.18)

where the vector G = [g0,g1, ...,gM]T is known but the

vector A = [a0,a1, ...,aM]T is unknown
Inserting equations (9.15)-(9.18) into (9.13), we can find
the residual for equation (9.13) as

RM (x)≃ [AT ϒ λΨ (x)+AT
m

∑
s=1

csϒ
λsΨ (x)+ ck+1ATΨ (x)

−ck+2GTΨ (x)]

i.e

RM (x)≃
[

AT ϒ λ +AT
m

∑
s=1

csϒ
λs +ck+1AT −ck+2GT

]

Ψ (x)

(9.19)

Owing to tau method (see [47,48]) we generate (M−⌈γ⌉)
linear equations by helpful of orthogonal property by using

〈

RM (x) ,Lα
j (x)

〉

w(x)
=

∞
∫

0

xα−1e−xα
RM (x) .Lα

j (x)dx = 0.

(9.20)
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From (9.14) we can obtain:

u(0) = ATΨ (0) = d0,

u(1) (0) = ATΨ (1) (0) = d1,

u(2) (0) = ATΨ (2) (0) = d2,

.

.

.

u(⌈γ⌉) (0) = AT Ψ (⌈γ⌉) (0) = d⌈γ⌉,

(9.21)

The equations (9.20) and (9.21) generate (M−⌈γ⌉) and
(⌈γ⌉+ 1) set of linear equations respectively.
Solving these linear equations for unknown coefficient of
the vector A, then u(x) can be established.

9.3 Illustrative examples

Example 91As the first example, we consider the

inhomogeneous Bagley-Torvik fractional differential

equation

D
2u(x)+D

3/2u(x)+ u(x) = 1+ x, (9.22)

subject to the initial conditions:

u(0) = 1, u′ (0) = 1. (9.23)

The exact solution of this problem is u(x) = 1+ x. (see
[49,50,51]).
Applying the proposed scheme with M = 2, and α = 1 we
have the approximate solution

u(x) = a0Lα
0 (x)+ a1Lα

1 (x)+ a2Lα
2 (x) = AT Ψ (x) .

(9.24)
Hence, Eq. (9.22), becomes

AT
[

ϒ 2 +ϒ 3/2 + I
]

Ψ (x) = GTΨ (x) (9.25)

Here, we have

ϒ 1 =





0 0 0
−1 0 0
−1 −1 0



 , ϒ 2 =





0 0 0
0 0 0
1 0 0



 ,

ϒ 3/2 =





0 0 0
0 0 0√
π

2
−√

π
4

−√
π

16



 and G =





2
−1
0





(9.26)

Therefore, using Eq. (9.20), we obtain

a0 +

(

1+

√
π

2

)

a2 = 2 (9.27)

Applying Eq. (9.21), we have

a0 + a1 + a2 = 1 (9.28)

a0 + a1 = 1 (9.29)

Solving Eqs. (9.27), (9.28) and (9.29), we get

a0 = 2, a1 =−1, and a2 = 0. (9.30)

Thus, we have

u(x) = (2, − 1, 0)





L1
0 (x)

L1
1 (x)

L1
2 (x)



= 1+ x,

which is the exact solution.

Example 92Consider the following CFDE

D
λ u(x)+ u(x) = 0, λ ∈ (0,1], 0 ≤ x ≤ 1, (9.31)

with

u(0) = 1. (9.32)

The problem (9.31) has an exact solution in the form

u(x) = e

(

−xλ

λ

)

, (see [50,51]).
This problem has been treated using different methods in
Caputo sense, (see[50,51]).
We solve the problem (9.31), by applying the technique
described in the previous subsection. The absolute error
for M = 10, and various values of α = λ are shown in
table 1, and we can see that we can achieve a good
approximation with the exact solution using a few terms
of conformable fractional Laguerre polynomials. Also,
the numerical result for u(x) at M = 10 with
α = λ = 0.4, 0.6, 0.8, 0.9, and 1 are plotted in Fig. 3.

Fig. 3: Graph of the numerical solution u(x) of Example 92 for

M = 10 with various values of α = λ = 0.4, 0.6, 0.8, 0.9, and

1.
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Table 1: The absolute error for M = 10, and various values of α = λ = 0.4, 0.6, 0.8, 0.9, and 1, for Example 92

x γ = 0.4 γ = 0.6 γ = 0.8 γ = 1

0.1 4.0256833578.10−3 3.053252644754.10−4 1.80817274715639.10−4 5.237431361688823.10−5

0.2 6.9221049938.10−3 5.553962049349.10−4 4.61879235811313.10−5 4.287895424511354.10−5

0.3 7.4914126535.10−3 1.125596510475.10−3 1.20890231216475.10−4 4.693164363294121.10−6

0.4 7.0045089315.10−3 1.407650550408.10−3 2.54670049942785.10−4 3.987324972045628.10−5

0.5 5.9881878156.10−3 1.462666989978.10−3 3.34703362446343.10−4 7.691936263802814.10−5

0.6 4.7050760526.10−3 1.350034699207.10−3 3.58743647587700.10−4 9.890731483230397.10−5

0.7 3.2999503461.10−3 1.119073935016.10−3 3.32711340581993.10−4 1.029759044721605.10−4

0.8 1.8575168159.10−3 8.090853661598.10−4 2.66056667450276.10−4 8.956447421627215.10−5

0.9 4.2906650059.10−4 4.509086007730.10−4 1.69384005589968.10−4 6.130357176535860.10−5

1 9.5386883330.10−4 6.854369738516.10−5 5.31792314418302.10−5 2.213388537324782.10−5

10 Concluding Remarks

The main purpose of the present paper is to develop a
study on the fractional Laguerre equation and fractional
Laguerre polynomial initiated recently in [3] in the sense
of conformable derivative. We obtained solutions of the
conformable fractional Laguerre equation about the
fractional regular singular point. Several basic properties
of the conformable fractional Laguerre polynomials are
reported. Because of the orthogonality property of the
conformable fractional Laguerre functions, it can be
employed as a basic of operational matrix together with
generalized tau method for solving general linear
multi-term fractional differential equations. The main
advantage of this method lies in its easiness since it relies
on conformable fractional Laguerre polynomials. This
method contrasts in simplicity with standard methods
based on solving the fractional differential equations
using other techniques found in the literature. Supported
examples are given to ensure the applicability and
efficiency of the introduced method. Therefore, the results
of this work are variant, significant and so it is interesting
and capable to develop its study in the future such as
generalized Laguerre polynomials eg. [1,2].
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