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Abstract: This paper investigates the stability and stabilizatiavbfgms for a class of uncertain time-delay systems. Fooeixg the

stability problem, the Lyapunov-Krasovskii function (LKFhethod and Leibniz-Newton formula are adopted to analleestability
problems of a class of uncertain time-delay systems. Intiatdithe proposed delay-dependent stability conditiamsaf class of
time-delay unforced systems can be formulated by linearimaiequalities (LMIs). By examining the stabilizationgislem, based
on the sliding mode control scheme, some assumptions, and sansformations, the delay-dependent stabilizatiowition for

uncertain time-delay system is propounded to guaranteadpmptotic stabilization of uncertain time-delay systenthis paper.
Moreover, based on the Schur complement formula and sonebl@transformations, the delay-dependent stabilimatimnditions
of the uncertain time-delay system can be presented in tefirsear matrix inequality (LMI) form. Finally, a numeritaxample is
illustrated to demonstrate the effectiveness and valifitjre proposed control scheme.
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1 Introduction some systems, one cannot addresses the stabilization
) ) .. condition directly, and one has to transform the original
Itis known that time-delay phenomenon always exists ingystem into a more fitting form for further analysis by
many physical and engineering systems, for example sing the Lyapunov-Krasovskii technique. Therefore,
manual controls, pollution dynamic models, rolling hills, ere are some studies that adopt some transformations to

neural networks systems, and inferred grinding modelsypiain the equivalent equation for original syst
Therefore, the problems of stability analysis and a ; g yStene]

controller design for nonlinear systems with time delay Among the various robust control methods for
have gained considerable research attentlog, 8] in the uncertain system, the well-known _sI|d|ng mode cont.rol
past few years. In general, the stabilization for a delay(SMC) [9,10,11] has been recognized as an effective
systems are divided into two categories; robust control apprqach for uncertain systems. SMC can
delay-independent and delay-dependent cases. THee regarded a special type of variable structure control.
delay-independent approach usually is derived from the! N€ Property of SMC is that it provides discontinuous
standard Lyapunov-Krasovskii function to obtain the CONtrol laws to drive the system states to a specified
stability condition, which provides feasible solutions S/iding surface and to keep them on the sliding surface.
irrespective of the size of delay. Since the time delay isBesides this, the closed-loop response becomes totally
not taken into consideration in the process of designing"Sensitive to a particular class of uncertainties.
controllers, the delay times are allowed to be arbitrarily MOr€oVver, it provides a systematic control design method
large. But the disadvantage of delay-independenfor nonlinear system. Therefore, SMC technique has been

approach is that its stability/stabilization condition Widely applied to many uncertain nonlinear systerh3 [
generally more conservative than delay-dependent ones> 14 15 16,17]. Over the past few years, a considerable
especially when the size of the delay is small. For thishumber of studies have been made on SMC for
reason, delay-dependent stabilization for time-delaylime-delay systemlg 19,20,21,22,23].

systems based on Lyapunov-Krasovksii functional  Motivated by the above discussion, this paper will
approach are discussed in many stud$,6]. But for explore the stabilization problems of a class of uncertain
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time-delay systems. The main contributions of this papeiif and only if there exists a scaldr > 0 which is able to
are highlighted as following: i) designing a sliding mode satisfy:
controller for the uncertain time-delay system; ii)

T T
Describing the delay-dependent stabilization conditions D+AMM" +AN'IN <0

for the uncertain time-delay system via LMIs; iii)

Utilizing the proposed method for a numerical exampleLemma 2. [12] Given any matrixH (t) € R4 such that

with time-delay.

This paper is organized to the subsequent sections: In

Section I, a stability condition for a delay system which
is proposed. In Section lll, a sliding control method is
propounded for a class of uncertain time-delay system. |
Section 1V, a simulation is shown to illustrate the
proposed method. Finally, in Section V conclusion is
drawn.

Notation: The notations in this paper are quite
standard. R and R™™M denote, respectively, then
-dimensional Euclidean space and the set ofiallmreal
matrices AT denotes the transpose of matAxX <Y or
X <Y, respectively, whereX and Y are symmetric
matrices, means thaf — Y is negative semi-definite or
negative definite, respectivelyis the identity matrix with
a compatible dimension (without confusion).

2 Stability Analysisfor Time-Delay System
Considering the following time-delay system:

X(t) =AX(t) + Agx(t — T(t))
X(t)=uv(t), te[-to O

1)

wherex(t) € R" is the stateA € R™" andAq € R™" are
the already known real constant matrice@, is the time
delay, satisfied (t) < v and7(t) < 1p, andu(t) is the
initial condition.

Assumption 1. [7] The parameter uncertainties considered

here are norm-bounded and presented by the form:
[AA(t) AAG(H)] =MF(t)[N Ny

whereM, N, andNy are the already known real constant
matrices of appropriate dimensions(t) € RP*% is an

unknown matrix function with Lebesgue-measurable

elements and satisfies:
FT(OF(t) <I, Vt.
Assumption 2. [9] The pair (A, B) is controllable for the
following time-delay system, wherank(B) = m
X(t) =[A+AAR)]X(L)
+ A+ AADIX(E - T(L) +BUt)  (2)

Lemma 1. [9] For a given symmetric matri®, and there
exist M, N, and F(t) are the matrices with suitable
dimension, where thé& (t) satisfies theF ' (t)F(t) <,
then

D+MF({)N+NTFT(t)MT <0

HT(t)H(t) <1, then
2xX"H(t)y < x"x+y'y

for all x e RP andy € RY.

Mrheorem 1. For a given real constart > 0, the system

(2) is asymptatically stable if there exist some symmetric
positive definite matricesPy, P, Ry such that the
following linear matrix inequality (LMI) condition holds:

211212 213

* 3225023

ok 333
where $1; = PPA+ AR + Py — Ry, 315 = PAq + Ry,
S13=¢ATRy, S0 =—(1—1)P— Ry, Yo3 = AP,
Y33 = —26Py + 13 Ry, and * stands for the symmetric
form in the matrix.
Proof. At first, one chooses a Lyapunov-Krasovskii
functional:

®)

V(%) =x" (t)Pox(t) + t X" ()Pix(s)ds

t—1(t)
t
+ TM/
t—1m

(s— (t—1m))X" (S)Rux(s)ds
The time derivatives o¥ (x ) becomes
V(%) =x" (£) (RA+ATR)X(t) + 2x" () RoAgx(t — T(t))
+XT (OPX(E) — (L= T(t))x" (t— T(t))Pux(t — T(t))

t
+ 125 (O)RX(E) — T / )

t—1m

(4)

X" (s)Ryx(s)ds.

By the inequality in 24], we have

t
_ TM/
t—1m

t . .
< —1(t) /Hm T (SRiX(s)ds

t
< —
- (/t—r(t)

According to the Leibniz-Newton formula, we can obtain

t
/t—r(t)

From the 6) and (7), we have the following inequality:

X" (s)Ryx(s)ds

%(s)ds)T Ry /t x(s)ds).  (6)

t—1(t)

X(s)ds = x(t) —x(t — t(t)). (7)

t
™ / KTRiX(s)ds
t—1m

< —(x(t) = x(t—1(1))) TRUX(t) =Xt —T(1))).  (8)
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Besides, we can choose a scaar 0 such that

—26XT PoX(t) + £XT PoX(t) [AX(t) + Agx(t — T(t))]
EIAX(t) + Agx(t = T(t))]TRX(t) = 0 (9)
Concludomg the equationS)( (8), and ©), we can obtain
the following result
V(%) <XT () (RoA+ ATRO)X(t) + 2X (1) PoAgx(t — T(1))
+X"Pix(t) — (1= 1p(t)X" (t — T(t))Pix(t — T(t))
+ X" (RIX(t) — (X(t) — X(t — T(t))) "Ru(X(t)
—X(t—T(t))) — 2ex" (t)Pox(t) 4 X' (t)Po[AX(t)
+ AgX(t — T(t))] + eXT (t)Po[AX(t) + Aax(t — T(1))]
+ g[AX(t) + Agx(t — T(1))] T Pox(t)
="y -yl

where g™ = [x"(t) xT(t —1(t)) X' (t)]. Clearly, if the
LMI (3) hold, the system1) is asymptotically stable.

(10)

whereU; € R™™ and U, € R™(™M are both unitary
matrices and is a diagonal positive-definite matrix.

By utilizing the transformatiom (t) = Tx(t) [9], we
can transform the systertil) into:

ni(t) =(K11_+ A'A_\ll)ﬂl(t) + (Ar2+ AA1)Na(t)
+ (Ag11+AAg1) N1 (t — (1))

+ (Ag12+ AAG12) M2 (t — T(1)) (12)
Na(t) :(A_2i+ A'A_\zllfh(t) +£A_~22+AA_\22)'72(U
+BE(t)+(A221+AAd21)nl(t_T(t))

+ (Ad22+ AAg22) N2(t — T(t)) (13)
where _Kll = UZTAUZLKH = U;AUla'KdlL =
UJ AgU2,Ag12 = UJ AgU1,AA11 = UJ MF (t)NUp,AA1 =
UJMF(t)NU,AAGr =  UJMF(H)NgU2,AAq12 =

UJMF (t)NgU1, Ap1 = UTAU1Ap; = UT AUz Agpr =
U AgU1,Adg22 = Uf AgUz,AAp1 = U MF (1)NU1,AAzp =

This completes the proof of the theorem. U/MF(ONU2AAp: =  UTMF(ONgULAAG, =

UJMF (t)NgUz,n1 € R™™n1 € R"B=wVT.
- , Here, design the slidi face f d
3 Sliding Mode Control for Uncertain (13 aesre We can design the siiding surface for tha @n

Time-Delay System

: . . o S(t) = Qna(t) +n2(t) =0 (14)
In this section, we will discuss the stabilization problem
of time-delay system with uncertainties. Before \yhereQ ¢ R™ ("M js a real matrix.
discussing the stabilization problem of time-delay system  From (14), we can substitute the result

with uncertainties, we have to select an appropriate,t) — —Qna(t) into the (L3), and then we can obtain

sliding surface, while the system state remains on th&pe following sliding mode equation:

sliding surface, the desired performance can be achieved.
Firstly, consider the time-delay system with

Y, A1(t) =[Ar1+ AA11 — (A2 + AA1R) QN1 (t)
uncertainties

+ [Ag11+ AAg11 — (Ag12+ AAg12)Q)]
xni(t—1(t))

By the result of 5], S(t) = 0 andS(t) = 0 , we can get
the following equivalent control law

X(t) =[A+ AA1)]X(t)
+ [Aqg+AAg(t)]x(t — T(t)) + Bu(t)
X(t)=uv(t), te[-to O

(15)
(11)

where A € R™", Aq € R™", 1(t), and Ty are the same
as those in1); u(t) is the input controlB is the already
known real constant matrix with appropriate dimension;
AA(t) e R™MandAAy(t) € R™" satisfied the Assumption

1

Ueg(t) = — B™{Q[A111(t) + Arana(t)
+ A (t — T(1) + Agrana2(t — (1))
+Aoa1(t) + Agala(t) + Aaaa (t — T())
+Adza2(t — T(1))}
Now, we will explore the stability condition ofl§) and
conclude the result as following theorem.

Theorem 2. Given areal constat> 0, if there exist some
symmetric positive definite matriceB, P, andR; such
that the following LMIs hold:

From the Assumption 2, we can know there exists a (16)

which is a real nonsingular such that

_ | On=m)
TB_[ 5

whereB € R™M s nonsingular and satisfies the following
singular value decomposition (SVD)

Z11 212 Z13 214

5 Wnxm T = =.. =
B=U{ ]V , U=[U1 Uy 2| ¥ Z22=23=24
O(n-m)xm ==k & ZnSw <0 a7)
T =col {U; Uir} * k% % Iy
© 2015 NSP

Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

270 %N = P)

S. H. Tsai: Sliding Mode Control for A Class of Uncertain...

then the sliding mode dynamic45) is asymptotically
stable with sliding surface

S(t) = Qna(t) +na(t)

where _11 :11 + )\UTMMTUZ,:lz
(Adllpo - Ad12|-) +Ry,Z13= Z13+ EAUJMMTUp, =14 =
(U2P0—U1L) NT, =5 —(1 — )P — R1,—23 =
£(Aq11Po — Adlzl—) 24 = (UpPy — UiL)TN] Z33 =
33+ AU MMTUp, =15 = (AP — Aqal) + (A11Po -
ApL)T + P — R, 213 = 8(A11P0 — Al =33
—2ePy  + TMRJ_,PO 0 =34
=AM P =Py PPy R = Py lRiPy Q= LRy L
Proof. Flrstly pre and post-multiply the matrix by I' =

0,

diag[Py ! Pyt Py] > 0 and define thé andAq as
A= [611 + A'A_‘ll - (A_\li + AA—lz)_Q]
Ag = [Ad11+AAg11— (Ad12+AAg12)Ql,

then we can obtain the.§)

Y11 312 313
* 322323 | <0

* ok Y33
wherey 13 = [A11+AA — (A12+ AA12)QIPo + Po[A11+
AA — (A + AARQT + Py Ry, d12
[Agi1 + AAg1 — (Agiz + AAg2)QPo + RiY13 =
eP[A11 + AA11 (A12 + AAR)QT Zzz
—(1— TD)Pl Rq, 223 = EpoAd 233 = -2eRy+ TMRl
By Assumption 1, we can obtaii9) from (18)

S =

(18)

UM (UJPy—UsL)TNT
=+ 0 |[FO) | (UJR—UL)TN] | +[O]T <0
UM 0
(19)

=11 212 213
* Zpp =23, and the[©]T means the
* * =33
transposition of second term in the inequalib@);

By utilizing the Lemma 1 and Schur complement to
(19), we can obtain thel{7).This completes the proof of
the theorem(J

After designing the sliding surface, the next step of the

where = =

whereuy (t) = Ueg(t),

e(t) =~ 84{ 5[4+ Inuznyo)?
+[INUL72(0)[|? + [INgU2na (t — T(1)) |2

+INgU72(t — 1(0)) P+ 0T W)

+ [INULn1 (0)][7 4 [NU2n2(8) |2+ [NaU1na (t = (1)) |2

+ | NaUs 12t = 7(0))°] } sign(Sit))

us(t) = —B1[kS(t) + gsign(S)],k > 0,0 > 0. Then,
the all signals involves in closed-loop systefrl)( with
the control input 20) are uniformly ultimately bounded.

Proof. According to the concept of sliding mode control,
we know that the reaching condition of sliding mode
control isS (t)S(t) < 0. From the sliding surfacé.) and
substituting the control inpu(Q) into S(t) we can obtain

S(t) =TH—Th—TR
where
m=0Q [UZTMFNuznl(t) +UJ MENUL 1 (1)
+UJ MFNgU2n1 (t — 1(t)) +Ug MFNgU1no(t — T(t))
+U{ MENU1n1(t) +U{ MFNU1n,(t)
+UJ MFNgU2na(t — (1))

m =3 4|+ INan (017
+ INU172(0)2+ [N (t — T(0))] 2
FINUT2(t— 1(0) P+ 4] 0T W)
+{INULnL (1) 2+ |NU2n2(t) [ + [NgU1na (t — (1)) |2
+ [NaUa12(t — (1)) °] sign(Si1))
;s =kS(t) + osign(S),k> 0,0 >0

By the Lemma 2, we have; < . Clearly, ifS(t) > 0,
thenS(t) < —m < 0. On the contrary, i§(t) < 0, then
§(t) > —m, > 0. Concluding the above discussions, we can
know thatS (t)S(t) < 0. This completes the proof of the
theorem[

SMC design procedure is to design a feedback control lawg gimulation
such that the reachability of the specified sliding surface

(14) is ensured.

Theorem 3. Consider the systeml() subject to the
Assumption 1 and Assumption 2. If LMIs1{) with
sliding surface 14), whereQ is given by(L7) .The control
input is given as:
u(t) =

ug(t) + up(t) + ua(t) (20)

In this section, we will apply the proposed method to
design a sliding mode controller for an uncertain
time-delay system. Firstly, consider the following
uncertain time-delay system:

X(t) =[A+ AA)X(t)

+[Aa+ DA —T(1) +But)  (21)
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0 1 0 o1 0
2-3]"AM=| 0203 B~ |a7| .
Based on Assumption 1, we can define the matridehl, a
andNy as follows:

M:[O-Z 0],N:Nd:{é(l)],r(t):0.5, =1

whereA =

0 02

In this example, we choose(t) = 0.5, v = 1,
k=05, 0 = 0.5 and utilizing the Theorem 2 with and
B=B andT = I, then we can figure ou® = 0.9697,
L = 1.0670. Substituting these values in0), then we
can get the control input. The simulation results of
applying the sliding mode controller to the time-delay v
uncertain system 2() under three different initial “
conditions[-1.5 —0.7], [1.1 05], and[-2 1.3] are 15 ‘
shown in Fig. 1 and Fig. 2. From these simulation results, 0 sec
we can find that the designed sliding mode controller
ensures the robust asymptotic stability of the closed-loop
system, and the states are regulated to zero after fewig 2: State responses of, under three initial conditions
seconds. Fig. 3 shows the total control inputwith [-1.5 —0.7],[1.1 05] and[—2 13].
k=0.3 ando = 0.3, and the Fig. 4, Fig. 5, and Fig. 6
show theus, up, andug respectively.

X2 state

15

x1 state
total control input (ul+u2+u3) (ul+u2+u3)

Fig. 3: Total control inputu under three initial conditions
[-15 —0.7],[1.1 05 and[-2 13].

Fig. 1. State responses of; under three initial conditions

[-1.5 —0.7],[1.1 05 and[-2 13].

time-delay system is presented to guarantee the
asymptotic stabilization of uncertain time-delay system i
this paper. Finally, an uncertain nonlinear system with

5 Conclusion time-delay is illustrated to demonstrate the effectivenes
and feasibility of the proposed control scheme.

In this paper, the stability and stabilization problemsdor

class of uncertain time-delay systems are explored. By

utilizing the Lyapunov-Krasovskii function (LKF)

method and Leibniz-Newton formula, the proposed Acknowledgement
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0.3

2 5 10 15 o4 5 10 15
Fig. 4: Control inputu; for three initial conditiong—1.5 —0.7], Fig. 6: Control inputug for three initial conditiong—1.5 —0.7],
[1.1 0.5 and[-2 13]. [1.1 0.5 and[-2 13].
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