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Abstract: In this paper, a fractional SIRS model on heterogeneous complex networks is introduced. The asymptotic local and global

stability of equilibrium points are studied, numerical simulation is used to support our theoretical results and show the effect of fractional

order q and the influence of connectivity between individuals which represented as ψ(t).

Keywords: Fractional order SIRS model; heterogeneous network; local stability; global stability; numerical simulation.

1 Introduction

The reasons of infectious disease are pathogens or
parasites. The infection is the most important factor to
spread disease in populations, infection caused by the
connection between individuals in a population
(individuals mean humans and animals). The average
connection between infected individuals and healthy
individuals specify the acceleration or slow down the
disease, meanly if the average connection is very high,
then the disease will be epidemic [1]. Classical model
which describe diseases ignore a very important factor
that effect directly in spreading diseases, this factor is a
connection between individuals, meanly if we have a lot
of links between individuals in the small region, the
diseases spread more rapidly than fewer links. Each
individual has links that differs from other individuals
([1], [2]). We mean that the infection transfer from an
infected individual to susceptible individuals by these
links and number of links affect directly in our modeling
of spreading diseases so that we improve the classical
model to networked model. Network means that
individuals as nodes or vertices and links between
individuals as the connection between them. We have two
types of networks (homogeneous network and
heterogeneous network) the main difference between
them that homogeneous network considers the connection
between individuals is equal to the average connectivity

between them, other hands heterogeneous network more
reality than homogeneous network because of each
individual has owner links different from other ones. The
reason for using homogeneous networks that study
general behavior of these diseases and put some
conditions to control this spreading, meanly take general
vision for the dynamics of these models (equilibrium
points, local and global stability,... etc). In our previous
study [3], we study the dynamics of the fractional model
in the homogeneous network of (SIRS) model and the
effect of fractional order appears on stability and
numerical simulations. In this paper, we improve our
study to the dynamics of the fractional model in a
heterogeneous network of (SIRS) model. The
heterogeneous network has several types to represent a
random network, our study focuses on a random
scale-free network, which follows Barabsi-Albert (BA)
model ([3]-[5]).

We consider a fractional (SIRS) model:

dqxk

dt
= µ −β kxkψ(t)+ δ zk − (α + µ)xk,

dqyk

dt
= β kxkψ(t)− (γ +η)yk, (1)

dqzk

dt
= γyk − (δ + µ)zk +αxk,

where xk,yk,zk are density of susceptible, infected and
recovered individuals of degree k, respectively.
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Susceptible individuals infected from connection with
infected individuals at rate β , an infected individual
becomes healthy at rate γ and recovered individuals
return to susceptible individuals at rate δ . Susceptible
individual is vaccinated at rate α. µ represents to birth
rate and death rate without a disease. If the disease will
spread, infected individuals die at rate η , that mean if
η > µ , the disease become very dangerous and epidemic.
According to uncorrlation of the connection between
nodes in network. All rates are positive constants and
0 < q ≤ 1 is fractional order.

We denote

ψ(t) =

n

∑
i=1

ip(i)yi

〈k〉
,

is the probability of a contact pointing to an infected
individual, where p(i) is distribution function that
describe the connection between individuals,

〈k〉 =
n

∑
i=1

ip(i) is the average degree of network, n is the

maximum positive integer number of contact in each
individual.

We reduce system (1) to

dqxk

dt
= λ −β kxkψ(t)− δωyk − (δ +α + µ)xk,

dqyk

dt
= β kxkψ(t)− (γ +η)yk, (2)

where zk = 1− xk −ωyk and λ = µ + δ , ω = η
µ .

The dynamics of solutions of system (2) will be in the
bounded region:

Ω = {(x1,y1, ...,xk,yk)∈R2k,0≤ xk,yk ≤ 1,xk+yk ≤ 1,1≤ k≤ n},

(3)

we can easily show that region Ω is positively invariant.
All definitions, theorems of fractional order are

considered in ([4], [6]-[12]) and theorems of local and
global asymptotic stability are considered in ([13]-[18]).

In the rest of the paper, we study how a fractional-order
q effects on local and global stability of equilibrium points,
(which was calculated in section 2) in section 3, section
4 and section 5 are numerical results which support our
theories in previous sections.

2 Equilibrium points

We study equilibrium points of system (2)

0 = λ −β kx∗k(t)ψ
∗(t)− δωy∗k − (δ +α + µ)x∗k,

0 = β kx∗k(t)ψ
∗(t)− (γ +η)y∗k.

We have two equilibrium points, disease-free point E0 and
endemic equilibrium point E1.

Firstly, we obtain E0 at y∗k = 0,(k = 1,2, ...,n).
Substituting them into (2), we get

E0 =

{(

λ

δ + µ +α
,0

)}

k

.

Secondly, we obtain E1 = (x∗k ,y
∗
k) at the presence of

disease that mean y∗k 6= 0,(k = 1,2, ...,n), we have

E1 =







(

λ

β kψ∗(t)+ δωβ kψ∗(t)
γ+η + δ + µ +α

,

β kψ∗(t)λ

β kψ∗(t)(γ +η + δω)+ (δ + µ +α)(γ +η)

)}

k

.

Theorem 2.1. Define

R0 =

〈

k2
〉

β λ

〈k〉 (η + γ)(δ + µ +α)
,

where
〈

k2
〉

=
n

∑
i=1

i2 p(i). Then endemic point E1 is non-

trivial unique solution under condition R0 > 1.
Proof. Firstly, we obtain the self-consistency equality

ψ∗=

∑
i

ip(i)y∗i

〈k〉
=

∑
i

ip(i)( β iψ∗(t)λ
β iψ∗(t)(γ+η+δω)+(δ+µ+α)(γ+η))

〈k〉
.

Now, we define function

F(ψ) =
∑
i

ip(i)(
β iψ(t)λ

β iψ(t)(γ+η+δω)+(δ+µ+α)(γ+η))

〈k〉
−ψ (4)

to support the proof of the existence and uniqueness of
epidemic equilibrium point E1. We can easily see that ψ =
0 is the solution of (4) and

F(1) =

∑
i

ip(i)( β iλ
β i(γ+η+δω)+(δ+µ+α)(γ+η)

)

〈k〉
− 1 < 0

where η > µ , that mean there exist nontrivial solution of
system (1) where 0 < ψ < 1, we correspond the following
inequality

dF(ψ)

dψ
|ψ=0 =

d

dψ







∑
i

ip(i)(
β iψ(t)λ

β iψ(t)(γ+η+δ ω)+(δ+µ+α)(γ+η))

〈k〉
−ψ






|ψ=0 =

(R0 −1) > 0, if R0 > 1,

therefore, the system (1) has a unique endemic equilibrium
point E1.

3 Local stability of equilibrium points

3.1 Local stability of free disease point E0

Theorem 3.1.1 If R0 < 1, then the disease-free equilibrium
E0 is locally asymptotically stable, but unstable if R0 > 1.
proof. We linearized system (2) at E0
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Dq(x1, ...,xn,y1, ...,yn)
T = J(E0)(x1, ...,xn,y1, ...,yn)

T ,
where

J(E0) =







M11 ... M1n

...
. . .

...
Mn1 ... Mnn







2n×2n

, (5)

M11 =

(

−(δ + µ +α) −ζ1 − δω
0 ζ1 − (γ +η)

)

,Mn1 =

(

0 −ζn1

0 ζn1

)

,

M1n =

(

0 −ζ1n

0 ζ1n

)

,Mnn =

(

−(δ + µ +α) −ζn − δω
0 ζn − (γ +η)

)

,

and ζi =
β λ i2 p(i)

(δ+µ+α)〈k〉 ,ζi j =
β λ i jp(i)

(δ+µ+α)〈k〉 , i 6= j = 1,2, ...,n.

The characteristic polynomial of free disease point is

(ρ +(δ +µ +α))n(ρ +η + γ)n−1(ρ −
n

∑
i=1

ζi −η − γ)

= (ρ +(δ +µ +α))n(ρ +η + γ)n−1(ρ − (η + γ)(R0 −1)) = 0

we have n eigenvalues equal to −(δ + µ +α) < 0, n− 1
eigenvalues equal to −(η + γ)< 0, and the last eigenvalue
is (η + γ)(R0 − 1)< 0 if R0 < 1.

Then the disease-free equilibrium E0 is locally
asymptotically stable if R0 < 1 ([6], [7]).

3.2 Local stability of endemic disease point E1

Theorem 3.2.1 If R0 > 1, then the endemic equilibrium E1

is locally asymptotically stable.
proof. We construct Jacobian matrix of E1 :

J(E1) =























−(a+b1) ... 0 −(ξ1g1 +δ ω) ... −ξ1gn

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

0 ... −(a+bn) −ξng1 ... −(ξngn +δ ω)
b1 ... 0 (ξ1g1 −b) ... ξ1gn

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

0 ... bn ξng1 ... (ξngn −b)























2n×2n

,

(6)

where a = δ + α + µ ,b = γ + η ,bi = β iψ∗
i (t),ξi =

β ix∗i (t),gi =
ip(i)
〈k〉 , i = 1,2, ...,n.

The characteristic polynomial of endemic point is

(ρ + a)n
n

∏
i=1

(ρ + b+Ψi(ρ))(1−
n

∑
i=1

ξigi

ρ + b+Ψi(ρ)
) = 0,

where Ψi(ρ) =
ρ+b+δω

ρ+a
bi.

We obtain n eigenvalues −a < 0. Let

F(ρ) =
n

∏
i=1

(ρ + b+Ψi(ρ))(1−
n

∑
i=1

ξigi

ρ + b+Ψi(ρ)
)

= (ρ +b+Ψ1(ρ))(ρ +b+Ψ2(ρ))...(ρ +b+Ψn(ρ))−

ξ1g1(ρ +b+Ψ2(ρ))(ρ +b+Ψ3(ρ))...(ρ +b+Ψn(ρ))−

ξ2g2(ρ +b+Ψ1(ρ))(ρ +b+Ψ3(ρ))...(ρ +b+Ψn(ρ))...−

ξngn(ρ +b+Ψ1(ρ))(ρ +b+Ψ2(ρ))...(ρ +b+Ψn−1(ρ))

= 0.

Since Ψi(ρ) is increasing function (Ψn(ρ) > Ψ1(ρ))
and F(−b−Ψ1(ρ))< 0,F(−b−Ψ2(ρ) )> 0

That mean we have at least one root in the interval
[−b −Ψ2(ρ),−b −Ψ1(ρ)], for general we have at least
one root in [−b−Ψi+1(ρ),−b−Ψi(ρ)].

Mainly, we have n − 1 roots in
[−b−Ψn(ρ),−b−Ψ1(ρ)].

Also F(−b−Ψ1(ρ))< 0 and

F(0) =
n

∏
i=1

(b+Ψi(0)(1−
n

∑
i=1

ξigi

ρ + b+Ψi(ρ)
)

=
n

∏
i=1

(b+
b+ δω

a
bi)(1−

n

∑
i=1

β ix∗i (t)
ip(i)
〈k〉

b+ b+δω
a

bi

)

>
n

∏
i=1

(b+
b+ δω

a
bi)(1−

n

∑
i=1

β iλ ip(i)
〈k〉

a(b+ b+δω
a

bi)
)

= 0.

Then we have root in the interval [−b −Ψ1(ρ),0].
Hence we get n negative roots in [−b−Ψn(ρ),0]. Then
the endemic point E1 is locally asymptotically stable ([6],
[7]).

4 Global Stability

In this section, the global stability of E0 and E1 are studied
by using Lyapunov function.

4.1 Global stability of free disease point E0

Theorem 4.1.1 If R0 < 1, then the disease-free equilibrium
E0 is globally asymptotically stable.
Proof. Firstly, we recall first equation of system (2):

dqxk

dt
= λ −β kxkψ(t)− δωyk − (δ +α + µ)xk. (7)

dqxk

dt
< λ − (δ +α + µ)xk. (8)

By using Laplace transform:

xk(t)<Eq(−(δ +α+µ)tq)(xk(0)−
λ

(δ +α +µ)
)+

λ

(δ +α +µ)
,

(9)

xk(t) < λ
(δ+α+µ) if xk(0) ≤ λ

(δ+α+µ) , but if

xk(0) >
λ

(δ+α+µ) and limt→∞+ Eq(−(δ +α + µ)tq) = 0,

that mean xk(t) tends to λ
(δ+α+µ) with time tends to

infinity.

For system (2), consider the following Lyapunov
function:

L0(t) =
n

∑
k=1

dk(yk(t)), (10)

c© 2022 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


32 H. A. A. El-Saka et al.: SIRS model on complex heterogeneous networks

where dk =
kp(k)
〈k〉 , the fractional time derivation of L0 along

the solution of system (2) is calculated, we get

DqL0 = ∑
k

kp(k)

〈k〉
(β kxkψ(t)− (γ +η)yk)

DqL0 = ψ(t)(γ +η)∑
k

(
k2 p(k)β xk(t)

〈k〉 (γ +η)
− 1)

DqL0 < ψ(t)(γ +η)∑
k

(
k2 p(k)β λ

〈k〉 (γ +η)(δ + µ +α)
− 1),

where xk(t)<
λ

δ+µ+α ,

DqL0 < ψ(t)(γ +η)(R0 − 1), (11)

then

DqL0 < 0 if R0 < 1.

Hence L0(t) > 0,L0(t) = 0 at E0, if R0 < 1 then
DqL0 < 0. By Lemma 2.2 in [17] and Theorem 4.1.1, E0

is globally asymptotically stable when R0 < 1, which
implies the disease will be die regardless the initial
infected individuals.

4.2 Global stability of endemic point E1

Theorem 4.2.1 If R0 > 1, let (ζ ,M) be weighted digraph
is strongly connected, then E1 is globally asymptotically
stable in Ω ∗ = Ω/{E0}.
Proof. Define Lyapunov function L1(t) as follows:

L1(t) =
n

∑
k=1

qck(yk − y∗k − y∗k ln(
yk

y∗k
)) (12)

+
1

2

β kck 〈k〉
−1

y∗i
y∗k

∑
i

ip(i)(xk − x∗k + yk − y∗k)
2,

where g(x) = 1−x+ ln(x)< 0, λ = β kx∗kψ∗(t)+(δ +µ+

α)x∗k +δωy∗k and (γ +η) =
β kx∗kψ∗(t)

y∗
k

,q = γ +η +δ +µ+

α + δω .

Calculate the fractional time derivate of L1 along the
solution of system (2). By using the Lemma 2.3 [17] we
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Fig. 1: The relation between R0, β (a), γ1 (b) and k (the
number of nodes) (c), (d).

c© 2022 NSP

Natural Sciences Publishing Cor.



Inf. Sci. Lett. 11, No. 1, 29-36 (2022) / www.naturalspublishing.com/Journals.asp 33

0 5 10 15 20 25 30 35 40 45 50

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
k=5

k=22

k=66

k=98

(a)

0 5 10 15 20 25 30 35 40 45 50

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
k=5

k=22

k=66

k=98

(b)

Fig. 2: q = 1, R0 = 0.6107 < 1.

get

DqL1(t)≤∑
k

ck((γ +η +δ +µ +α +δω)

· (1−
y∗k
yk

)(βkxkψ(t)−βkx∗k ψ∗(t)
yk

y∗
k

)

+ 〈k〉−1 y∗i
y∗

k
∑

i

ip(i)(xk −x∗k +yk −y∗k)

· (−(δ +µ +α)(xk −x∗k )− (γ +η +δω)(yk −y∗k)))

DqL1(t)<∑
k

ckβk 〈k〉−1 ∑
i

ip(i)(γ +η +δ +µ +α +δω)

· ((yk −y∗k)(
xkyi

yk

−
x∗ky∗i

y∗
k

)−
y∗i
y∗

k

(yk −y∗k)(xk −x∗k))

DqL1(t)<
n

∑
i=1

n

∑
k=1

βk 〈k〉−1 ck(mik −nik)(
yi

y∗i
−

yk

y∗
k

),

where mik = xkip(i)y∗i ,nik = xkip(i)yi.

Let (ζ ,M) be weighted digraph with matrix M . If
(ξ ,M) is strongly connected, then matrix M is irreducible
[19] and choose ck as cofactor of kthmain diagonal of
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Fig. 3: q = 0.98, R0 = 0.6107 < 1.

Laplacian matrix of M. From the tree cycle identity
(Theorem 2.3, [19]), we obtain the following identity:

n

∑
i=1

n

∑
k=1

β k 〈k〉−1
ck(mik − nik)(

yi

y∗i
−

yk

y∗k
) = 0. (13)

Hence L1(t) = 0, if (xk,yk) = (x∗k ,y
∗
k) and DqL1(t)< 0.

Furthermore, the largest invariant set the singleton {E1} in
Ω ∗ = Ω/{E0}. By Lemma 2.2 in [17] and Theorem 4.2.1,
E1 is globally asymptotically stable, which implies that the
disease still remaining in endemic level and never die out.
This result leads biological scientist to find methods to,
reduce the basic reproduction number R0 to be less than
one.

5 Numerical simulations

In this section, we solve system (1) by using Adams-type
predictor-corrector method ([12], [13]) to show main
results in previous sections on BA scale-free network
with p(k) = mk−γ1 , 2 < γ1 < 3 is variable of power law
distribution. We have n = 100, m is such that ∑

k

p(k) = 1
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Fig. 4: q = 0.95, R0 = 0.6107 < 1.

and γ1 = 2.3. We use the initial values of system (2) as:
xk(0) = 0.8,yk(0) = 0.2,zk(0) = 0.

In Figure (1-a),
µ = 0.3,δ = 0.1,α = 0.3,η = 0.561,γ = 0.5 and
β ∈ [0,1]. In Figure (1-b)
µ = 0.3,δ = 0.1,β = 0.1,α = 0.3,η = 0.561,γ = 0.5
and γ1 ∈]2,3[. In Figure (1-c) µ = 0.3,δ = 0.1,β =
0.1,α = 0.3,η = 0.561,γ = 0.5,1 < k < 100. In Figure
(1-d) µ = 0.3,δ = 0.1,β = 0.3,α = 0.2,η = 0.561,γ =
0.5,1 < k < 100. In Figures (2-4)
µ = 0.3,δ = 0.1,β = 0.1,α = 0.3,η = 0.561,γ = 0.5
and hence R0 = 0.6107. In Figures (5-7)
µ = 0.3,δ = 0.1,β = 0.3,α = 0.2,η = 0.561,γ = 0.5
and hence R0 = 2.1375.

Figure 1(a) shows the relation between infected
individuals and infection rate β with positive relation,
figure 1(b) shows the important rule of power γ1 in
power-law distribution we can easily see that inverse
relation between them that mean higher values of γ1 mean
the connection between nodes very weak and
reproductive ratio has lower values and vice versa. Figure
1(c) shows that the importance of the number of nodes if
the number of nodes is high, the reproductive ratio grows
up still R0 < 1 but we have several values from 0 to nearly
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(b)

Fig. 5: q = 1, R0 = 2.1375 > 1.

1 depending on the number of nodes. If the number of
nodes is high that means the chance for connecting is
high and spreading infection become faster. Figure 1(d)
with R0 > 1, we can see the effect of the number of nodes
that reproductive ratio reaches maximum for k = 100 that
mean the spreading infection becomes deadly with higher
values of k. Figure 3, where R0 < 1 shows that the
number of infected individuals at a peak in a lower degree
of nodes is smaller than at a higher degree.meanly higher
values of degree reflect the connection is very strong and
the peak of infected individuals is higher than lower
degrees which mean weak connection. Figure 3 show the
effect of fractional order q that has lower peak and the
number of infected need a longer time to go to the stable
region (where yk(t) = 0) than integer-order. This feature
helps biological scientists to study infection and
comparing our data to more clinical data. By calculating
coefficient of variability in fractional and integer order,
fractional-order has a lower coefficient of the variability
than integer-order that means fractional-order has better
fit data than integer-order. Figure 5 show the global
stability of the system (1) and go the positive level
stationary because of R0 > 1. Figure 5 shows the
fractional-order has lower peak than integer-order and
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Fig. 6: q = 0.98, R0 = 2.1375 > 1.

needs more time to go to the stable region that means the
number of infected is wider than integer-order. Finally,
because of non locally of fractional order we can obtain
more appropriate fractional-order q by comparing with
integer order. The obtained results can be used in different
applications see i.e. [20]-[30].

6 Conclusion

In this paper, we have examined the epidemic dynamics
of the SIRS model on complex heterogeneous networks
in fractional order. We have proved that the degree
distribution of nodes plays an important rule not only in
the existence of reproductive ratio R0 but determine the
value of it as in figs. 1b and c. By the degree distribution,
we can control the spreading of disease. In figs. 3 and 5,
we can see that the lower values of k, we have a lower
peak of infected individuals that means the connection
between individuals is the main factor in the spreading of
diseases. In R0 < 1, we show that free disease equilibrium
point E0 is locally and globally asymptotically stable but
in R0 > 1, we have proved that the existence of an
epidemic equilibrium point E1 which locally and globally
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Fig. 7: q = 0.95, R0 = 2.1375 > 1.

asymptotically stable. the effect of fractional order q

appears in numerical results especially in figs. 3 and 5.
We can see that the solution with fractional order q has a
lower and wider peak than integer order which permits
getting more accurate fitting data.in fig. 3, we can see that
the solution of fractional order takes more time than
integer-order to go the stable region which helps us to
more studying the behavior of disease before tends to
zero. Finally, the fractional-order model has a big
advantage is non local order. Mainly, we can choose a
more appropriate fractional-order that suitable of clinical
data as in [20].
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