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Abstract: In this article we introduce a new chaotic five dimensiondD)(£ontinuous autonomous system involving complex
variables,via 3D Pan system[Pan et al 2010]. The basic digahproperties of the new system are analyzed such aslequiii points,
eigenvalues structures, and maximal Lyapunov exponentpifgose an approach for controlling chaotic attractor &f iystem by
adding a complex periodic forcing. Computer simulatiores@aiculated to study the behavior of this system.

Keywords: Chaotic, behavior, Complex, Pan system, control.

1 Introduction the controlling chaos of the new system and finally the
concluding remark is given in section 4.

For nearby 40 years, chaos theory was an interesting
phenomenon of dynamical systems. It has been found t ..
be very useful and has great potential in many discipline& System description
such as the fields of communication, Laser, neural work,

nonlinear circuits, and etc [1-3]. Famous examples of
chaotic systems are Lorenze [4], Rossler [5], Chen [6], LU
[7], Henon map [8] and Pan [9]. Chaotic behavior have
been widely studied on a great numbers of real variables.

The mathematical model of real Pan system is a system of
non-linear ordinary differential equations as:

However, there also are many interesting cases of X=py—x)
dynamical systems involving complex variables, like, y= 0X—xz (1)
Lorenz system which is used to describe and simulate the z=xy—pz

physics of detuned lasers and thermal convection of liquid

flows [10]. In recent years, Mahmoud et al have bee”wherep, o and B are positive parameters [9]. Now, the
introduced and studied chaotic complex systems [11-16]pap system with complex variables is:

In 2010 Pan et al [9] proposed a new 3D chaotic system

which is similar to the Lorenz chaotic attractor, but it is

not topological equivalent. Here, similar to complex Xf aly—x)
systems like Lorenz [10], Rossler [17], Chen and Lu [14], y=&X=xz (2)
we wish to include complex variables in Pan system to z= —bz+5(xy+yx)

get a higher-dimensional system. Some basic dynamical

properties such as maximal Lyaponuv exponentwherea, b andc are positive parameters= u; +iup and
eigenvalues, chaotic behavior and chaos control of this/ = uz +ius are complex variables,= +/—1 andz = us

new system are studied. The remainder of the paper iss a real variable, dots represent derivatives with resjpect
organized as follows: Section 2 explains the proposedime and an over bar denotes complex conjugate variable.
new chaotic system and its dynamics. Section 3 discusseBhe real version of (2) which is a five dimensional chaotic
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autonomous system reads:

ljl = a(u3 — Ul)
L:Iz = a(u4 — Uz)
Uz = CU; — U1Us
lj4 = CU2 — UoUs
Us = —bus + ujus + Upug

®3)

2.1 Dissipativity and the existence of attractor

The divergence of the flo® is defined by:

ofs _
dus

—a—a+0+0+b=-2a+b

Where :F = (fy, 2, f3, f4, f5) = [10(uz — ug ), 10(us —
U2),16U1 — UiUs, 16Uy — U2U5,—%U5 + UiUuz + Uz]. It
means that systenB) is dissipative and its contraction

rate is = —32V thenV = Voe~ %! for the case = 10,

i | e N L !
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Fig. 2. The Maximal Lyapunov exponent of new system with the
same initial conditions and parameter values of Fig.1.

b= % andc = 16. Therefore each volume containing the The MLE of the system defined by:

trajectory of this system decay to zero fas> « at an
exponential rate—%. So, the asymptotic motion settles
onto an attractor of3). The attractors of syster8 are
displayed in Fig.1. The parameters are chosea-aslo,
b= § andc = 16 and the initial values are taken as :
Ul(O) = Uz(O) =1, U3(0) = U4(0) = -1, U5(0) = 10.
Fig.1 (a,b,c) shows the chaotic attractors ifus,us),
(u1,us) and(us,us) respectively. The waveforms of (t)
andus(t) in time domain are shown in Fig.H @nde).
Other values o0&, b andc can similarly studied such that
—2a+b<0.

2.2 Maximal Lyapunov exponent (MLE)

The maximal

MLE we must put systenB in the vector notation as

follows: _
Ut)=FU(t);H] 4)

Where U(t) = [ui(t),...,us(t)]" is the state vectors,
F = [f1,..,f5)", u is a set of parameters anfd.]
denotes transpose. Systed) for small deviationdoU
from the solutiorlJ (t) is:

sU(t) =JjU(t);ploU,  i,j=12.5 (5
WhereJ;; = a—J‘j is the following Jacobian matrix:
—a 0O a0 O
0 —a 0a O
Jj=|c-us 0 0 0-u (6)
0 c—us 0 0 —up
us Usg Uz U —b

Lyapunov exponent measures the
exponent of the rate at which nearby trajectories diverg
in state space. A positive maximal Lyapunov exponent is
a strong indication of deterministic chaos. To calculate

[6U )]l

Amax = lim }Io
= et O ]80(0)]

()

* To find Amax, €quations§) and @) must be numerically

solved simultaneously. By using Mathematica software
we calculate MLE with the same above parameters and
initial values. The maximal Lyapunov exponent of the
new system is obtained adn{x = 0.63). Fig.1(f) shows
MLE.

2.3 Eigenvalues test

System 8) has (11) terms, four quadratic nonlinearities
(uiUs,Upus,usuz and upus) and three positive real
constant parameter@,b,c). The new system equation

as two fixed points. The set of fixed points which satisfy
this requirement are found by setting all the left hand side
of equation 8) equal zero, and solving fau, Uy, Uz, ug
andus:

(8)

Two fixed points exist:

(U5, U3, U3, U, U5) = (9.398574 1.56278,2.12572+ 6.90962
,9.39857+ 1.56278,2.12572+ 6.90962, 16)

For the case when the fixed point is:

(U5, U5, U, U5, US) = (9.39857+ 1.56278,2.12572— 6.90962
,9.39857+ 1.56278,2.12572— 6.90962, 16)
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Fig. 1: The dynamical behavior of the new chaotic system uga) uz phase plane strange attractor, (h)- us phase plane strange
attractor, (c)uz — us phase plane strange attractor, (djt) wave form, (e)us(t) wave form, (f) Maximal lyapinove exponent versus

time

the Jacobian (6) becomes:

-10 0 10 0 0
0 -10 0 10 0

0 0 0 0 —9.39857-1.56278

0 0 0 0 —2.12572+6.90962
9.39857+1.56278 2.12572-6.90962 9.39857+ 1.56278 2.12572—6.90962 —g

(9)

The eigenvalues are found by solving the equaticn
Al| = 0vyielding eigenvalues:

A = —12557—5.06564x 10 i, A, = —10879911x 10 16j,

A3 = —0.0548184- 8.2434, )4 = —0.0548184- 8.2434
As = 4.440891016 — 8.88178x 1016

For the case when the fixed point is:

(U5, U5, U5, Uj, US) = (9.39857— 1.56278,2.12572+ 6.90962
,9.39857+ 156278, 2.12572— 6.90962, 16)

the Jacobian (6) becomes:

-10 0 10 0 0
0 —-10 0 10 0

0 0 0 0 —9.39857+ 1.56278

0 0 0 0 —2.12572-6.90962
9.39857- 1.56278 2.12572+6.90962 9.39857+ 1.56278 2.12572-6.90962 -8

3

(10)

The eigenvalues are found by solving the equatibr
Al| = 0yielding eigenvalues:

M =—12557—5.06564x 10 1%, A, = —10879911x 10 1§,
A3 = —0.0548184- 8.2434, A, = —0.0548184— 8.2434
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Fig. 3: The dynamical behavior of the new chaotic system after obnta) u; — uz phase plane,(h); — us phase plane, (a)z — us
phase plane, (d)4(t) wave form (es(t) wave form (f) chaotic attractor inug, us, us) after control.

As = 4.440891016+ 8.88178x 1015 (2), so system (2) becomes:
For the case when the fixed point is: X =a(y—x)+ (1+i)kcoswt
y = CX—XZ (12)

Ui, Ub, U3, Uy, Uz ) = (9.39857— 1.56278,2.12572+ 6.90962 . —
( 1, Y2, Y35 Y4 5) ( ’ + 7 — —bZ—I—%(Xy—l—yX),
,9.39857+ 1.56278,2.12572— 6.90962, 16)

where w and k are positive parameters. The controlled

Note that for all fixed points there is one has positive gystem (11) in the real version witl — cot is:

real part. Consequently the fixed points are unstable an
this implies chaos as mentioned above in Fig. 1 . u; = a(uz — uz) + kcosus,

Uz = a(ug — Up),

L!g = CUp — UUs + kCOSUe,
3 Controlling chaos of a new system Us = Clz = Li2Us,

Us = —bus + UjU3 + UpUy,
Lje = .

(12)

In this section, the main results with a new and simple
control low will be discussed. Based on the addition of Numerical simulations are used to investigate the
complex periodic forcing to the first equation of system controlled chaotic system (12) using Mathematica
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software version 9. When the parameters are[11]G. M. Mahmoud, T. Bountis, G. M. AbdEl-Latif, and E.
a=10b= g andc = 16 and the additional parameters = E.Mahmoud, Chaos synchronization of two different chaotic
(w=6.75 andk = 250 ). The initial values are taken as: ~ complex Chen and L systems, Nonlinear Dynamics Vol.55,
Ul(O) = Uz(O) =1, U3(0) = U4(0) =-1 andu5(0) =10. No.1-2, PP.43-53 (2009)

In the controller timet, one can see when is greater than [12] G. M. Mahmoud and A. A. M. Farghaly, Chaos control
or equal to 44 , chaos attractor disappear. The behavior of ©f chaotic limit cycles of real and complex van der Pol
the controlled chaotic system (12) are displayed in ngllllators, Chaos, Solitons & Fractals, 21(2004), PP-915

Fig.3.(a, b, c, d, e and f). I
9-3.( ) [13] G. M. Mahmoud and A. A. M. Farghaly, On Stabilization

of coupled complex nonlinear Schrodinger equations,Jnt.
4C lusi Modern Physics C15, 6 (2004),PP.845-866
onclusions [14] G. M. Mahmoud, S.A. Aly, and A.A. Farghaly, On chaos

. . . . synchronization of a complex two coupled dynamos system,
In this paper, we introduced a new 5 dimensional System, Chaos, Solitons & Fractals Vol.33,No. 1, PP.178-187 (2007)

which is called a chaotic complex Pan system. The news]G. M. Mahmoud, T. Bountis and E. E. Mahmoud ,"Active

system is generated from a famous Pan system after control and global synchronization for complex Chen and
replacing the real variables of the first and second | systems, , Int. J. of Bifurcation and Chaos, \ol.17,

equations of (1) with complex ones. The maximal No.12(2007),PP4295-4308.

Lyapunov exponent of this system is positive as shown in[16] G.M.Mahmoud, M. A. Al-Kashif , Basic properties and

Fig. 2 which means that our system is chaotic. System (2) chaotic synchronization of complex Lorenz system, , and
is controlled by adding the complex forcing to the first ~ S.A. Aly, Int. J. Mod. Phys. C, Vol. 18,N0.2(2007), PP. 253-
equation and the control time starts from 44. Since the 265.

new system has more complex dynamical behavior , it isf17] Guo-Cheng ~ Wua,  Dumitru  Baleanuc,  Chaos
believed that the system will have a broad applications in ~ Synchronization of the discrete fractional logistic map,
Vanous |nformat|on Systems S|gnal ProceSSIng,OZ, 96-99 (2014)
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