An Analogue Result of q-Beta Integral

Dong-Fang Liu and Qiu-Ming Luo*

Department of Mathematics, Chongqing Normal University, Chongqing Higher Education Mega Center, Huxi Campus, Chongqing 401331, People’s Republic of China

Received: 14 Feb. 2014, Revised: 20 Apr. 2014, Accepted: 22 Apr. 2014
Published online: 1 Jul. 2014

Abstract: We give an analogue result of q-beta integral by applying the q-Chu-Vandermonde formula and get several identities which include q-series $_3\phi_2$ and q-integral.

Keywords: q-beta integral, q-Chu-Vandermonde formula, transformations formula.
Mathematics Subject Classification (2010): Primary 33D05; Secondary 05A30

1 Introduction and main result

Throughout this paper we suppose $|q| < 1$, $\mathbb{N} = \{1, 2, \ldots\}$. The q-shifted factorial are defined by

$$ (a; q)_0 = 1, \quad (a; q)_n = \prod_{k=0}^{n-1} (1 - aq^k), \quad (a; q)_\infty = \lim_{n \to \infty} \prod_{k=0}^{n-1} (1 - aq^k), \quad n \geq 1. $$

(1.1)

(1.2)

Clearly,

$$ (a; q)_n = \frac{(a; q)_\infty}{(aq^n; q)_\infty}. $$

(1.3)

We also adopt the following compact notation for multiple q-shifted factorials:

$$ (a_1, a_2, \ldots, a_m; q)_n = (a_1; q)_n (a_2; q)_n \cdots (a_m; q)_n,$n$$

$$ (a_1, a_2, \ldots, a_m; q)_\infty = (a_1; q)_\infty (a_2; q)_\infty \cdots (a_m; q)_\infty. $$

The basic hypergeometric series $r+1\Phi_r$, or q-series are defined by

$$ r+1\Phi_r \left(\begin{array}{c} a_1, a_2, \ldots, a_{r+1} \end{array} ; q, z \right) = \sum_{n=0}^{\infty} \frac{(a_1, a_2, \ldots, a_{r+1}; q)_n}{(q, b_1, b_2, \ldots, b_r; q)_n} z^n. $$

(1.4)

The q-Chu-Vandermonde convolution formula is

$$ 2\Phi_1 \left(\begin{array}{c} q^{-n}, a \end{array} ; c, q \right) = \frac{d^n(c/a; q)_n}{(c; q)_n}. $$

(1.5)

F. H. Jackson defined the q-integral as follows (see [4])

$$ \int_0^d f(t) d_q t = d(1-q) \sum_{n=0}^{\infty} f(d^n) q^n, $$

(1.6)

and

$$ \int_c^d f(t) d_q t = \int_0^d f(t) d_q t - \int_0^c f(t) d_q t. $$

(1.7)

He also defined q-integral on $(0, \infty)$ by

$$ \int_0^\infty f(t) d_q t = (1-q) \sum_{n=0}^{\infty} f(q^n) q^n. $$

(1.8)

on the interval $(-\infty, \infty)$ the bilateral q-integral is defined by

$$ \int_{-\infty}^{\infty} f(t) d_q t = (1-q) \sum_{n=-\infty}^{\infty} [f(q^n) + f(-q^n)] q^n. $$

(1.9)

Askey obtained an elegant formula of the q-beta integral (see [2]):

$$ \int_{-\infty}^{\infty} \frac{(a,b,c,d;q)_\infty}{(c,b,a,d;q)_\infty} d_q \theta = \frac{2(1-q)(q^2 a^2 q^2 + c) c d (e a /c - d a /c - e b /d) - e}{(q a c) (q b c) q^2 c^2 d^2 (d^2 - q^2) (c^2 - q^2)} (-ab /d q). $$

(1.10)

provided that $|q| < 1$, $|ab/deq| < 1$ and there are no zero factors in the denominator of the integrals.

The q-beta integral is an important formula in basic hypergeometric series. For instance, Wang gave some extensions of q-beta integral (see [7, 8, 9, 10]).
In this paper, we give an interesting analogue result of q-beta integral using the q-Chu-Vandermonde formula. Making use of the similar method of Wang, we derive the following main result of this paper.

Theorem 1.1 If $|q| < 1, |e/d| < 1$ and there are no zero factors in the denominator of the integrals, then for any nonnegative integers n, we have

\[
\int_{-\infty}^{\infty} \frac{(b/a; q)_n}{(c/a; q)_n} d_q \omega = \frac{2q^{2n}(1 - q)(q^2; q^2)_n^2}{e^{bq} (d + dq)(d', q^2'; q'/q')^n} \times \left[\Phi_1 \left(q^{-n}, e/a - b dq, q - e/d : q, q \right) - \Phi_2 \left(q^{-n}, e/a - b dq, q - e/d : q, q \right) \right].
\]

(1.11)

2 The proof of Theorem

Recalling the q-Chu-Vandermonde convolution formula

\[
\Phi_1 \left(q^{-n}, c/a : q, q \right) = \frac{e^{n(a/c; q)_n}}{(a; q)_n}.
\]

(2.1)

By the following relation

\[
(a; q)_k = \frac{(a; q)_n}{(aq^n; q)_n},
\]

(2.2)

the formula (2.1) can be written as

\[
\sum_{k=0}^{n} \frac{(q^{-n}; c/a; q)_k}{(q; q)_k} \frac{(aq^n; q)_k}{(a; q)_k} = e^n, \frac{(a/c; q)_n}{(a; q)_n}.
\]

(2.3)

Letting $a \rightarrow a \omega$ in (2.3) and multiplying the both sides of equation (2.3) by

\[
\frac{(b/a; q)_n}{(-d/a; q)_n} = e^a, \frac{(a/c; q)_n}{(a; q)_n},
\]

we obtain that

\[
\sum_{k=0}^{n} \frac{(q^{-n}; c/a; q)_k}{(q; q)_k} \frac{(aq^n; q)_k}{(-d/q; q)_k} = e^n, \frac{(a/c; q)_n}{(a; q)_n}, \frac{(b/a; q)_n}{(-d/a; q)_n}.
\]

(2.4)

To Calculate the q-integral on both sides of (2.4) with respect to variable ω, we have

\[
\sum_{k=0}^{n} \frac{(q^{-n}; c/a; q)_k}{(q; q)_k} \int_{-\infty}^{\infty} \frac{(aq^n; q)_k}{(-d/q; q)_k} d_q \omega = e^n, \int_{-\infty}^{\infty} \frac{(b/a; q)_n}{(-d/a; q)_n} d_q \omega.
\]

(2.5)

Applying the Askey’s result (1.10) to the integral on the left-hand side of (2.5), we find that

\[
\sum_{k=0}^{n} \frac{(q^{-n}; c/a; q)_k}{(q; q)_k} \frac{2(1 - q)(q^2; q^2)_n^2}{(d/a; q)_n(d/a, q^2; q)_n} \frac{(aq^n; q)_k}{(-d/q; q)_k} = e^n, \int_{-\infty}^{\infty} \frac{(b/a; q)_n}{(-d/a; q)_n} d_q \omega.
\]

(2.6)

which can be rewritten as

\[
\sum_{k=0}^{n} \frac{(q^{-n}; c/a; q)_k}{(q; q)_k} \frac{(aq^n; q)_k}{(-d/q; q)_k} \frac{2q(1 - q)(q^2; q^2)_n^2}{(d/a; q)_n(d/a, q^2; q)_n} (aq^n; q)_k = \int_{-\infty}^{\infty} \frac{(b/a; q)_n}{(-d/a; q)_n} d_q \omega.
\]

(2.7)

We therefore obtain

\[
\int_{-\infty}^{\infty} \frac{(b/a; q)_n}{(-d/a; q)_n} d_q \omega = \frac{2q^{2n}(1 - q)(q^2; q^2)_n^2}{e^{bq} (d + dq)(d', q^2'; q'/q')^n} \times \left[\Phi_1 \left(q^{-n}, e/a - b dq, q - e/d : q, q \right) - \Phi_2 \left(q^{-n}, e/a - b dq, q - e/d : q, q \right) \right].
\]

(2.8)

Replacing e by a/e and interchanging a and e in (2.8), we obtain the formula (1.11) at once. The proof is complete.

3 Some applications

In this section, we give three identities using the formula (1.11) which include a new identity for $3\Phi_2$ and two identities of q-integral.

One of the fundamental transformations in the theory of basic hypergeometric series is the following Sears’ $3\Phi_2$ transformation (see [6]), which will be used to prove 3.1 below.

\[
3\Phi_2 \left(q^{-n}, b, c : q, dq^n/bc \right) = \frac{(a/c; q)_n}{(a; q)_n} 3\Phi_2 \left(q^{-n}, e/a - b dq^n, q - e/d : q, q \right).
\]

(3.1)

Theorem 3.1 If $n \in \mathbb{N}$, then we have

\[
3\Phi_2 \left(q^{-n}, b, c : q, dq^n/bc \right) = e^{n(a/c; q)_n} 3\Phi_2 \left(q^{-n}, e/a - b dq^n, q - e/d : q, q \right).
\]

(3.2)

Proof: Letting $b = aq^n$ in (1.11), we obtain

\[
\int_{-\infty}^{\infty} \frac{(a/q^n; q)_n}{(-d/a; q)_n} d_q \omega = \frac{2q^{2n}(1 - q)(q^2; q^2)_n^2}{e^{aq^n} (d + dq)(d', q^2'; q'/q')^n} \times \left[\Phi_1 \left(q^{-n}, e/a - a dq^n, q - e/d : q, q \right) - \Phi_2 \left(q^{-n}, e/a - a dq^n, q - e/d : q, q \right) \right].
\]

(3.3)

On the other hand, setting $b = eq^n$ in (1.10) and noting that (1.10), we obtain

\[
\int_{-\infty}^{\infty} \frac{(a/e; q)_n}{(-d/a; q)_n} d_q \omega = \int_{-\infty}^{\infty} \frac{(a/e; q)_n}{(-d/a; q)_n} d_q \omega = \frac{2q^{2n}(1 - q)(q^2; q^2)_n^2}{e^{aq^n} (d + dq)(d', q^2'; q'/q')^n} \times (-e/d; q)_n \phi \left(q^{-n}, e/a - a dq^n, q - e/d : q, q \right).
\]

(3.4)

Comparing the equations (3.3) and (3.4), we find that

\[
3\Phi_2 \left(q^{-n}, e/a - a dq^n, q - e/d : q, q \right) = e^{n(a/c; q)_n} 3\Phi_2 \left(q^{-n}, e/a - a dq^n, q - e/d : q, q \right).
\]

(3.5)

Applying (3.1) in (3.5), we get

\[
\phi \left(q^{-n}, e/a - a dq^n, q - e/d : q, q \right) = \frac{(a/c; q)_n}{(a; q)_n} 3\Phi_2 \left(q^{-n}, e/a - a dq^n, q - e/d : q, q \right).
\]

(3.6)

Replacing $(e/a, -a/d, -e/d)$ by (a, b, c) in (3.6), we obtain (3.2) immediately.
Theorem 3.2 We have
\[\int_{-\infty}^{\infty} \frac{(b; q)_n}{(a; q)_n} \frac{d\alpha}{(a^{\infty}; q^2)_n} = 2d \omega^{n+1} \left[-1-q(q^2; q^2)_n^2 \right] \]
\[\times \left[\phi_4 \left(q^{-\alpha}, -q^{-\alpha}, -b/dq, \omega, q, q, a/d \right) - \phi_4 \left(q^{-\alpha}, -q^{-\alpha}, -b/dq, \omega, q, q, a/d \right) \right] \]
provided that no zero factors in the denominator of the integrals.

Proof. Using the formula
\[(a; q)_n = (a; q)_n(aq^n; q)_k, \quad (a^2; q^2)_n = (a; q)_n (-a; q)_n \]
we easily get
\[\frac{(a\alpha; q)_n}{(a^{2\alpha}; q^2)_n} = \frac{(a\alpha; q)_n(aq^n; q)_n}{(a^n; q)_n} = (a^n; q)_n \quad (3.8) \]
Replacing \(a \) by \(aq^n \) and setting \(\epsilon = -a \) in (1.11), noting that (3.8), we obtain that
\[\int_{-\infty}^{\infty} \frac{(b; q)_n}{(a; q)_n} \frac{d\alpha}{(a^{\infty}; q^2)_n} = 2d \omega^{n+1} \left[-1-q(q^2; q^2)_n^2 \right] \]
\[\times \left[\phi_4 \left(q^{-\alpha}, -q^{-\alpha}, -b/dq, \omega, q, q, a/d \right) - \phi_4 \left(q^{-\alpha}, -q^{-\alpha}, -b/dq, \omega, q, q, a/d \right) \right] \]
This proof is complete.

Theorem 3.3 We have
\[\int_{-\infty}^{\infty} \frac{(b; q)_n}{(a; q)_n} \frac{d\alpha}{(a^{\infty}; q^2)_n} = 0 \quad (3.9) \]
provided that no zero factors in the denominator of the integrals.

Proof. We recall the Ramanujan’s bilateral summation formula (see [5])
\[\sum_{n=-\infty}^{\infty} \frac{(a; q)_n}{(b; q)_n} q^{\alpha} = \frac{(q; q)_n(b/a; q)_n(ax; q)_n(q/ax; q)_n}{(b; q)_n(q/a; q)_n(x; q)_n(b/ax; q)_n} \quad (3.10) \]
Rewriting the above formula as
\[\sum_{n=-\infty}^{\infty} \frac{(bq^n; q)_n}{(aq^n; q)_n} x^{\alpha} = \frac{(q; q)_n(b/a; q)_n(ax; q)_n(q/ax; q)_n}{(a; q)_n(q/a; q)_n(x; q)_n(b/ax; q)_n} \quad (3.11) \]
Applying the formula (3.11) and noting that definition (1.9), we get
\[\int_{-\infty}^{\infty} \frac{(bq^n; q)_n}{(aq^n; q)_n} d\alpha(1-q) \sum_{n=-\infty}^{\infty} \frac{(bq^n; q)_n}{(aq^n; q)_n} q^{\alpha} \]
\[= (1-q) \sum_{n=-\infty}^{\infty} \left[\frac{(b; q)_n}{(a; q)_n}(dq^n; q)_n \right] q^{\alpha} \]
\[= (1-q) \sum_{n=-\infty}^{\infty} \left[-dq^n(-1-dq^2)(-b/dq)_{q; q} \right] \]
\[= (1-q) \left[1+1/d(1+b/dq) \right] \]
\[= (1-q) \frac{1}{dq+b} \]
\[= 0. \]
This proof is complete.

Acknowledgements
The present investigation was supported by Natural Science Foundation Project of Chongqing, China under Grant CSTC2011JJA00024, Research Project of Science and Technology of Chongqing Education Commission, China under Grant KJ120625, Fund of Chongqing Normal University, China under Grant 10XLR017 and 2011XLZ07.

References