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Abstract: Recently, a multigranulation rough set (MGRS) has become a new directionin rough set theory, which is different from the
Pawlake’s rough set since the former takes multiple granulations on the universe into account. In this paper, by analyzing the limitations
of optimistic multigranulation rough set (OMGRS) and pessimistic multigranulation rough set (PMGRS) in incomplete information
system, the incomplete variable multigranulation rough set (VMGRS) is proposed, and the relationships among VMGRS, OMGRS
and PMGRS are deeply explored, From the properties, it can be found that OMGRS and PMGRS are the special cases compared to
our VMGRS. Furthermore, several important measurements are introduced into the VMGRS; it is shown that the measurements of the
VMGRS are between the measurements of OMGRS and PMGRS. Finally, some numerical examples are employed to substantiate the
conceptual arguments.
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1 Introduction

Rough set [1,2], proposed by Pawlak, is a powerful tool,
which can be used to deal with the inconsistency
problems by separation of certain and doubtful
knowledge extracted from the exemplary decisions.
Though Pawlak’s rough set theory has been demonstrated
to be useful in the fields such as knowledge discover [3,
4], decision analysis [5,6], data mining [7,8], pattern
recognition [9], artificial intelligence [10], medical
diagnosis [11] and so on.

It is well known that lower and upper approximation
operators in Pawlak’s rough set are defined by an
equivalence relation (indiscernibility relation). However,
due to the existence of uncertainty and complexity of
particular problems, the equivalence relation is too
restrictive in many practical applications. To overcome
this limitation, Pawlak’s rough sets has been extended to
several interesting and meaningful general models by
proposing other binary relations in recent years, which
include similarity relation based rough set [12], tolerance
relation based rough set [9,13,14,15], dominance
relation based rough set [16], covering based rough set
[17,18], fuzzy rough set [19,20,21,22] and others [23].

From the viewpoint of the granular computing, an
equivalence relation on the universe can be regarded as a
granulation, and a partition (induced by the equivalence
relation) on the universe can be regarded as a granulation
space, a equivalence class can be regarded as a knowledge
granule [24,25,26]. So, the above expanded rough set
models are based on single granulation, they also called
the single granulation rough sets. However, it should be
noticed that in [25,27,28], Qian et al. argued that we
often need to describe concurrently a target concept
through multiple granulations on the universe according
to a user’s requirements or targets of problem solving.
Therefore, they proposed the concept of Multigranulation
Rough Set (MGRS) model. In fact, the basic idea of
MGRS has been also discussed by Khan et al. in [7].
Following such work, the MGRS are extended in
incomplete based MGRS [25], dominance based MGRS
[26], neighborhood based MGRS [29], Fuzzy MGRS
[31,30], and so on [32,33,34].

The MGRS model can be classified into two parts:
one is the optimistic multigranulation rough set
(OMGRS) and the other is pessimistic multigranulation
rough set (PMGRS). By analyzing OMGRS and PMGRS,
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we can see that OMGRS decision is too relax since if
only one granulation satisfies with the inclusion condition
between the knowledge granule and the target concept,
then the object should belong to the lower approximation.
On the other hand, PMGRS decision is too strict since if
all of the granulations satisfy with the inclusion condition
between the knowledge granule and the target, then the
object may belongs to the lower approximation.

The purpose of this paper is study MGRS in
incomplete decision information system and propose a
new multigranulation rough set, which is referred to as
the variable multigranulation rough set (VMGRS), In our
VMGRS decision, thresholdβ , is used to control the
number of granulations, which satisfy with the inclusion
condition between the knowledge granule and the target
concept. Only when the number of granulations reaches
to a certain amount, the object may be belongs to the
lower approximation. Such number can be controlled by a
thresholdβ . Through the adjustment of the thresholdβ ,
the limitations of OMGRS too relax and PMGRS too
strict can be overcome.

The paper is organized as following. In Section 2, the
rough set and MGRS are briefly introduced. In Section 3,
the VMGRS models are proposed, the immediate
properties about VMGRS are also addressed. In Section
4, several important measurements are introduced into our
VMGRS and then the relationships among measurements
of OMGRS, PMGRS and VMGRS are discussed. In
Section 5, Experiments on UCI data sets show that
VMGRS is a generalization of both OMGRS and
PMGRS. Results are summarized in Section 6.

2 Preliminary knowledge on rough sets

2.1 Single–granulation rough set

Formally, an information system(IS) can be considered as
a 4-tupleIS =< U,AT,V, f >, whereU is a nonempty
finite set of objects (called the universe),AT is a
nonempty finite set of attributes,V is regard as the
domain of all attributes andV =VAT =

⋃
a⊆AT Va, ∀x∈U ,

f (a,x) is the value thex hold ona(a∈ AT).
In particular, ifAT =C∪D andC∩D = /0, where the

C is called condition attribute sets and theD is called
decision attribute sets, then< U,C ∪ D,V, f > is also
regard as a decision information system(DIS).

If there existsx ∈ U anda ∈ AT, such thatf (x,a) is
unknown, the unknown value is denoted by “∗” in this
paper, then the< U,C ∪ D,V, f > is also regard as an
incomplete decision information system(IDIS). We
assume here that at least one of the states ofx in terms of
A is certain whereA ⊆ AT, i.e. a ∈ A such thatf (x,a) is
known. Thus,V =VC∪VD ∪{∗}.

Definition 1.Suppose that< U,C∪D,V, f > is an IDIS,
∀A⊆C, a binary relation SIM(A) can be defined as [13]

SIM(A) = {(x,y) ∈U2 : f (x,a) = f (y,a)∨ f (x,a) = ∗

∨ f (y,a) = ∗,∀a∈ A}. (1)

The binary relationSIM(A) is a tolerance relation
since it is reflexive and symmetric. From the relation
SIM(A), we can introduce a cover on the universeU , this
cover can be denoted byU/SIM(A). ∀x ∈ U , We denote
the tolerance class includingx by SIMA(x), such
SIMA(x) = {y∈U : (x,y) ∈ SIM(A)}.

From the viewpoint of the granular computing, the
relationSIM(A) can be regard as a granulation, the cover
U/SIM(A) is referred to as a granulation space, each
tolerance classSIMA(x) may be viewed as a knowledge
granule consisting of indistinguishable elements.

By tolerance relationSIM(A), ∀X ⊆U , we can derive
the lower and upper approximations of an arbitrary subset
Xof U , They are defined as
A(X) = {x∈U : SIMA(x)⊆ X}. (2)

A(X) = {x∈U : SIMA(x)∩X 6= /0}. (3)
The pair[A(X),A(X)] is referred to as rough set ofX

with respect to the set of attributesA. Obviously, this
rough set is constructed on the basis of one and only one
granulation, it is then regarded as the single–granulation
rough set model.

2.2 Multigranulation rough sets

The MGRS is different from single granulation rough set
since the former is constructed on the basis of the multiple
granulations instead of a single one.

2.2.1 Optimistic multigranulation rough set

In the optimistic multigranulation rough set(OMGRS),
the target is approximated through the multiple
granulations. In lower approximation, the wordoptimistic
is used to express the idea that in multiple independent
granulations, we need only at least one of the granulation
to satisfy with the inclusion condition between knowledge
granule and target concept. The upper approximation of
OMGRS is defined by the complement of the lower
approximation.

Definition 2.Let I =< U,C∪ D,V, f > be an IDIS in
which A1,A2, · · · ,Am ⊆ C, then ∀X ⊆ U, the OMGRS
lower and upper approximations are denoted by

∑m
i=1Ai

O(X) and∑m
i=1Ai

O
(X), respectively [27],

m

∑
i=1

Ai

O

(X) = {x∈U : SIMA1(x)⊆ X∨SIMA2(x)⊆ X∨·· ·

∨SIMAm(x)⊆ X}. (4)

m

∑
i=1

Ai

O

(X) = ∼
m

∑
i=1

Ai

O

(∼ X). (5)
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where SIMAi (x)(1≤ i ≤ m) is a knowledge granule of x in
terms of the granulation SIM(A), ∼ X is the complement
of set X.

By the lower and upper approximations∑m
i=1Ai

O(X)

and∑m
i=1Ai

O
(X), the OMGRS boundary region ofX is

BNO
∑m

i=1 Ai
(X) =

m

∑
i=1

Ai

O

(X)−
m

∑
i=1

Ai

O

(X). (6)

2.2.2 Pessimistic multigranulation rough set

In pessimistic multigranulation rough set (PMGRS) [28],
the target is still approximated through the multiple
granulations. However, it is different from the optimistic
case. In lower approximation, the wordpessimisticis used
to express the idea that we need all of the granulations to
satisfy with the inclusion condition between knowledge
granule and target concept. The upper approximation of
PMGRS is also defined by the complement of the lower
approximation of PMGRS.

Definition 3.Let I =< U,C∪ D,V, f > be an IDIS in
which A1,A2, · · · ,Am ⊆ C, then ∀X ⊆ U, the PMGRS
lower and upper approximations are denoted by

∑m
i=1Ai

P(X) and∑m
i=1Ai

P
(X), respectively,

m

∑
i=1

Ai

P

(X) = {x∈U : SIMA1(x)⊆ X∧SIMA1(x)⊆ X∧·· ·

∧SIMAm(x)⊆ X}; (7)

m

∑
i=1

Ai

P

(X) = ∼
m

∑
i=1

Ai

P

(∼ X). (8)

By the lower and upper approximations∑m
i=1Ai

P(X)

and∑m
i=1Ai

P
(X), the PMGRS boundary region ofX is

BNP
∑m

i=1 Ai
(X) =

m

∑
i=1

Ai

P

(X)−
m

∑
i=1

Ai

P

(X). (9)

3 variable multigranulation rough set

By Definition 2, we can see that the OMGRS is too relax
since if only one tolerance class(knowledge granule)
satisfies with the set containment to the target concept,
then the object should belong to the lower approximation.
On the other hand, by Definition 3, we can see that the
PMGRS is too strict since ifall of the tolerance classes
satisfy with the set containment to the target concept, then
the object belongs to the lower approximation.

To solve such problem, we will propose a new
multigranulation rough set approach, which is referred to
as the incomplete variable multigranulation rough

set(VMGRS). In our incomplete VMGRS approach, a
threshold β will be used to control the number of
tolerance classes, which satisfy with the set containment
to the target concept.

Definition 4.Let I=<U,C∪D,V, f > be an IDIS in which
A1,A2, · · · ,Am⊆C, A= {A1,A2, · · · ,Am}, 0< β ≤ 1, then
∀X ⊆U, the VMGRS lower and upper approximations are

denoted by∑m
i=1Ai

β (X) and∑m
i=1Ai

β
(X), respectively,

m

∑
i=1

Ai

β
(X) = {x∈U : ∀Ai ∈ T,SIMAi (x)⊆ X}. (10)

m

∑
i=1

Ai

β

(X) = ∼
m

∑
i=1

Ai

β
(∼ X). (11)

where T⊆ A and |T|
m ≥ β .

Remark. By Definition 4, we can see that in∑m
i=1Ai

β (X),
we need the number of the granulationSIM(Ai), which
satisfy with the set containment to the target concept, to
reach a certain amount. Such amount can be controlled by
the thresholdβ .

By the lower and upper approximations∑m
i=1Ai

β (X)

and∑m
i=1Ai

β
(X), the VMGRS boundary region ofX is

BNβ
∑m

i=1 Ai
(X) =

m

∑
i=1

Ai

β

(X)−
m

∑
i=1

Ai

β
(X). (12)

Theorem 1.Let I =<U,C∪D,V, f > be an IDIS in which
A1,A2, · · · ,Am ⊆ C, A= {A1,A2, · · · ,Am}, then∀X ⊆ U,
we have

1.∑m
i=1Ai

1
m(X) = ∑m

i=1Ai
O(X),

∑m
i=1Ai

1
m(X) = ∑m

i=1Ai
O
(X).

2.∑m
i=1Ai

1(X) = ∑m
i=1Ai

P(X),

∑m
i=1Ai

1
(X) = ∑m

i=1Ai
P
(X).

Proof. We only prove Eq. (1), the proof of Eq. (2) is similar
to the proof of Eq. (1).
∀x∈U , by Definition 2 and Definition 4, we have

x ∈
m

∑
i=1

Ai

1
m

(X)

⇔∀Ai ∈ T,SIMAi (x)⊆ X whereT ⊆ A,
|T|
m

≥
1
m

⇔∀Ai ∈ T,SIMAi (x)⊆ X whereT ⊆ A, |T| ≥ 1

⇔∃Ai ∈ A s.t.SIMAi (x)⊆ X

⇔ x∈
m

∑
i=1

Ai

O

(X)
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By Definition 4 and the above result, we have

m

∑
i=1

Ai

1
m

(X) = ∼
m

∑
i=1

Ai

1
m

(∼ X)

= ∼
m

∑
i=1

Ai

O

(∼ X)

=
m

∑
i=1

Ai

O

(X) ⊓⊔

Remark. Through Theorem 1, we can see that ifβ = 1
m,

then the VMGRS lower approximation and upper
approximation will degenerate to be Qian et al.’s OMGRS
lower approximation and upper approximation in IDIS.
On the other hand, ifβ = 1, then the VMGRS lower
approximation and upper approximation will degenerate
to be Qian et al.’s PMGRS lower approximation and
upper approximation in IDIS. From these point of views,
the VMGRS is a generalization of both OMGRS and
PMGRS.

Theorem 2.Let I =< U,C ∪ D,V, f > be an IDIS in
which A1,A2, · · · ,Am ⊆ C, suppose that
A= {A1,A2, · · · ,Am}, 0< β ≤ 1, then∀X ⊆U, we have

1.∑m
i=1Ai

P
(X)⊆ ∑m

i=1Ai
β
(X)⊆ ∑m

i=1Ai
O
(X).

2.∑m
i=1Ai

O(X)⊆ ∑m
i=1Ai

β (X)⊆ ∑m
i=1Ai

P(X).

Proof. It can be derived directly from Definition 4 and
Theorem 1.�

Theorem 3.Let I =< U,C ∪ D,V, f > be an IDIS in
which A1,A2, · · · ,Am ⊆ C, suppose that
A = {A1,A2, · · · ,Am}, 0 < β ≤ 1, then ∀X ⊆ U, the
following properties hold

1.∑m
i=1Ai

β (X)⊆ X ⊆ ∑m
i=1Ai

β
(X).

2.∑m
i=1Ai

β (U) = ∑m
i=1Ai

β
(U) =U,

∑m
i=1Ai

β ( /0) = ∑m
i=1Ai

β
( /0) = /0

3.∑m
i=1Ai

β (∼ X) =∼ ∑m
i=1Ai

β
(X),

∑m
i=1Ai

β
(∼ X) =∼ ∑m

i=1Ai
β (X).

4.X⊆Y ⇒∑m
i=1Ai

β (X)⊆ ∑m
i=1Ai

β (Y),

∑m
i=1Ai

β
(X)⊆ ∑m

i=1Ai
β
(Y).

5.∑m
i=1Ai

β (∑m
i=1Ai

β (X)) = ∑m
i=1Ai

β (X),

∑m
i=1Ai

β
(∑m

i=1Ai
β
(X)) = ∑m

i=1Ai
β
(X).

6.β1 ≤ β2 ⇒ ∑m
i=1Ai

β1(X)⊇ ∑m
i=1Ai

β2(X),

∑m
i=1Ai

β1(X)⊆ ∑m
i=1Ai

β2(X).

Proof.

1. (a)Let x ∈ ∑m
i=1Ai

β (X), ∀Ai ∈ T, there must be
SIMAi (x)⊆ X, whereT ⊆ A and|T|/m≥ β . Since
x ∈ SIMAi (x), then x ∈ X. So it follows that

∑m
i=1Ai

β (X)⊆ X.

(b)Let x /∈ ∑m
i=1Ai

β
(X), thenx ∈ ∑m

i=1Ai
β (∼ X), for

∀Ai ∈ T, there must beSIMAi (x)⊆ (∼ X), thenx∈

(∼ X), hencex /∈ X. Thus,X ⊆ ∑m
i=1Ai

β
(X).

2. (a)From 1, one can get that∑m
i=1Ai

β (U) ⊆U , And if
x ∈ U , then, for eachAi ∈ T, there must be
SIMAi (x) ⊆ U ,where T ⊆ A and |T|/m ≥ β .
hence, x ∈ ∑m

i=1Ai
β (U) and U ∈ ∑m

i=1Ai
β (U).

Thus,∑m
i=1Ai

β (U) =U .

(b)From 1, we know thatU ⊆ ∑m
i=1Ai

β
(U), and

∑m
i=1Ai

β
(U) ⊆ U hold clearly. Thus,

∑m
i=1Ai

β
(U) =U

(c)From 1, we know that∑m
i=1Ai

β ( /0) ⊆ /0. And /0⊆

∑m
i=1Ai

β ( /0)hold clearly. Thus,∑m
i=1Ai

β ( /0) = /0.

(d)From Definition 4, we know that∑m
i=1Ai

β
( /0) =∼

∑m
i=1Ai

β (U). From 2.(b),we know∑m
i=1Ai

β (U) =

U . Thus,∑m
i=1Ai

β
( /0) = /0

3.From Definition 3, we know that∑m
i=1Ai

β (∼ X) =∼

∑m
i=1Ai

β
(X). Let X =∼ X, then∼ ∑m

i=1Ai
β
(∼ X) =

∑m
i=1Ai

β (X).

4. (a)Let x ∈ ∑m
i=1Ai

β (X), ∀Ai ∈ T, there must be
SIMAi (x)⊆ X, whereT ⊆ A and|T|/m≥ β . since
X ⊆ Y, then SIMAi (x) ⊆ Y, hence

∑m
i=1Ai

β (X)⊆ ∑m
i=1Ai

β (Y).

(b)Since X ⊆ Y, then ∼ Y ⊆∼ X and
∑m

i=1Ai
β (∼ Y) ⊆ ∑m

i=1Ai
β (∼ X), from (3), we

know that∑m
i=1Ai

β
(X)⊆ ∑m

i=1Ai
β
(Y).

5. (a)From 1, we easily know that
∑m

i=1Ai
β (∑m

i=1Ai
β (X)) ⊆ ∑m

i=1Ai
β (X). Suppose

x ∈ ∑m
i=1Ai

β (X), then for eachAi ∈ T, there must
be SIMAi (x) ⊆ X, whereT ⊆ A and |T|/m≥ β ,
hence ∑m

i=1Ai
β (SIMAi (x)) ⊆ ∑m

i=1Ai
β (X). But

∑m
i=1Ai

β (SIMAi (x)) = SIMAi (x), then we can have

that SIMAi (x) ⊆ ∑m
i=1Ai

β (X), Hence

x ∈ ∑m
i=1Ai

β (∑m
i=1Ai

β (X)). Then, we get that,

∑m
i=1Ai

β (X) ⊆ ∑m
i=1Ai

β (∑m
i=1Ai

β (X)). Therefore,

∑m
i=1Ai

β (X) = ∑m
i=1Ai

β (∑m
i=1Ai

β (X)).
(b)Form 3 and 5(a), we know that

∑m
i=1Ai

β
(∑m

i=1Ai
β
(X)) = ∑m

i=1Ai
β
(∼ ∑m

i=1Ai
β (∼

X)) =∼ ∑m
i=1Ai

β (∑m
i=1Ai

β (∼ X)) =∼ ∑m
i=1Ai

β (∼

X)) = ∑m
i=1Ai

β
(X)).
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6.Let x ∈ ∑m
i=1Ai

β2(X), for eachAi ∈ T, there must be
SIMAi (x) ⊆ X, whereT ⊆ A and |T|/m≥ β2. Since
β1 ≤ β2, then |T|/m ≥ β1, hencex ∈ ∑m

i=1Ai
β1(X).

Similarity, it is a trivial to prove

∑m
i=1Ai

β1(X)⊆ ∑m
i=1Ai

β2(X)

This completes the proof.�
Theorem 3 shows the basic properties about the

VMGRS in IDIS. 1 says that the VMGRS lower
approximation is included into the target concept and the
VMGRS upper approximation includes the target
concept. 2 shows the normality of the VMGRS.3
expresses the complement properties of the VMGRS.4
says the monotonic properties about the VMGRS in terms
of the monotonic varieties of the target concepts.5 says
the idempotents of the VMGR.6 says the monotonic
properties about the VMGRS in terms of the monotonic
varieties of the threshold.

Example 1.We then use an example to illustrate the
VMGRS in incomplete decision information system.
Table 1 depicts an incomplete decision information
system about the emporium investment project. “Locus”,
“Investment”, and “Population density” are the
conditional attributes of the system, and “Decision” is the
decision attribute (in the sequel,a1, a2, a3, and d will
stand for “Locus”, “Investment”, “Population density”,
and “Decision”, respectively).

Let A = {A1,A2,A3} = {{a1,a2},{a2,a3},{a1,a3}},
since the decision attribute determines a partition on the
universe such that U/{d} = {D1,D2} =
{{x3,x4,x5,x7,x9},{x1,x2,x6,x8,x10}}, then by
Definition 2, we have

∑3
i=1Ai

O
(D1) = {x3,x5,x7,x9}.

∑3
i=1Ai

O
(D2) = {x1,x2,x8,x10}.

∑3
i=1Ai

O
(D1) = {x3,x4,x5,x6,x7,x9}.

∑3
i=1Ai

O
(D2) = {x1,x2,x4,x6,x8,x10}.

By Definition 3, we have

∑3
i=1Ai

P
(D1) = /0.

∑3
i=1Ai

P
(D2) = {x10}.

∑3
i=1Ai

P
(D1) = {x1,x2,x3,x4,x5,x6,x7,x8,x9}.

∑3
i=1Ai

P
(D2) = {x1,x2,x3,x4,x5,x6,x7,x8,x9,x10}.

Supposeβ = 0.5, then by Definition 4, we have

∑3
i=1Ai

β
(D1) = {x3,x5,x9}.

∑3
i=1Ai

β
(D2) = {x1,x8,x10}.

∑3
i=1Ai

β
(D1) = {x2,x3,x4,x5,x6,x7,x9}.

∑3
i=1Ai

β
(D2) = {x1,x2,x4,x6,x7,x8,x10}.

Through the above results, we have

∑3
i=1Ai

P
(D1)⊆ ∑3

i=1Ai
β
(D1)⊆ ∑3

i=1Ai
O
(D1).

∑3
i=1Ai

P
(D2)⊆ ∑3

i=1Ai
β
(D2)⊆ ∑3

i=1Ai
O
(D2).

Table 1: An incomplete decision information table of the
emporium investment project

Project Locus Investment
Population

Decision
density

x1 Common High High Yes
x2 Bad High High Yes
x3 Bad ∗ Small No
x4 Bad Low ∗ No
x5 Bad Low Small No
x6 Bad ∗ Medium Yes
x7 Common High Medium No
x8 Good ∗ Medium Yes
x9 Bad Low Bad Yes
x10 Good High High Yes

∑3
i=1Ai

O
(D1)⊆ ∑3

i=1Ai
β
(D1)⊆ ∑3

i=1Ai
P
(D1).

∑3
i=1Ai

O
(D2)⊆ ∑3

i=1Ai
β
(D2)⊆ ∑3

i=1Ai
P
(D2).

these results show the correctness of Theorem 2.

4 Measurements

Uncertainty of a set (category) is due to the existence of a
borderline region. The greater the borderline region of a
set, the lower is the accuracy of the set. To more precisely
express this idea, we introduce some accuracy
measurements as following.

Definition 5.Let I =< U,C∪ D,V, f > be an IDIS in
which A1,A2, · · · ,Am ⊆ C, A = {A1,A2, · · · ,Am},
0< β ≤ 1, then∀X ⊆U(X 6= /0). The accuracies degrees
of X in terms of OMGRS, PMGRS and VMGRS in
incomplete decision information system are defined
respectively as

αO(
m

∑
i=1

Ai ,X) =
|∑m

i=1Ai
O(X)|

|∑m
i=1Ai

O
(X)|

(13)

αP(
m

∑
i=1

Ai ,X) =
|∑m

i=1Ai
P(X)|

|∑m
i=1Ai

P
(X)|

(14)

αβ (
m

∑
i=1

Ai ,X) =
|∑m

i=1Ai
β (X)|

|∑m
i=1Ai

β
(X)|

(15)

Definition 6.Let I =< U,C∪ D,V, f > be an IDIS in
which A1,A2, · · · ,Am ⊆ C, A = {A1,A2, · · · ,Am},
0 < β ≤ 1, U/D = {D1,D2, ...Dr} be the partition
induced by the decision attribute sets D. The qualities of
approximations of D by A, also called the degrees of
dependencies in terms of the OMGRS, PMGRS and
VMGRS in incomplete decision information system are
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defined respectively as

γO(
m

∑
i=1

Ai ,D) =
∑{|∑m

i=1AO
i (Dr)| : Dr ∈ D}

|U |
(16)

γP(
m

∑
i=1

Ai ,D) =
∑{|∑m

i=1AP
i (Dr)| : Dr ∈ D}

|U |
(17)

γβ (
m

∑
i=1

Ai ,D) =
∑{|∑m

i=1Aβ
i (Dr)| : Dr ∈ D}

|U |
(18)

Definition 7.Let I =< U,C∪ D,V, f > be an IDIS in
which A1,A2, · · · ,Am ⊆ C, A = {A1,A2, · · · ,Am},
0 < β ≤ 1, then ∀X ⊆ U(X 6= /0), the approximated
degrees of X in terms of OMGRS, PMGRS and VMGRS in
incomplete decision information system are defined
respectively as

πO(
m

∑
i=1

Ai ,X) =
|∑m

i=1Ai
O(X)|

|X|
(19)

πP(
m

∑
i=1

Ai ,X) =
|∑m

i=1Ai
P(X)|

|X|
(20)

πβ (
m

∑
i=1

Ai ,X) =
|∑m

i=1Ai
β (X)|

|X|
(21)

Theorem 4.Let I =< U,C ∪ D,V, f > be an IDIS in
which A1,A2, · · · ,Am ⊆ C, A = {A1,A2, · · · ,Am},
0< β ≤ 1, then∀X ⊆U(X 6= /0). The accuracies degrees
and the approximated degrees of X have the following
properties:

αP(
m

∑
i=1

Ai ,X)≤ αβ (
m

∑
i=1

Ai ,X)≤ αO(
m

∑
i=1

Ai ,X) (22)

πP(
m

∑
i=1

Ai ,X)≤ πβ (
m

∑
i=1

Ai ,X)≤ πO(
m

∑
i=1

Ai ,X) (23)

Proof. From Theorem 2, we know that

∑m
i=1Ai

P
(X) ⊆ ∑m

i=1Ai
β
(X) ⊆ ∑m

i=1Ai
O
(X) and

∑m
i=1Ai

O(X) ⊆ ∑m
i=1Ai

β (X) ⊆ ∑m
i=1Ai

P(X). then
|∑m

i=1 Ai
P(X)|

|∑m
i=1 Ai

P
(X)|

≤
|∑m

i=1 Ai
β (X)|

|∑m
i=1 Ai

β
(X)|

≤
|∑m

i=1 Ai
O(X)|

|∑m
i=1 Ai

O
(X)|

.

thus,αP(∑m
i=1Ai ,X)≤ αβ (∑m

i=1Ai ,X)≤ αO(∑m
i=1Ai ,X).

Similarity, it is a trivial to prove
πP(∑m

i=1Ai ,X)≤ πβ (∑m
i=1Ai ,X)≤ πO(∑m

i=1Ai ,X). ⊓⊔

Theorem 5.Let I =< U,C ∪ D,V, f > be an IDIS in
which A1,A2, · · · ,Am ⊆ C, A = {A1,A2, · · · ,Am},
0 < β ≤ 1, U/D = {D1,D2, ...Dr} be the partition
induced by the decision attribute sets D. the dependencies
degrees of D have the following properties:

γβ (
m

∑
i=1

Ai ,D)≤ γβ (
m

∑
i=1

Ai ,D)≤ γO(
m

∑
i=1

Ai ,D) (24)

Proof. It can be derived directly from Theorem 2 and
Definition 6. ⊓⊔

Table 2: Data sets descrition

Date sets Samples Data type
Conditional Decision

density calss
Breast-cancer

699 Incomplete 9 2
-wisconsin
Agaricus

8124 Incomplete 22 2
-lepiota

Table 3: Comparisons of lower approximation in breast-cancer-
wisconsin data set

Lower Descision classes
Approximations D1 D2

OMGRS 434 239
VMGRS(β = 0.2) 434 239
VMGRS(β = 0.5) 231 228
VMGRS(β = 1) 43 163

PMGRS 43 163

5 Experimental Analysis

In the following, through experimental analysis, we will
illustrate the relations among VMGRS, OMGRS and
PMGRS in IDIS. We have downloaded two public data
sets from UCI Repository of machine learning databases,
which are described in Table 2.

Here, we compare the lower and upper
Approximations in our VMGRS with that in OMGRS and
PMGRS on these two practical data sets. The
comparisons of the lower and upper approximations in
Breast-cancer-wisconsin data set are shown in Table 3
and Table 4.

Table 3 and Table 4 show the number of elements of
lower and upper approximations in terms of three
different MGRS approaches. We can see that ifβ = 0.2,
then the lower and upper approximations in VMGRS are
same to that in OMGRS; ifβ = 1, then the lower and
upper approximations in VMGRS are same to that in
PMGRS. Such results are consistent to Theorem 1.

In particular, if β = 0.5, then the Lower and upper
approximations in VMGRS are between that in OMGRS
and PMGRS. Such results are consistent to Theorem 2.

Similarity, it is not difficult to draw the same
conclusions from Table 5 and Table 6.

So, we can conclude that VMGRS is a generalization
of both OMGRS and PMGRS, OMGRS and PMGRS are
two type especial instances of VMGRS

6 Conclusions

In this paper, the VMGRS is proposed. In our VMGRS
approach, a threshold is used to control the number of
granulations, which satisfy with the inclusion condition
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Table 4: Comparisons of upper approximation in breast-cancer-
wisconsin data set

Upper Descision classes
Approximations D1 D2

OMGRS 460 265
VMGRS(β = 0.2) 460 265
VMGRS(β = 0.5) 471 468
VMGRS(β = 1) 536 656

PMGRS 536 656

Table 5: Comparisons of lower approximation in agaricus-
lepiota data set

Lower Descision classes
Approximations D1 D2

OMGRS 4196 3916
VMGRS(β = 0.2) 4196 3916
VMGRS(β = 0.5) 3956 3756
VMGRS(β = 1) 1228 2160

PMGRS 1228 2160

Table 6: Comparisons of upper approximation in agaricus-
lepiota data set

Upper Descision classes
Approximations D1 D2

OMGRS 4208 3928
VMGRS(β = 0.2) 4208 3928
VMGRS(β = 0.5) 4368 4168
VMGRS(β = 1) 5964 6896

PMGRS 5964 6896

between the knowledge granules and the target. Not only
the theoretical discussions, but also the experimental
analyses show that our VMGRS is a generalization of the
OMGRS and PMGRS in IDIS. In our further researching,
the reduction in terms of the proposed incomplete
VMGRS is an interesting topic to be addressed.
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