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Abstract: Recently, a multigranulation rough set (MGRS) has become a new diréctiongh set theory, which is different from the
Pawlake’s rough set since the former takes multiple granulations on iversminto account. In this paper, by analyzing the limitations
of optimistic multigranulation rough set (OMGRS) and pessimistic multigranuatogh set (PMGRS) in incomplete information
system, the incomplete variable multigranulation rough set (VMGRS) isogeap and the relationships among VMGRS, OMGRS
and PMGRS are deeply explored, From the properties, it can be foab@MGRS and PMGRS are the special cases compared to
our VMGRS. Furthermore, several important measurements arelirtted into the VMGRS; it is shown that the measurements of the
VMGRS are between the measurements of OMGRS and PMGRS. Finallg, mamerical examples are employed to substantiate the
conceptual arguments.

Keywords: OMGRS, PMGRS, VMGRS, Measurement, Incomplete information system

1 Introduction From the viewpoint of the granular computing, an
_ equivalence relation on the universe can be regarded as a

Rough set 1,2], proposed by Pawlak, is a powerful tool, granulation, and a partition (induced by the equivalence
which can be used to deal with the inconsistencyye|ation) on the universe can be regarded as a granulation
problems by separation of certain and doubtful ghace a equivalence class can be regarded as a knowledge
knowledge extracted from the exemplary deC|S|ons.granu|e P4,25,26]. So, the above expanded rough set
Though Pawlak’s rough set theory has been demonstrateghodels are based on single granulation, they also called
to be useful in the fields such as knowledge discov&r [ the single granulation rough sets. However, it should be
4], decision analysis §,6], data mining ¥,8], pattern  poticed that in £5,27,28], Qian et al. argued that we
recognition P], artificial intelligence [0], medical  ofien need to describe concurrently a target concept
diagnosis 11] and so on. _ through multiple granulations on the universe according

It is well known that lower and upper approximation g g yser's requirements or targets of problem solving.
operators in Pawlak’s rough set are defined by antperefore, they proposed the concept of Multigranulation
equivalence relation (indiscernibility relation). Hovesy Rough Set (MGRS) model. In fact, the basic idea of
due to the existence of uncertainty and complexity of \\GRS has been also discussed by Khan et al. #. [
particular problems, the equivalence relation is too Following such work, the MGRS are extended in
restrictive in many practical applications. To OVercome jncomplete based MGRS2%], dominance based MGRS

this limitation, Pawlak’s rough sets has been extended t92q] neighborhood based MGRS 29, Fuzzy MGRS
several interesting and meaningful general models by31 30], and so on 32,3334

proposing other binary relations in recent years, which

include similarity relation based rough set?], tolerance The MGRS model can be classified into two parts:
relation based rough set 9,[13,14,15, dominance one is the optimistic multigranulation rough set
relation based rough setl§)], covering based rough set (OMGRS) and the other is pessimistic multigranulation
[17,18], fuzzy rough set 19,20,21,22] and others 23]. rough set (PMGRS). By analyzing OMGRS and PMGRS,
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we can see that OMGRS decision is too relax since ifDefinition 1.Suppose thak U,CUD,V, f > is an IDIS,
only one granulation satisfies with the inclusion condition VA C C, a binary relation SIMA) can be defined as1p]
between the knowledge granule and the target concep _ 2. _ _
then the object should belong to the lower approximation.%lM(A) ={xy) eV f(xa) =Ty, Vi(xa) =+
On the other hand, PMGRS decision is too strict since if vi(y,a) =*,vaeA}. 1)
all of the granulations satisfy with the inclusion condition The binary relationSIM(A) is a tolerance relation
between the knowledge granule and the target, then theince it is reflexive and symmetric. From the relation
object may belongs to the lower approximation. SIM(A), we can introduce a cover on the univetbgthis

The purpose of this paper is study MGRS in cover can be denoted ly/SIM(A). ¥x € U, We denote
incomplete decision information system and propose dhe tolerance class including by SIMa(x), such
new multigranulation rough set, which is referred to asSIMa(x) = {y €U : (x,y) € SIM(A)}.
the variable multigranulation rough set (VMGRS), Inour ~ From the viewpoint of the granular computing, the
VMGRS decision, thresholgB, is used to control the relationSIM(A) can be regard as a granulation, the cover
number of granulations, which satisfy with the inclusion U/SIM(A) is referred to as a granulation space, each
condition between the knowledge granule and the targetolerance clas$IMa(x) may be viewed as a knowledge
concept. Only when the number of granulations reachegiranule consisting of indistinguishable elements.
to a certain amount, the object may be belongs to the By tolerance relatiol8IM(A), YX C U, we can derive
lower approximation. Such number can be controlled by athe lower and upper approximations of an arbitrary subset
thresholdB. Through the adjustment of the thresh@dd  Xof U, They are defined as
thg limitations of OMGRS too relax and PMGRS too A(X) = {x €U : SIMa(x) C X}. 2)
strict can be overcome. - . AX) = {x€ U : SIMa(x) X % 0}. 3)
rough set and NIGRS are briefy inroduced. In Secton 3, T8 PAIA). A0 is referred to as rough set ot

: 'with respect to the set of attributes Obviously, this

thrg ;{\iﬂecs;F;?)m:?(\)/dl\(/laléRgrzrep;(l)spc(:)?%reg]sz d'Tnmgg'C":itgrough set is constructed on the basis of one and only one
prop ' ranulation, it is then regarded as the single—granulation

4, several important measurements are introduced into o

VMGRS and then the relationships among measurementsough setmodel.

of OMGRS, PMGRS and VMGRS are discussed. In

Section 5, Experiments on UCI data sets show that: i i

VMGRS is a generalization of both OMGRS and 2.2 Multigranulation rough sets

PMGRS. Results are summarized in Section 6. The MGRS is different from single granulation rough set
since the former is constructed on the basis of the multiple
granulations instead of a single one.

2 Preliminary knowledge on rough sets L . .
y 9 9 2.2.1 Optimistic multigranulation rough set

) ) In the optimistic multigranulation rough set(OMGRS),
2.1 Single—granulation rough set the target is approximated through the multiple
granulations. In lower approximation, the wayptimistic
is used to express the idea that in multiple independent
Formally, an information system(IS) can be considered agyranulations, we need only at least one of the granulation
a 4-tuplelS =< U,AT,V, f >, whereU is a nonempty  to satisfy with the inclusion condition between knowledge
finite set of objects (called the universepT is a  granule and target concept. The upper approximation of

nonempty finite set of attributes/ is regard as the OMGRS is defined by the complement of the lower
domain of all attributes and = Vat = Uacat Va, VX € U, approximation.

faxis the valu.e the hold ona(a € AT). Definition 2.Let | =< U,CUD,V, f > be an IDIS in
In partlcular, ifAT =CuUD andCnND = 0, where the which A Ay, --- An C C, thenVX C U, the OMGRS

C is called condition attribute sets and theis called lower and upper approximations are denoted by
decision attribute sets, theqa U,CUD,V,f > is also 0

O ) ;
regard as a decision information system(DIS). 2 AT(X) and 3 AT (X), respectively 27],

If there existsx € U anda € AT, such thatf (x,a) is m O
unknown, the unknown value is denoted by’ ‘in this 'Z\Ai (X) = {x€U :SIMa, (X) € XV SIMa, (X) S XV -+
paper, then the U,CUD,V,f > is also regard as an ==

incomplete decision information system(IDIS). We VSIMa, (X) C X}. 4)
assume here that at least one of the statesioterms of ——o m O

A'is certain wheréA C AT, i.e.a € A such thatf(x,a) is A X)=~SA (~X). 5
known. ThusyY =V UVp U {x}. i; *) & (~%) ®)
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where SIM, (x)(1 <i < m) is a knowledge granule of xin set(VMGRS). In our incomplete VMGRS approach, a
terms of the granulation SIf), ~ X is the complement threshold B will be used to control the number of
of set X. tolerance classes, which satisfy with the set containment

R o to the target concept.
By the lower and upper approximatiofyg” ; A~ (X)

andmo(x), the OMGRS boundary region fis Definition 4.Let | =<U,CUD,V, f > be an IDIS in which
Ag, A A CC,A={A1,A,--- ,An}, 0< B <1 then
=0 m O vX CU, the VMGRS lower and upper approximations are
BNSn o (X) = i;Ai (X)— i;Ai (X). (6)  denoted byy™, AP(X) and3T, AF (X), respectively,
m B

ZlAi (X) = {xe U :VA €T,SIMy (x) C X}. (10)

2.2.2 Pessimistic multigranulation rough set

S . . B B
In pessimistic multigranulation rough set (PMGR28]| o 2
the target is still approximated through the multiple £ A (X) =~ i;A' (~X). (11)
granulations. However, it is different from the optimistic —
case. In lower approximation, the wap@ssimistidés used T
to express the idea that we need all of the granulations tgvhere TCA and% =B
satisfy with the inclusion condition between knowledge
granule and target concept. The upper approximation oRemark. By Definition 4, we can see that '@i’ilAiﬁ(X),
PMGRS is also defined by the complement of the lowerwe need the number of the granulatiShM(A;), which

approximation of PMGRS. satisfy with the set containment to the target concept, to
Definition 3.Let | =< U.CUD.V, f > be an IDIS in reach a certain amount. Such amount can be controlled by
the thresholgB.

which AL Az, -+ ,Am C C, thenvX C U, the PMGRS . ) 5
lower and upper approximations are denoted by  BY the lower and upper approximationg; Ai” (X)

5™ AP(X) and Z{ilAiP(X), respectively, andz{llA,-B(X), the VMGRS boundary region o is
m P B 5
A (X) = {xeU :SIMy, (X) CXASIMy, (X) SXA--- m m
2N =t 109 0 BN A ()= 5 A (0~ 5 A (X (12)
ASIM, (X) C X1 ) - —
WP m P Theorem 1Letl =< U,CuUD,V, f > be an IDIS in which
ZiAi (X) = ~ ZlA- (~ X). (8)  ApAs-,AnCC, A= {A1, Az ,An}, thenvX C U,
i= i= we have
By the FI)ower and upper approximatiog" ; AP (X) 1-Zi"llAi%‘(X) =5, AC(X),
andy"; A (X), the PMGRS boundary region Xfis Z{ilAi"%(X) _ .”LlAiO(X)-

P m P 25M ANX) =3 AR(X)
BNEp;lm(X):i;A- (X)fi;Aa (X). 9) STANX) =S AT (X).

Proof. We only prove Eg. (1), the proof of Eq. (2) is similar

3 variable multigranulation rough set to the proof of Eq. (1). -
vx € U, by Definition 2 and Definition 4, we have
By Definition 2, we can see that the OMGRS is too relax m 1
since if only one tolerance class(knowledge granule) X € Aim(X)
satisfies with the set containment to the target concept, i;
then the object should belong to the lower approximation. ——
On the other hand, by Definition 3, we can see that the o ya ¢ T,SIMy (X) € X whereT C A, Tl >
PMGRS is too strict since i&ll of the tolerance classes
satisfy with the set containment to the target concept, then < VA € T,SIMy (X) € X whereT CA,[T| > 1
the object belongs to the lower approximation. & IA € AS.L.SIMy (X) C X
To solve such problem, we will propose a new m O
multigranulation rough set approach, which is referred to ., y ¢ A (X)
as the incomplete variable multigranulation rough i;

3
S+
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By Definition 4 and the above result, we have 1. (a)Let x € z{ilAiB(X), VA € T, there must be
—1 o1 SIMy, (x) € X, whereT C Aand|T|/m> . Since
" m € SIMy (x), then x € X. So it follows that
A (X)=~SA (~X) X
i; i; s AP(X) CX.
m O (b)Letx ¢ 3T, AP (X), thenx € ™, AP (~ X), for
- i;A‘ (~X) VA € T, there must b&IMy, (x) C (~ X), thenx €
—0 (~X), hencex ¢ X. Thus,X C z{ilA;B(X).
- Z\Ai (X) 0 2. (a)From 1, one can get thgf;lAiﬁ(U) CU, And if
i= x € U, then, for eachA € T, there must be

SIMy (X) € U,where T € A and [T|/m > B.

Remark. Through Theorem 1, we can see thafit= n% hence. x € Z'mlAiB(U) and U ¢ z_mlAiB(U)
’ i= i= .

then the VMGRS lower approximation and upper

approximation will degenerate to be Qian et al.’s OMGRS Thus, 5™, AP(U) =U.
lower approximation and upper approximation in IDIS. c Sm_AP
On the other hand, i3 = 1, then the VMGRS lower (b)Frn:Jm ; we know that) € 5%, A" (U), and
approximation and upper approximation will degenerate SityAT(U) € U hold  clearly.  Thus,
to be Qian et al’s PMGRS lower approximation and ZirﬁlAiB(U)ZU
upper approximation in IDIS. From these point of views, - m A B(p) C C
the VMGRS is a generalization of both OMGRS and (c)From t we know thaf =, A (0) _B(D. And 0
PMGRS. S, AP (0)hold clearly. Thusy{™; Ai” (0) = 0.
i ST AP o) —
Theorem 2Let | =< U,CUD,V, f > be an IDIS in (d)FL?m Igeflnmon 4, we know thaZi:ﬁ}A' ém -
which  A,As,---,An C C, suppose that Y2 AP (U). From 2.(b),we knows %y AP (U) =
A={A1,Az,--- ,An}, 0< B <1, thenvX CU, we have U. Thus,mﬁ(m) -0
R w— i iti m B ~Y =~
1-2{11A5P(X) - Zim=1Ai5(X) c Zi";lAiO(X)- 3.From I;)eflnltlon 3, we know thay i A (B X)
231 ACX) € 5 AP (X) € 5T AP(X). SIMAT (X). Let X =~ X, then~ 5T AT(~ X) =
- ST AP(X).

Proof. It can be derived directly from Definition 4 and 4 (g)Let x ¢ s™, AP (X), VA € T, there must be

Theorem 10] SIMy (x) € X, whereT C Aand|T|/m> B. since
Theorem 3Let | =< U,CUD,V, f > be an IDIS in X C Y, then SIMy(x) € Y, hence
which  AAy--An C C, suppose that STAP(X) € 3 AP(Y).
A= {A,A-,An}, 0 < B <1, thenV¥X C U, the
following properties hold (b)Since BX c Y, thenB ~Y C~ X and
S ST AP(~Y) C S AP(~ X), from (3), we
Lym AP(X)CXC Zin;lAiﬁ(x)- K ; ~m B } <m B
m B —m B now thatZi:lA| (X) c Zi:lA (Y)
235, APU) =31, A (U)=U, 5. (@From 1, we easily know that
sm AP0 =TT AP 0) =0 zi“llf(z;’;lﬁﬁ(x)) C 3 AP(X). Suppose
35N AP~ X) =~ ST AP (X , xe S, A" (X), then for eacth € T, there must
z;:lAﬁ( ) z'r;lA'[f ) be SIMy (x) € X, whereT C A and|T|/m> f3,
2i=iA (me) :BN 7Zi=1Aim(X)-ﬁ hence 3™ AP(SIMy (X)) € ™, AP(X). But
AXCY =TT ATX) € ZZAR(Y), 3, AP(SIMy (X)) = SIMy (x), then we can have
ST AP (X) C STAP(Y), that  SIMy(x) € Y™ AP(X),  Hence
x e ST AP(sM AP (X)). Then, we get that,
5-Zir11AiZ(ZinllAiZ(x)) = ZinllAif:(x)! ZirilAiB(X) C Zin;lAiB(ZinllAiB(x))- Therefore,
TLAT (TRAT (X)) = 3L AT (X). STLAPX) =5 AP AP(X)).

(b)Form 3 and 5(a), we know that

STAP AL (X)) = S AP (~ s AP (~
STLAP(X) € ST AP (X). X)) =~ ST AP (I AP (~ X)) =~ 51 AP (~
X)) = ST A (X).

6.01 < Bo= YM APL(X) D 3™, AP (X),

Proof.
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6.Letx ¢ Z{‘llA;BZ(X), for eachA; € T, there must be

SIMy (X) € X, whereT C A and|T|/m> (. Since

Table 1: An incomplete decision information table of the
emporium investment project

B1 < B2, then |T|/m > B;, hencex € Zinl1Aiﬁl(X)- Project Locus Investmentpgglrj]gg?n Decision
Similarity, it is a trivial to  prove xi Common  High High Yes
zi”;lAi’Bl(x) C Zin;lAiﬁz(X) X2 Bad High High Yes

X3 Bad * Small No

This completes the proaf] X4 Bad Low * No
Theorem 3 shows the basic properties about the X5 Bad Low Small No
VMGRS in IDIS. 1 says that the VMGRS lower X6 Bad * Medium Yes
approximation is included into the target concept and the X7~ Common  High Medium No
VMGRS upper approximation includes the target X8 Good * Medium Yes
concept. 2 shows the normality of the VMGRS3 X9 Bad Low Bad Yes
expresses the complement properties of the VMGRS. X10 Good High High Yes

says the monotonic properties about the VMGRS in terms
of the monotonic varieties of the target conceftsays

the idempotents of the VMGR6 says the monotonic
properties about the VMGRS in terms of the monotonic

varieties of the threshold.

53,4 (D) C T, A (D) C T2, A (Dy).
3 A0 3 AP 3 Al
SiciA (D2) €3 A (D2) €374 A (D2).

Example We then use an example to illustrate the these results show the correctness of Theorem 2.

VMGRS in incomplete decision information system.
Table 1 depicts an incomplete decision information
system about the emporium investment project. “Locus”,
are

“Investment”, and “Population density”

the

conditional attributes of the system, and “Decision” is the 4 Measurements
decision attribute (in the sequedy, ap, as, andd will

stand for “Locus”, “Investment”, “Population density”,

and “Decision”, respectively).

Let A= {A1,A2,As} = {{a1,@},{az,as},{a1,as}}, : .
since the decision attribute determines a partition on thes€t, the lower is the accuracy of the set. To more precisely

universe  such that U/{d} =
{{X3,X4,X5,X7,X}, {X1,%2, X6, X8, X10} },
Definition 2, we have

ZiB:lAio(Dl) = {X3,Xs5,X7,X9}

{D1,D2}
then

581 A°(D2) = {x1,%. X6, %10}
STA(D1) = {Xa, Xa, X5, X6, X7, Xo}.
STA(D2) = {X1. %2, Xa. 6. X8, 10}
By Definition 3, we have
s3.A (D) =0.
324A" (D) = Do}
S3LA (Dy) = (X1, X2, Xa. X4, X6, X6, X7. X6, Xo

—P
zi3=]_Ai (DZ) = {XlaX27X37X47X57X67X77X87X97X10}'

SupposgB = 0.5, then by Definition 4, we have
Mﬁ(Dl) = {X3,X5,Xo}.
321AP (D2) = {1, %, %10}
STLA (D1) = {0, X, Xa, X5, X6, X7, X0}

—3 B
zi3=]_Ai (DZ) = {X17X27X47X67X77X87X10}'
Through the above results, we have

52,A (D1) C z?:ﬁ'p(Dl) c Z?:lAio(Dl)-

P
(
Zi3=1AiP(D2) c Zi3=1AiB(D2) c Zi3=1AiO(D2)-

by

Uncertainty of a set (category) is due to the existence of a
borderline region. The greater the borderline region of a

express this idea, we
measurements as following.

introduce some accuracy

Definition 5.Let | =< U,CUD,V, f > be an IDIS in
which A.?AZ)"'aAm g C’ A = {A17A27“‘7Am}'
0< B <1, thenvX CU(X # 0). The accuracies degrees
of X in terms of OMGRS, PMGRS and VMGRS in
incomplete decision information system are defined
respectively as

m mAC(X
ol 3 Ax) - 22 1Y) (13)
= STLAT(X)
m m P X
an(3 Ax) = 22 ) (14)
= TTA(X)
m s AP (X))
ap(y ALX) = (15)
"2 STAT )

Definition 6.Let | =< U,CUD,V, f > be an IDIS in
which ALAz An C C, A = {AAy, -, An},
0< B <1 U/D = {Dy,Dy,..D/} be the partition
induced by the decision attribute sets D. The qualities of
approximations of D by A, also called the degrees of
dependencies in terms of the OMGRS, PMGRS and
VMGRS in incomplete decision information system are
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defined respectively as Table 2: Data sets descrition

m y{Is™;A°(Dy)| : D € D} Conditional Decision

o(ziAi,D _ i Ul (16) Date sets ~ Samples Data type density calss
Breast-cancer
Z{IZ. lAlp( )| Dy €D} -wiscqnsin 699 Incomplete 9 2
Zf" D) U] (17) Algar.'cus 8124 Incomplete 22 2
-lepiota
B .

il {32 A (Dr)|: Dr €D}
V[}(_ZlAivD) = 1 (18)

1=

— . Table 3: Comparisons of lower approximation in breast-cancer-
Definition 7.Let | =< U,CUD,V, f > be an IDIS in  \isconsin data set

which = A, Ag,--,Am C C, A = {A,Ag, - zAm]” Lower Descision classes
0< B <1, t_hen ¥X C U(X # 0), the approximated . Approximations ~Dj D,
degrees of X in terms of OMGRS, PMGRS and VMGRS in OMGRS 434 539
incomplete decision information system are defined VMGRS(3 = 0.2) 434 239
respectively as VMGRS(B =0.5) 231 228
VMGRS(B=1) 43 163
A. PMGRS 43 163
ZIA' X) \Z 1 e °(X)| (19)
A|
Zﬁ X) _IZEAT X)) 20) _ -
X 5 Experimental Analysis
_IZLA N( ) . . . :
ZlA' ,X) (21) In the following, through experimental analysis, we will
| illustrate the relations among VMGRS, OMGRS and

PMGRS in IDIS. We have downloaded two public data

Th 4 | = D)V, f IDIS i . . .
eorem 4Let <U,CUDV, T > be an S n sets from UCI Repository of machine learning databases,

which  A,Az -, Am C C, A = {A;,As,--,An}, - o
0< B <1, thenvX CU(X # 0). The accuracies degrees which are described in Table 2.

and the approximated degrees of X have the following App};'g;?rhati\(l)vr?s inc(?::F\)?I\;l%RtSh\?vithI%V;?irn Oall\;I]gR Sugﬁgr

propn?rtles " " PMGRS on these two practical data sets. The
, _ _ comparisons of the lower and upper approximations in
< <
GP(AZLA"X) - aﬁ(.;A"X) - ao(_;A,X) (22) Breast-cancer-wisconsin data set are shown in Table 3
m m m and Table 4.
T‘”Zﬁ’x) < rgﬁ(ziAhx) < rb(ZlAi,x) (23) Table 3 and Table 4 show the number of elements of
[ i= i= lower and upper approximations in terms of three

Proof. From Theorem 2 we know that different MGRS approaches. We can see thdi i 0.2,
__"'p S ' o then the lower and upper approximations in VMGRS are
YA (X) € sUAT(X) € sMAT(X)  and  same to that in OMGRS; if8 = 1, then the lower and
SMACX) € s APKX) € M AP(X). then  upper approximations in VMGRS are same to that in

S, APX)| 5, AP X)] 5™, ACKX)| PMGRS. Such results are consistent to Theorem 1.
‘zn:f/_\ip@ < ﬁ \z’“iﬂm' In particular, if 8 = 0.5, then the Lower and upper
i=1 i=1 i=1 : ; ; .

m A m oA moA approximations in VMGRS are between that in OMGRS
tsr}l;?ig'?i(tg'zl'a"i’tx) Sigﬁ(z'glA"ﬁ?vilao(zt'glA"Ezéve and PMGRS. Such results are consistent to Theorem 2.

' Similarity, it is not difficult to draw the same

m . < m . < m : i . J

(22 AL X) < TB(Z21ALX) < To(3Za AL X). O conclusions from Table 5 and Table 6.
Theorem5let | =< U,CuUD.,V, f > be an IDIS in So, we can conclude that VMGRS is a generalization

which A Az, An € C, A = {A,A,-,Anl, of both OMGRS and PMGRS, OMGRS and PMGRS are
0< B <1 U/D = {Dy,Dy,..D/} be the partition two type especial instances of VMGRS
induced by the decision attribute sets D. the dependencies
degrees of D have the following properties:

m m m 6 Conclusions
VB(_ZlAi,D) < Vﬁ(_zlAnD) < VO(.ZlA"D) (24)
= = = In this paper, the VMGRS is proposed. In our VMGRS
Proof. It can be derived directly from Theorem 2 and approach, a threshold is used to control the number of
Definition 6. O granulations, which satisfy with the inclusion condition
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