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Abstract: Pairing-friendly curves and elliptic curves with a trapdéar the discrete logarithm problem are versatile tooldhmdesign
of cryptographic protocols. We show that curves having Ipotiperties simultaneously enable a non-interactive pabtior identity-

based 3-party key distribution and deterministic iderAbi&sed signing with “short” signatures. All our protocole @ the random
oracle model.
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1 Introduction This identity-based signature scheme affords “short”
signatures in the sense that the signature consists of a
Pairing-friendly curves are a versatile tool in the desifjn o single group element. While it is known how to create
cryptographic protocols, especially for identity-basedsuch a signature in the public key settirfg],[no such
solutions. As documented in a taxonomy by Freeman etonstruction is known in the identity-based setting.
al. [11], a number of constructions to obtain Moreover, the number of group and pairing operations in
pairing-friendly elliptic curves are available. Another the described scheme compares favorably to existing
cryptographically useful family of elliptic curves comes schemes, and the verification cost can be reduced when
with a trapdoor for the discrete logarithm problem. At verifying multiple messages that are presumably signed
ASIACRYPT 2000, Paillier proposed several encryption by the same identity. The security reduction relies on the
schemes invoking such curve&d], and more recently strong Diffie-Hellman assumption, which comes at the
Teske [L9] suggested an elliptic curve cryptosystem with usual cost: results by Brown and Gallag},[Cheon B],
a trapdoor for the discrete logarithm problem. and by Jao and Yoshidald indicate that for many
Interestingly, no constructions for elliptic curves in the groups the strong Diffie-Hellman problem is easier to
intersection of these two families appear to be available insolve than the discrete logarithm problem.
the literature. Differing from a setting considered by Dent
and Galbraith 10], we want the efficient evaluation of the
pairing to be possible without invoking trapdoor
information.

As demonstrated in Sectid® in the random oracle
model a complete construction would yield a The main technical tools we need are admissible bilinear
non-interactive solution for identity-based 3-party key maps and two hardness assumptions inspired by the
distribution. Thereafter, in Sectio®, we present a Diffie-Hellman problem. In this section we briefly fix the
deterministic identity-based signature scheme in therelevant terminology (cf. 4,2]). We will denote the
random oracle model, which assumes the availablity of asecurity parameter bly and statements about polynomial
pairing-friendly group with discrete logarithm trapdoor. time always refer td.

2 Preliminaries

* Corresponding author e-maikteinwa@fau.edu

(@© 2016 NSP
Natural Sciences Publishing Cor.


http://dx.doi.org/10.18576/amis/100603

2016 NS 2 P. Budhathoki et al.: Pairing-friendly curves with diseret

Definition 1(Admissible bilinear map). Let (Gy,+), Definition 4(Trapdoor discrete logarithm group).

(G2,+), and(Gr,-) denote cyclic groups of prime order A trapdoor discrete log grou@@DL group) is defined
g€ [2¢, 2. Then we refer to a map:&1 x G, — Gt by a pair of algorithms TDLGen and SolveDL as follows:
as admissible bilinear mapif all of the following

conditions are satisfied: TDLGen:This algorithm takes a security parametbras

input to generate a (description of a) cyclic groGp

Bilinearity:For all (P1,P2) € G1 x Gz and ab € Z we have of some order q with generator G and trapdoor
B ab information T.
&(aR;, bFz) = e(Py, P2)™ SolveDL:This polynomial-time algorithm takes as input
Non-degeneracy:There exist®i,Q;) € G1 x G, such 1% (G,q,G,T) and a group element H to produce a
that €Q1, Qo) # 1. discrete logarithm @& Zq such that H= aG.

Efficiency:The m n valuated in polynomial tim .
ciency:The map e can be evaluated in polynomia EzTo be usable in our protocols, we have to assume that the

All schemes described subsequently are formulated in th&DL groups output by the generator in this definition are
random oracle model. For the construction of the pairing-friendly (see11]). As shown in the next sections,
non-interactive identity-based 3-party key distribution having both a trapdoor for the discrete logarithm and a
scheme we assume the admissible bilinear map to beairing available, enables interesting cryptographic
symmetric, i. e.G1 = Go. In this setting, we capture the applications.

bilinear Diffie-Hellman problem as follows:

Definition 2(BDH problem). Let (G,+) and (Gr,) ) L _
denote cyclic groups of prime order g such that there is3 Non-interactive identity-based 3-party key
an admissible bilinear map eG x G — Gt. The  distribution
bilinear Diffie-Hellman (BDH) problenfor (G,Gr,e) is
to find on input Keeping with the notation from Section2, let
e: G x G — Gt be an admissible bilinear map, where
(G.a-Gb-Gc-G)eG G = (G) is cyclic of prime ordery such that a dpiscrete
with uniform'y at random Chosen generator@((} and |Ogarithm tradeOI’ iS available. We aISO make use Of

uniformly at random chosen,b.c € {0,...,q— 1}, the ~ random oraclesH; : {0,1}* — G mapping user
element G, G)2°C, identities to an element of andH, : Gt — {0,1}X,

) i mapping elements iyt to session keys.
In Section3.2 we will show how a successful adversary pping T 4

against our non-interactive key distribution scheme can be
used to construct an algorithm to solve the BDH problem -

in the underlying group. For the identity-based signature’?"l Description of the proposed scheme
scheme that we propose, the underlying hardnes
assumption will be the strong Diffie-Hellman assumption.
Following [2] we capture this problem as follows:

%uilding on Paterson and Srinivasan’s definition of a
2-party identity-based non-interactive key distribution
scheme 17], we consider a 3-party version of this task. A
Definition 3(Strong  Diffie-Hellman  problem). Let  3-party identity-based non-interactive key distribution
(G1,+) and (G2, +) denote cyclic groups of prime order schemd3-ID-NIKD) is specified by a tuple of polynomial

g such that there is an admissible bilinear pairing time algorithms:

e: Gy x G — Gt. The ¢-Strong Diffie-Hellman

(¢-SDH) problentor (G1,G5) is to find on input Setup:This probabilistic algorithm is run by the trusted
_ / authority. Given the security parametef, 1Setup
(IF' Gill_g, [G2,r -G2]) € GS ™ x G3 generates a secret master key along with the public

system parameters. The public system parameters

include the description of the private key space and

the shared key space. We choose the lattéDak}«.
KeyExtract:This probabilistic algorithm is run by the

with uniformly at random chosen generatorg 6 G,
G, € Gy and uniformly at random chosen
r € {0,....g — 1} a par (¢, - Gp) with

> r+c

ce {0, ...a=1\{-r}. trusted authority to generate a secret user key from an
In Section 4.2 we will show how from an efficient identity.

algorithm o7 successfully forging a signature one can SharedKey:This deterministic algorithm is run by a user
derive an algorithm to solve theSDH problem in the to generate a shared key, using its private user key and
underlying group pair. two other users’ identities.

The groups needed for our construction can,We require that for any three pairwise different identities
unfortunately, not be chosen as arbitrary elliptic cun®s a id,, idg, idc and corresponding private ke$a, . Sdgs Side»

used in (pairing-based) cryptography. We require asSharedKey satisfies the constraint
trapdoor for the discrete logarithm problem, as described

in[17): SharedKeySq,,ids,idc) =
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Setup:Sets as secret master key the discrete logarithndowapl for G = (G) and outputs the public parameters
(G7G7GT767H17H2).

KeyExtract:On input an identity id {0,1}* and master key¥, the algorithm return§y = logg (Hx(id)).

SharedKey:On input a private k&g, and two distinct identifiers iglidc € {0,1}* \ {ida}, this algorithm outputs

Kagc:=H2 (e(Hl(idB)7 Hl(idc))s"’*> .

Fig. 1: a 3-party identity-based non-interactive key distribntscheme

SharedKeySg,,ida, idc) = SharedKeySq.,ida, idg). —None of the identities ig idg, idc has been queried to
the key extraction oracle.

—Neither the tripl€(ida, idg, idc) nor any permutation of
it has been queried to the reveal oracle.

This ensures that all the users corresponding to identities

ida,idg,idc can compute the same session key without

any interaction. Figurd describes our proposed 3-party ) )

identity-based non-interactive key distribution scheme.  The advantage of such an adversary is defined as
Since G is cyclic, it is not difficult to see that the o 1

scheme in Figurd is correct; all the users with identities Advfyd'”'kd(k) = ‘Pr[b =b]- _‘ .

ida, idg and it will obtain identical keys when executing

SharedKey with their respective private key and the otherr e m 1 Assume there is a polynomial time algorithm
users' identities. </ such that the advantagedv®;4"d is non-negligible.
Then there is a polynomial time algorithgd that solves
] ] the BDH problem in the underlying group with
3.2 Security analysis non-negligible success probability.

ProofFor ¢ = 1,2 denote byg, > 1 a polynomial upper
pound on the number af7’s queries toH,—including
implicit queries through & and Z—and let
%’a'G’b' G,c- G) be the input for the BDH solve?
hat we want to derive. The task faces is to compute
ﬁ(G,G)abC, and to do so# will simulate all oracles for
</ and provide all its inputs. As public parameters gy
the algorithm# uses(G,G,Gt,e,H;1,Hy). To establish
the theorem, we use “game hopping”, letting the
adversarye? interact with as simulator. The advantage
of <7 in Gamei will be denoted by Ad§2™®, and we
assume without loss of generality that submits the
three challenge identities té, before submitting them to
Key extraction oracle’:On input an identity ids {0,1}*, the test oracle7 .

the correspgndlng secret k&y is r?‘“F”Ed: . Game 0: This game is identical to the original attack
Reveal oracleZ:On input of three pairwise distinct user oo 10~ \ith all oracles of<r being simulated

identities i, idg,idc € {0, 1}, this oracle returns the faithfully. Consequently

output of SharedKey when being executed with input '

(SdA7 idg, idc). Ade’;d'nikd = Adv(giameq
Test oracle7:The keyKapc is computed in the same ' ’

way as for answering a Reveal query. Moreover, aGame 1:In this game we modify the simulation in such a

random bitb & {0,1} is chosen. Ifo = 0, the oracle way that at the beginning the simulator guesses

returnsKa g c. Otherwise = 1), the oracle returns a uniformly at random which identities jidd;, id, will

uniformly at random chosen element from the session D€ gueried to the test oraclg. Whenever this guess

To capture the security of &ID-NIKD scheme, we build
on the security model used by Paterson and Srinivasan i
[17]. It has to be infeasible to distinguish efficiently
between a shared key established among three users an
random element from{0,1}*—even knowing session
keys established by a proper subset of these users wit
other identities and knowing private keys of users not
involved. The adversary is modeled as a probabilistic
algorithm &/ which obtains the public parameters
produced by Setup as input. In addition to the random
oraclesH; and Hy, the algorithm.« has access to the
following oracles:

kev space 0. 11K, turns out to be wrong, we abort the simulatiop and
y spacq(0, 1} consider the adversary to be at loss. Otherwise the
The algorithme outputs a valué' € {0,1} and wins if game is identical with Game 0. Consequently,

and only ifb = b’ and the following restrictions hold:
Adv(g/ame OS q:f . Adv(;}ame :L7
—The test oracle has been queried only once; let ' ’
(ida,idg,idc) be this query. and sincey; is polynomial ink, it suffices to recognize
—The identities id, idg, idc are pairwise distinct. Adv®ame 155 negligible.
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Game 2: In this game we change the simulation.@fs
queries as follows:

Hi: The algorithmZ keeps an initially empty list to
answerHi-queries. If a queried identity id already
appears in an entrid,d, h) of the list, then%’s
answer to the query will bl. Otherwise, if tha-
th Hy query is on identity id then% proceeds as
follows:

—If i =1, then# adds an entryid;, L,a- G) to the
H;-list and return& - G as answer to the query.
—If i =J, then# adds an entryid;, L,b- G) to the
H;-list and returnd - G as answer to the query.
—If i =L, then# adds an entryid, , L,c- G) to the
H;-list and returng - G as answer to the query.
—Otherwise # selectd; € {0,...,q— 1} uniformly
at random, adds an entfyd;,d;,d; - G) to the list
and returngl; - G as answer to the query.
So%’s responses are uniformly and independently
generated.
The algorithm& keeps an initially empty list to
answerH,-queries. If a queryg already appears in
an entry(s,N) of the list, then%’s answer to the
query will beN. Otherwise, if tha-th Hp-query is
on s, then % selects a random elemeNt from
{0,...,q—1}, adds the entrys,N;) to the list and
N; is the answer to the query. S8's responses are
uniformly and independently generated.
When &/ wants to extract the private key for
identity id, thens first queriesH; with id, if this

Ho:

has not already been done. Notice that a query on

id € {id,,idy,id_}, is not allowed. For any other
identity, # finds the entry(id,d,h) of the list
corresponding to id and outpuds

Z:. When.o# wants to reveal the session key for three
pairwise distinct identities jdid;, id; the simulator
2 queriesHy on id,id;,id; if this has not already
been done.

—Next, # looks up the entriegidm,dm,hm) for
me {i,j,l} in the Hy-list. Notice there is at least
onedy+ # L, since otherwise the query would not
be allowed. Thus,# can execute SharedKey.
E.qg., if we assume* =i, thenZ answers with
Hz(e(H(idj),H(idk))%), first making the
Ho-query if necessary.

. At some point during the simulation queries
the tuple of identities ididy,id. to the test oracle.
As reply, & returns a randomly generated

K & {0,1}k. (Notice that because of the way in
which the simulation is set up, the “correct” key is
equal toH,(e(G, G)a°)).
This completes our description gf’s simulation.
Game 2 and Game 1 are identical unlegsqueries
e(G,G)2°¢ to Hp, and we denote the event that
(G, G)%C is queried taH; by Q. Using the difference
lemma,

[AdVEA™e - AdvER™e 4 < PHQ).

We prove now that RQ] < g - Advi" where

AdvPS" = Pr{Succh denotes the success probability
of & for solving the BDH problem. Ife7 terminates
by outputting a bitb’ (or if <7 exceeds its normal
running time), therZZ outputs the valueg held in the
R-th entry of the Hy list, with R being chosen
uniformly at random. If evenf occurs, the value
e(G,G)®C is in the Hy-list, so % will succeed with
probability at least 1g,: AdvoSN =

Pr{Succ®MQ] - PHQ] + PriSucc®d"-Q] - Pi-Q] >

1
—.PAQl.
02 Q]

Hence, PIQ] < gz Adv®%4", and we finish the proof by
discussing Ad§2™e 2 AdyGame 2—

Prib’ =b] — %‘
= P’ = blQ) -PHQ] + Pty = b}-Q] - Pi-Q] ~ 5

(Prb’ = b|Q] — Prib’ = b|-~Q]) - PriQ] +

1
2

Prlb’ = b|-Q] ‘ < PiQ]

This last inequality holds since, @ does not occur,
<7 never queriedd; one(G,G)3C. Thus,«/’s view is
independent of the valueHz(e(G,G)2*°) and
| Pr{b/ b|-Q] 1 is  zero.  Also,
|Prb’ = b|Q] — P/ = b|-Q]| < 1.
Putting all the probabilities together, we get:

AdvEidnikd < 2. g3. g, - AdvhIn

4 A “short” identity-based signature

For i = 1,2, denote byG; an additively written cyclic
group of prime orderg € [2% 2k+1] with uniformly at
random chosen public generat@y. We also assume that
a trapdoor for the discrete logarithm problemGn and
an admissible bilinear mag : G; x G, — Gt are
available for some groufist of order g. As indicated
already, the identity-based signature scheme we propose
is formulated in the random oracle model: let
h:{0,1} — {0,...,q— 1} be a random oracle that
maps a message into an integer modujo and
H:{0,1}* — G1 x G, a random oracle that maps user
identities to an element d&; x G,. To refer to the two
components of a valuél(id) we will use the notation
H(id) = (Hia.1, Hig2)-

—~— —~—

€Gy €Gy
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4.1 Description of the identity-based signature The algorithm.7 outputs a user identity ig a message
scheme my, and a signature fomg. If this signature is valid and
neither ighy has been queried to the key extraction oracle

To specify an identity-based signature scheme we have t§0r (ido, mo) has been queried to the signature oracle, then
provide four (po|yn0mia|-time) a|gorithms: o7/ succeeded in Creating an existential forgery.

. . . ) For the proof that an efficient algorithm to create
Setup:This algorithm is run by the trusted authority 10 gyjstential forgeries in our scheme can be turned into an
generate a secret master key and public systeMyicient algorithm to solve thé-SDH problem for the
parameters. _ group pair(G1,G,) and a suitablé, we make use of (the
Extract:This algorithm is run by the trusted authority to proof of) a lemma by Cha and Cheon Lemma 1] and a

edxtract a user-specific secret signing key from aniemma by Boneh and Boyeg,[Lemma 9].
identity.

Sign:This algorithm enables a user to create a signature foremma 1 Let <7 be an algorithm that in polynomial time
a message, using its secret user key (extracted by th@ith probability £, outputs an existential forgery for the
trusted authority). scheme in Figure2 for some identityidy. Morever, let

Verify:Given a message, a candidate signature, and th@l; € {0,1}% be chosen uniformly at random ang ¢ 1
identity of the potential signer, this algorithm allows an upper bound on the number of queries to H dsy
to decide if this signature is valid. Then there is an algorithmeA which outputs in

Figure2 shows how each of these algorithms is realized inPolynomial time an existential forgery foid, with

our proposal. probability

The signature computation fails ifiy +h(m) = 0 1 1
(modq), i.e., if the required inversion modulp cannot Epp > —— - <1_ _> . (1_ q_"k') €.
be performed. A& is a random oracle, this happens with O+ +0s +0s q 2

(negligible) probability ¥q only. Otherwise the
correctness of our scheme follows immediately from the
equality

The number of extraction and signature queries made by
<71 is the same as fae7.

e(0,lid - Ga+ h(m) - Gy) = &(S, G2) = €(Hid.1, Poub)- ProofWithout loss of generality we may assume that
' does not repeatedly send the same queryHte-the

Sectiord.3offers a more detailed performance discussion,algorithm <7 can simpliy maintain a list with already
but one immediately observes the following: queried values and received responses. The algorithm
runs a simulation of7, using the public ke, faced
by /1 as input to.r and simulating all oracles for the
fatter. Before starting the simulation?; chooses a value
te{1,...,04 +ds + 9~} uniformly at random, whereg.
denotes a polynomial upper bound on the number of
queries thate submits to the respective oracle. The
simulation of the individual oracles is almost completely
faithful:

4.2 Security analysis h:This is the trivial simulation—s7; forwards the query to
its ownh-oracle and returns the answer of that oracle.
To analyze the security of our scheme, we prove that fromH:For thet-th query, returrH(id1) = (Hig,,1,Hig 2), for
an algorithm.# that produces an existential forgery, we  all other queries simply forward the query.46's own
can derive an algorithn¥” with comparable resource H-oracle.
requirements that, for a suitablg solves the/-SDH &If the queried identity id has not been queriedHget,
problem in the underlying group pair. The proof we give ~ submit id to the simulation ofi and then forward id
is an adaption of an analysis by Boneh and Boy&apd to .o/’s extraction oracle?’. Otherwise forward id t@&®
by Cha and Cheon7] to our situation. The adversary is directly. The answer of’ is given to</.
modeled as a probabilistic algoritha which obtains the  -If the identity id in a signature querfid,m) has not
public parameters produced by Setup as input. Following been submitted té1 yet, submit id to the simulation

—The right-hand side of the verification equation is
message-independent and can be reused by th
verifier.

—The signing algorithm is deterministic and can be
implemented on devices which do not provide a
(pseudo)random number generator.

[7], the algorithm.7 has access to the random oradtes of H and then forward id taz’s signing oracle.
andH and to two more oracles: Otherwise forward id to” directly. The answer of”
is given to.«7 .

Key extraction oraclé’:On input an identity ids {0,1}*,
the corresponding secret kéyy, Sq) is returned. Let (idg,my, 0p) be the output ofer, interacting with the

Signature oracle”:On input a user identity id {0,1}* simulated oracles. IH(idp) = H(id1) and the signature
and a messagwe, this oracle returns the output of Sign created by is valid, thene7; outputs the valid signature
when being executed with inp(tq, Sg) andm. (id1,mp, gp). In all other casesg’s strategy failed and

(@© 2016 NSP
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are returned.
Sign:To signm € {0, 1}* with secret user kefriq,Sq), compute

and output the signature € G1.

Setup:Selects a secret master key{0,...,q— 1} uniformly at random and outputs the public K8y, = s- G, € G».
Extract:On input an identity ie {0, 1}* and master keg, the valuesig = logg, (Hig2) € {0,...,q—1}, andSgq =s-Hig1 € G1

oo 1
" rig+h(m)

Verify:A signatureo € G for me {0,1}* and identity id is accepted if and onlyé{o, Hig > +h(m) - G2) = €(Hig 1, Poub)-

'Sd7

Fig. 2: an identity-based signature scheme

it outputs a random gueg&l;,m, 01) with my = 0 and
01 € G1 chosen uniformly at random.

The simulation fore? is perfect, unless idhas been
queried toH (explicitly or implicitly through a signature
or extraction query) before thieth query. Since id is
chosen uniformly at random froff0, 1}¥, the probability
for a simulation failure can be bounded by

Pr{SimulationFail] < g—*:.

So with the simulated oracles? outputs a valid forgery
with probability at least

Pr{(ido, Mo, 0) is a valid signature> (1_ g_';

)& (@)
Moreover, the probability that the outp(ity, Mg, o) of

</ is a valid signature without igdhaving been queried to
H is < 1/q, as then the right-hand side of the verification
equation is a random element fradkg . In other words, we
have

Prlidg was queried tdd |(ido, mo, 0p) is a valid

signaturé>1— % 2

Sincet is independently and randomly chosen, we also

have

Prlidg was thet-th query toH |idy was queried té4 and

1
—(3)
OH +0s+ Qs

Combining inequalities 1)—(3), we obtain the desired
lower bound for the success probabiléy, of .<71:

(-3 %)

(ido, Mo, 0p) is a valid signature>

1

> - . OH
OH +0¢ + 0

o x*

O

Building on the adversary constructed in the proof of

Lemmal, one can derive an algorithm¥ which solves
the strong Diffie-Hellman problem in the group pair
underlying the proposed signature scheme.

Lemma 2Let.e; be a polynomial time adversary against
the scheme in Figur2 andid; € {0, 1} chosen uniformly
at random. Assume that/; submits a total of at most
On > 1 queries to h and that > g, — 1. If .} succeeds
with probability £, in creating a forgery for the identity
id;, then there is a polynomial time algorith@1 which
can solve thé-SDH problem inG1, G2) with probability

4
co2d (1) (14 e
ProofThe algorithm 4 runs &4 as a subroutine,
providing all inputs and simulating all oracles fof. Let
(' - G1)f_g,[Ga,r - Go]) € Gt x G3 be the ¢-SDH
challenge faced by#. To answer queries td), the
algorithm ¢ chooses (hy,...,hq,) € {0,....,q — 1}%
uniformly at random. In addition, ¥ selects
t € {1,...,04} uniformly at random and defines the
polynomial

Oh

fy) = |'l(y+ hi) € Fqly]

it
of degreey, — 1. Note that by expanding this polynomial
into standard distributive form and using the first
component of the/-SDH-challenge,4 can compute
f(r)- Gy, provided that > q, — 1.

If f(r)-Gs1 happensto be 8 G, the algorithnfs” can
recoverr as one of théy-values multiplied by—1 € Fy,
making the/-SDH problem trivial. So in the sequel we
may assume thdt(r) ## 0 modg. To create the public key,
% chooses a master keye {0,...,q— 1} uniformly at
random and handg,,, = s- G to the adversary7;. The
individual oracles for; are simulated as follows:
h:In response to thieth new query, the valul is returned.

By keeping track of received queries, repeated queries

are answered consistently.

H:In response to a new query @{0,1}*\ {id1}, choose

Uid, rid € {0,...,q—1} uniformly at random and return

[ (Wg-Gur-Gp), ifid #id
H('d)_{(uij-f(lr)-Glz,r-Gz),ifid:idi'

(The valuer - G, is available as part of the
¢-SDH-challenge.) By keeping track of received
queries, repeated queries are answered consistently.
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& The correct key extraction algorithm is executed, usingd = pig, - s- f(r)/(r + h) modq. From the verification

the simulatedh- andH-oracles.

. :For identities other than id the correct signing
algorithm is executed, using the simulatee and
H-oracles. When being asked to sign a messader
id{, then

o f)
S- Hid, - T+ h(m) -G1

1 A
i Hidg.1

is returned, using the simulateddt and H-oracles.
Unlessh(m) ends up being thé-th new query toh,
knowing the polynomialg (y) andy+ h(m) as well as
sandq, the algorithmé can compute this signature
by means of the values in tHeSDH-challenge.

The above simulation is perfect, provided thédtdoes not
submit an extraction query foricr thet-th new query to
h results from a query to” with identity id;. The former
is not allowed for a successful forgery for the identity,id
and so the success probability.af in creating a forgery

for id; when interacting with the simulated oracles is at

least

1
(“&) Eon-

Let the forgery output bye; be for some message*
with corresponding signature*. If this forgery is not
valid for idy, or if m* has not been the new query ndo
h, then ¢’s strategy failed and¢ simply outputs a
random guesgc,G;) with ¢ € {0,...,q — 1} chosen

condition we obtain

e(d- Gy, Hig; 2 +h-Gp) = €(Hid; .1, Poub)
&(G1,Go)* " = e(pig, - f(r)-Gy,5:Ga),
e(G1,Gp)d (M) = g(Gy, Gy)H ST

—
=

and we may conclude that indeed

_ Mg, -s- f(r)

d
r+h

modd.
With probability 1— 1/q the conditiongg, - S# 0 modq
is satisfied and we can write

1. f()
O—*_F—th 1.

By constructiory + h; does not divide (y), so there exists
a non-zero constang € g and a polynomiay(y) € Fqy]

of degree< ¢, — 1 such thatf (y) = g(y) - (y+ h) + yo.
Consequently,

(Hid, - 9)~ (4)

f(r) Yo
n YO ey

from which we obtain the relation

£(r)
r+h

_ 0
Gy y(r) Gl_r+ht Gi.

By means of Equatiord) and using the values from the
¢-SDH challenge® can evaluate the left-hand side of this

uniformly at random. To resist some trivial attacks, we gquation. A final division by yields

assume that the master key- 0 modqg andHig, 1 # O,
which is true with probability 1 — £)2.
If m* has never been queried by then the left-hand

side of the verification equation is a random element in.

Gr, and we see that

Prim" was queried td|(m",c*) is a valid forgery for id]
1

>1—-—.

q

Sincet is independently and randomly chosenmf has
been queried td, it was the new query nd.to h with
probability

Prlh(m") = hy|m" was queried tt and(m*, o) is a valid

forgery for icy] > i
Gh

Thus, algorithme7; returns a valid forgerym®, o*) for id;
such thah(m") = h; with probability at least

1 1\3 ( 1)
— . 1-= 11— — “Eu .
G ( Q) g/ A
Sinceg* € G4, we can writedg™ = d - G; for some
value d € {0,...,q — 1}, and we claim that

1
r+h

Gr=Yp* ((Hig, -9) 0w — Y(r)G1),

i.e., a solution for thé-SDH problem. O

From Lemmal and Lemma we immediately obtain
the desired security reductidn.

Theorem 2Assume there is a polynomial time algorithm
&/ creating an existential forgery against the scheme in
Figure 2 with non-negligible probability. Ife7 queries h
no more than g> 1times and > g, — 1, then there is a
polynomial time algorithm that solves tlieSDH problem

in the underlying group pair with non-negligible success
probability.

4.3 Comparison with other identity-based
signature schemes

In this section we compare our identity-based signature
scheme with related schemes from a performance

1 For the sake of readability we do not explicitly state the
success probability and running times, which follow imnaseliy
from these lemmas and their proofs.
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perspective. Tablel compares the performance of non-interactive identity-based three-party key
selected schemes 1,[7,9,12,16,18 in terms of establishment can be achieved. Moreover, we show how
computations required for signature generation andan identity-based signature scheme with short signatures
verification. Computation complexity for signing and can be obtained from such curves.

signature verification is given in number of pairing

evaluations, scalar multiplications inGj, and

exponentiations inGt (denoted as P, M, and E, Acknowledgment

respectively). Since several schemes require one less

pairing for subsequent verifications after the first, we The authors thank Gabriel Gauthier-Shalom and David
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signature generation in our scheme. This inversion is in

7% and hence considered negligible compared to the other
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