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1 Introduction

Pairing-friendly curves are a versatile tool in the design of
cryptographic protocols, especially for identity-based
solutions. As documented in a taxonomy by Freeman et
al. [11], a number of constructions to obtain
pairing-friendly elliptic curves are available. Another
cryptographically useful family of elliptic curves comes
with a trapdoor for the discrete logarithm problem. At
ASIACRYPT 2000, Paillier proposed several encryption
schemes invoking such curves [14], and more recently
Teske [19] suggested an elliptic curve cryptosystem with
a trapdoor for the discrete logarithm problem.
Interestingly, no constructions for elliptic curves in the
intersection of these two families appear to be available in
the literature. Differing from a setting considered by Dent
and Galbraith [10], we want the efficient evaluation of the
pairing to be possible without invoking trapdoor
information.

As demonstrated in Section3, in the random oracle
model a complete construction would yield a
non-interactive solution for identity-based 3-party key
distribution. Thereafter, in Section4, we present a
deterministic identity-based signature scheme in the
random oracle model, which assumes the availablity of a
pairing-friendly group with discrete logarithm trapdoor.

This identity-based signature scheme affords “short”
signatures in the sense that the signature consists of a
single group element. While it is known how to create
such a signature in the public key setting [5], no such
construction is known in the identity-based setting.
Moreover, the number of group and pairing operations in
the described scheme compares favorably to existing
schemes, and the verification cost can be reduced when
verifying multiple messages that are presumably signed
by the same identity. The security reduction relies on the
strong Diffie-Hellman assumption, which comes at the
usual cost: results by Brown and Gallant [6], Cheon [8],
and by Jao and Yoshida [13] indicate that for many
groups the strong Diffie-Hellman problem is easier to
solve than the discrete logarithm problem.

2 Preliminaries

The main technical tools we need are admissible bilinear
maps and two hardness assumptions inspired by the
Diffie-Hellman problem. In this section we briefly fix the
relevant terminology (cf. [4,2]). We will denote the
security parameter byk and statements about polynomial
time always refer tok.
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Definition 1(Admissible bilinear map). Let (G1,+),
(G2,+), and(GT , ·) denote cyclic groups of prime order
q∈ [2k,2k+1]. Then we refer to a map e: G1×G2−→GT
as admissible bilinear mapif all of the following
conditions are satisfied:

Bilinearity:For all (P1,P2)∈G1×G2 and a,b∈Z we have

e(aP1,bP2) = e(P1,P2)
ab.

Non-degeneracy:There exists(Q1,Q2) ∈ G1 × G2 such
that e(Q1,Q2) 6= 1.

Efficiency:The map e can be evaluated in polynomial time.

All schemes described subsequently are formulated in the
random oracle model. For the construction of the
non-interactive identity-based 3-party key distribution
scheme we assume the admissible bilinear map to be
symmetric, i. e.,G1 = G2. In this setting, we capture the
bilinear Diffie-Hellman problem as follows:

Definition 2(BDH problem). Let (G,+) and (GT , ·)
denote cyclic groups of prime order q such that there is
an admissible bilinear map e: G × G −→ GT . The
bilinear Diffie-Hellman (BDH) problemfor (G,GT ,e) is
to find on input

(G,a ·G,b ·G,c ·G)∈G
4

with uniformly at random chosen generator G∈ G and
uniformly at random chosen a,b,c ∈ {0, . . . ,q− 1}, the
element e(G,G)abc.

In Section3.2 we will show how a successful adversary
against our non-interactive key distribution scheme can be
used to construct an algorithm to solve the BDH problem
in the underlying group. For the identity-based signature
scheme that we propose, the underlying hardness
assumption will be the strong Diffie-Hellman assumption.
Following [2] we capture this problem as follows:

Definition 3(Strong Diffie-Hellman problem). Let
(G1,+) and(G2,+) denote cyclic groups of prime order
q such that there is an admissible bilinear pairing
e : G1 × G2 −→ GT . The ℓ-Strong Diffie-Hellman
(ℓ-SDH) problemfor (G1,G2) is to find on input

([r i ·G1]
ℓ
i=0, [G2, r ·G2]) ∈G

ℓ+1
1 ×G

2
2

with uniformly at random chosen generators G1 ∈ G1,
G2 ∈ G2 and uniformly at random chosen
r ∈ {0, . . . ,q − 1} a pair (c, 1

r+c · G1) with
c∈ {0, . . . ,q−1} \ {−r}.

In Section 4.2 we will show how from an efficient
algorithm A successfully forging a signature one can
derive an algorithm to solve theℓ-SDH problem in the
underlying group pair.

The groups needed for our construction can,
unfortunately, not be chosen as arbitrary elliptic curves as
used in (pairing-based) cryptography. We require a
trapdoor for the discrete logarithm problem, as described
in [17]:

Definition 4(Trapdoor discrete logarithm group).
A trapdoor discrete log group(TDL group) is defined

by a pair of algorithms TDLGen and SolveDL as follows:

TDLGen:This algorithm takes a security parameter1k as
input to generate a (description of a) cyclic groupG
of some order q with generator G and trapdoor
information T .

SolveDL:This polynomial-time algorithm takes as input
1k, (G,q,G,T) and a group element H to produce a
discrete logarithm a∈ Zq such that H= aG.

To be usable in our protocols, we have to assume that the
TDL groups output by the generator in this definition are
pairing-friendly (see [11]). As shown in the next sections,
having both a trapdoor for the discrete logarithm and a
pairing available, enables interesting cryptographic
applications.

3 Non-interactive identity-based 3-party key
distribution

Keeping with the notation from Section2, let
e : G×G −→ GT be an admissible bilinear map, where
G = 〈G〉 is cyclic of prime orderq such that a discrete
logarithm trapdoor is available. We also make use of
random oraclesH1 : {0,1}∗ −→ G mapping user
identities to an element ofG and H2 : GT −→ {0,1}k,
mapping elements inGT to session keys.

3.1 Description of the proposed scheme

Building on Paterson and Srinivasan’s definition of a
2-party identity-based non-interactive key distribution
scheme [17], we consider a 3-party version of this task. A
3-party identity-based non-interactive key distribution
scheme(3-ID-NIKD) is specified by a tuple of polynomial
time algorithms:

Setup:This probabilistic algorithm is run by the trusted
authority. Given the security parameter 1k, Setup
generates a secret master key along with the public
system parameters. The public system parameters
include the description of the private key space and
the shared key space. We choose the latter as{0,1}k.

KeyExtract:This probabilistic algorithm is run by the
trusted authority to generate a secret user key from an
identity.

SharedKey:This deterministic algorithm is run by a user
to generate a shared key, using its private user key and
two other users’ identities.

We require that for any three pairwise different identities
idA, idB, idC and corresponding private keysSidA,SidB,SidC,
SharedKey satisfies the constraint

SharedKey(SidA, idB, idC) =
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Setup:Sets as secret master key the discrete logarithm trapdoor T for G = 〈G〉 and outputs the public parameters
(G,G,GT ,e,H1,H2).

KeyExtract:On input an identity id∈ {0,1}∗ and master keyT, the algorithm returnsSid = logG(H1(id)).
SharedKey:On input a private keySidA

and two distinct identifiers idB, idC ∈ {0,1}∗ \{idA}, this algorithm outputs

KA,B,C := H2

(

e(H1(idB),H1(idC))
SidA

)

.

Fig. 1: a 3-party identity-based non-interactive key distribution scheme

SharedKey(SidB, idA, idC) = SharedKey(SidC, idA, idB).

This ensures that all the users corresponding to identities
idA, idB, idC can compute the same session key without
any interaction. Figure1 describes our proposed 3-party
identity-based non-interactive key distribution scheme.

SinceG is cyclic, it is not difficult to see that the
scheme in Figure1 is correct; all the users with identities
idA, idB and idC will obtain identical keys when executing
SharedKey with their respective private key and the other
users’ identities.

3.2 Security analysis

To capture the security of a3-ID-NIKD scheme, we build
on the security model used by Paterson and Srinivasan in
[17]. It has to be infeasible to distinguish efficiently
between a shared key established among three users and a
random element from{0,1}k—even knowing session
keys established by a proper subset of these users with
other identities and knowing private keys of users not
involved. The adversary is modeled as a probabilistic
algorithm A which obtains the public parameters
produced by Setup as input. In addition to the random
oraclesH1 and H2, the algorithmA has access to the
following oracles:

Key extraction oracleE :On input an identity id∈ {0,1}∗,
the corresponding secret keySid is returned.

Reveal oracleR:On input of three pairwise distinct user
identities idA, idB, idC ∈ {0,1}∗, this oracle returns the
output of SharedKey when being executed with input
(SidA, idB, idC).

Test oracleT :The key KA,B,C is computed in the same
way as for answering a Reveal query. Moreover, a

random bitb
$
← {0,1} is chosen. Ifb = 0, the oracle

returnsKA,B,C. Otherwise (b= 1), the oracle returns a
uniformly at random chosen element from the session
key space{0,1}k.

The algorithmA outputs a valueb′ ∈ {0,1} and wins if
and only ifb= b′ and the following restrictions hold:

–The test oracle has been queried only once; let
(idA, idB, idC) be this query.

–The identities idA, idB, idC are pairwise distinct.

–None of the identities idA, idB, idC has been queried to
the key extraction oracle.

–Neither the triple(idA, idB, idC) nor any permutation of
it has been queried to the reveal oracle.

The advantage of such an adversary is defined as

Adv3-id-nikd
A (k) :=

∣
∣
∣
∣
Pr[b= b′]−

1
2

∣
∣
∣
∣
.

Theorem 1.Assume there is a polynomial time algorithm
A such that the advantageAdv3-id-nikd

A
is non-negligible.

Then there is a polynomial time algorithmB that solves
the BDH problem in the underlying group with
non-negligible success probability.

Proof.For ℓ = 1,2 denote byqℓ ≥ 1 a polynomial upper
bound on the number ofA ’s queries toHℓ—including
implicit queries through E and R—and let
(G,a ·G,b ·G,c ·G) be the input for the BDH solverB
that we want to derive. The taskB faces is to compute
e(G,G)abc, and to do so,B will simulate all oracles for
A and provide all its inputs. As public parameters forA ,
the algorithmB uses(G,G,GT ,e,H1,H2). To establish
the theorem, we use “game hopping”, letting the
adversaryA interact withB as simulator. The advantage
of A in Gamei will be denoted by AdvGamei

A
, and we

assume without loss of generality thatA submits the
three challenge identities toH1 before submitting them to
the test oracleT .

Game 0: This game is identical to the original attack
game, with all oracles ofA being simulated
faithfully. Consequently,

Adv3-id-nikd
A = AdvGame 0

A .

Game 1: In this game we modify the simulation in such a
way that at the beginning the simulator guesses
uniformly at random which identities idI , idJ, idL will
be queried to the test oracleT . Whenever this guess
turns out to be wrong, we abort the simulation and
consider the adversary to be at loss. Otherwise the
game is identical with Game 0. Consequently,

AdvGame 0
A ≤ q3

1 ·AdvGame 1
A ,

and sinceq1 is polynomial ink, it suffices to recognize
AdvGame 1

A
as negligible.
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Game 2: In this game we change the simulation ofA ’s
queries as follows:
H1: The algorithmB keeps an initially empty list to

answerH1-queries. If a queried identity id already
appears in an entry(id,d,h) of the list, thenB’s
answer to the query will beh. Otherwise, if thei-
th H1 query is on identity idi , thenB proceeds as
follows:

–If i = I , thenB adds an entry(idI ,⊥,a ·G) to the
H1-list and returnsa ·G as answer to the query.

–If i = J, thenB adds an entry(idJ,⊥,b ·G) to the
H1-list and returnsb ·G as answer to the query.

–If i = L, thenB adds an entry(idL,⊥,c ·G) to the
H1-list and returnsc ·G as answer to the query.

–Otherwise,B selectsdi ∈ {0, . . . ,q−1} uniformly
at random, adds an entry(idi ,di ,di ·G) to the list
and returnsdi ·G as answer to the query.
SoB’s responses are uniformly and independently
generated.

H2: The algorithmB keeps an initially empty list to
answerH2-queries. If a querys already appears in
an entry(s,N) of the list, thenB’s answer to the
query will beN. Otherwise, if thei-th H2-query is
on si , thenB selects a random elementNi from
{0, . . . ,q−1}, adds the entry(si ,Ni) to the list and
Ni is the answer to the query. SoB’s responses are
uniformly and independently generated.

E : When A wants to extract the private key for
identity id, thenB first queriesH1 with id, if this
has not already been done. Notice that a query on
id ∈ {idI , idJ, idL}, is not allowed. For any other
identity, B finds the entry(id,d,h) of the list
corresponding to id and outputsd.

R: WhenA wants to reveal the session key for three
pairwise distinct identities idi , id j , idl the simulator
B queriesH1 on idi , id j , idl if this has not already
been done.

–Next, B looks up the entries(idm,dm,hm) for
m∈ {i, j, l} in the H1-list. Notice there is at least
onedt∗ 6= ⊥, since otherwise the query would not
be allowed. Thus,B can execute SharedKey.
E. g., if we assumet∗ = i, thenB answers with
H2(e(H(id j),H(idk))

dt∗ ), first making the
H2-query if necessary.

T : At some point during the simulationA queries
the tuple of identities idI , idJ, idL to the test oracle.
As reply, B returns a randomly generated

K
$
← {0,1}k. (Notice that because of the way in

which the simulation is set up, the “correct” key is
equal toH2(e(G,G)abc)).

This completes our description ofB’s simulation.
Game 2 and Game 1 are identical unlessA queries
e(G,G)abc to H2, and we denote the event that
e(G,G)abc is queried toH2 by Q. Using the difference
lemma,

|AdvGame 1
A −AdvGame 2

A | ≤ Pr[Q].

We prove now that Pr[Q] ≤ q2 · Advbdh
B

, where
Advbdh

B
= Pr[Succbdh

B ] denotes the success probability
of B for solving the BDH problem. IfA terminates
by outputting a bitb′ (or if A exceeds its normal
running time), thenB outputs the valuesR held in the
R-th entry of the H2 list, with R being chosen
uniformly at random. If eventQ occurs, the value
e(G,G)abc is in the H2-list, so B will succeed with
probability at least 1/q2: Advbdh

B =

Pr[Succbdh
B |Q] ·Pr[Q]+Pr[Succbdh

B |¬Q] ·Pr[¬Q] ≥
1
q2
·Pr[Q].

Hence, Pr[Q]≤ q2 ·Advbdh
B

, and we finish the proof by
discussing AdvGame 2

A
: AdvGame 2

A
=

∣
∣
∣
∣
Pr[b′ = b]−

1
2

∣
∣
∣
∣

=

∣
∣
∣
∣
Pr[b′ = b|Q] ·Pr[Q]+Pr[b′ = b|¬Q] ·Pr[¬Q]−

1
2

∣
∣
∣
∣

=

∣
∣
∣
∣
(Pr[b′ = b|Q]−Pr[b′ = b|¬Q]) ·Pr[Q]+

Pr[b′ = b|¬Q]−
1
2

∣
∣
∣
∣
≤ Pr[Q]

This last inequality holds since, ifQ does not occur,
A never queriedH2 on e(G,G)abc. Thus,A ’s view is
independent of the valueH2(e(G,G)abc) and
|Pr[b′ = b|¬Q] − 1

2| is zero. Also,
|Pr[b′ = b|Q]−Pr[b′ = b|¬Q]| ≤ 1.
Putting all the probabilities together, we get:

Adv3-id-nikd
A ≤ 2 ·q3

1 ·q2 ·Advbdh
B

⊓⊔

4 A “short” identity-based signature

For i = 1,2, denote byGi an additively written cyclic
group of prime orderq ∈ [2k,2k+1] with uniformly at
random chosen public generatorGi . We also assume that
a trapdoor for the discrete logarithm problem inG2 and
an admissible bilinear mape : G1 × G2 −→ GT are
available for some groupGT of order q. As indicated
already, the identity-based signature scheme we propose
is formulated in the random oracle model: let
h : {0,1}∗ −→ {0, . . . ,q− 1} be a random oracle that
maps a message into an integer moduloq and
H : {0,1}∗ −→ G1×G2 a random oracle that maps user
identities to an element ofG1×G2. To refer to the two
components of a valueH(id) we will use the notation
H(id) = (Hid,1

︸︷︷︸

∈G1

,Hid,2
︸︷︷︸

∈G2

).
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4.1 Description of the identity-based signature
scheme

To specify an identity-based signature scheme we have to
provide four (polynomial-time) algorithms:

Setup:This algorithm is run by the trusted authority to
generate a secret master key and public system
parameters.

Extract:This algorithm is run by the trusted authority to
extract a user-specific secret signing key from an
identity.

Sign:This algorithm enables a user to create a signature for
a message, using its secret user key (extracted by the
trusted authority).

Verify:Given a message, a candidate signature, and the
identity of the potential signer, this algorithm allows
to decide if this signature is valid.

Figure2 shows how each of these algorithms is realized in
our proposal.

The signature computation fails ifr id + h(m) = 0
(mod q), i. e., if the required inversion moduloq cannot
be performed. Ash is a random oracle, this happens with
(negligible) probability 1/q only. Otherwise the
correctness of our scheme follows immediately from the
equality

e(σ , r id ·G2+h(m) ·G2) = e(Sid,G2) = e(Hid,1,Ppub).

Section4.3offers a more detailed performance discussion,
but one immediately observes the following:

–The right-hand side of the verification equation is
message-independent and can be reused by the
verifier.

–The signing algorithm is deterministic and can be
implemented on devices which do not provide a
(pseudo)random number generator.

4.2 Security analysis

To analyze the security of our scheme, we prove that from
an algorithmA that produces an existential forgery, we
can derive an algorithmC with comparable resource
requirements that, for a suitableℓ, solves theℓ-SDH
problem in the underlying group pair. The proof we give
is an adaption of an analysis by Boneh and Boyen [2] and
by Cha and Cheon [7] to our situation. The adversary is
modeled as a probabilistic algorithmA which obtains the
public parameters produced by Setup as input. Following
[7], the algorithmA has access to the random oraclesh
andH and to two more oracles:

Key extraction oracleE :On input an identity id∈ {0,1}∗,
the corresponding secret key(r id,Sid) is returned.

Signature oracleS :On input a user identity id∈ {0,1}∗

and a messagem, this oracle returns the output of Sign
when being executed with input(r id,Sid) andm.

The algorithmA outputs a user identity id0, a message
m0, and a signature form0. If this signature is valid and
neither id0 has been queried to the key extraction oracle
nor(id0,m0) has been queried to the signature oracle, then
A succeeded in creating an existential forgery.

For the proof that an efficient algorithm to create
existential forgeries in our scheme can be turned into an
efficient algorithm to solve theℓ-SDH problem for the
group pair(G1,G2) and a suitableℓ, we make use of (the
proof of) a lemma by Cha and Cheon [7, Lemma 1] and a
lemma by Boneh and Boyen [2, Lemma 9].

Lemma 1.Let A be an algorithm that in polynomial time
with probability εA outputs an existential forgery for the
scheme in Figure2 for some identityid0. Morever, let
id1 ∈ {0,1}k be chosen uniformly at random and qH ≥ 1
an upper bound on the number of queries to H byA .
Then there is an algorithmA1 which outputs in
polynomial time an existential forgery forid1 with
probability

εA1 ≥
1

qH +qE +qS

·

(

1−
1
q

)

·
(

1−
qH

2k

)

· εA .

The number of extraction and signature queries made by
A1 is the same as forA .

Proof.Without loss of generality we may assume thatA

does not repeatedly send the same query toH—the
algorithm A can simpliy maintain a list with already
queried values and received responses. The algorithmA1
runs a simulation ofA , using the public keyPpub faced
by A1 as input toA and simulating all oracles for the
latter. Before starting the simulation,A1 chooses a value
t ∈ {1, . . . ,qH +qE +qS } uniformly at random, whereq·
denotes a polynomial upper bound on the number of
queries thatA submits to the respective oracle. The
simulation of the individual oracles is almost completely
faithful:

h:This is the trivial simulation—A1 forwards the query to
its ownh-oracle and returns the answer of that oracle.

H:For thet-th query, returnH(id1) = (Hid1,1,Hid1,2), for
all other queries simply forward the query toA ’s own
H-oracle.

E :If the queried identity id has not been queried toH yet,
submit id to the simulation ofH and then forward id
to A ’s extraction oracleE . Otherwise forward id toE
directly. The answer ofE is given toA .

S :If the identity id in a signature query(id,m) has not
been submitted toH yet, submit id to the simulation
of H and then forward id toA ’s signing oracleS .
Otherwise forward id toS directly. The answer ofS
is given toA .

Let (id0,m0,σ0) be the output ofA , interacting with the
simulated oracles. IfH(id0) = H(id1) and the signature
created byA is valid, thenA1 outputs the valid signature
(id1,m0,σ0). In all other cases,A1’s strategy failed and
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Setup:Selects a secret master keys∈ {0, . . . ,q−1} uniformly at random and outputs the public keyPpub= s·G2 ∈G2.
Extract:On input an identity id∈ {0,1}∗ and master keys, the valuesr id = logG2

(Hid,2) ∈ {0, . . . ,q−1}, andSid = s·Hid,1 ∈G1
are returned.

Sign:To signm∈ {0,1}∗ with secret user key(r id,Sid), compute

σ =
1

r id +h(m)
·Sid,

and output the signatureσ ∈G1.
Verify:A signatureσ ∈G1 for m∈ {0,1}∗ and identity id is accepted if and only ife(σ ,Hid,2+h(m) ·G2) = e(Hid,1,Ppub).

Fig. 2: an identity-based signature scheme

it outputs a random guess(id1,m1,σ1) with m1 = 0 and
σ1 ∈G1 chosen uniformly at random.

The simulation forA is perfect, unless id1 has been
queried toH (explicitly or implicitly through a signature
or extraction query) before thet-th query. Since id1 is
chosen uniformly at random from{0,1}k, the probability
for a simulation failure can be bounded by

Pr[SimulationFail]≤
qH

2k .

So with the simulated oracles,A outputs a valid forgery
with probability at least

Pr[(id0,m0,σ0) is a valid signature]≥
(

1−
qH

2k

)

·εA . (1)

Moreover, the probability that the output(id0,m0,σ0) of
A is a valid signature without id0 having been queried to
H is≤ 1/q, as then the right-hand side of the verification
equation is a random element fromGT . In other words, we
have

Pr[id0 was queried toH|(id0,m0,σ0) is a valid

signature]≥ 1−
1
q
. (2)

Since t is independently and randomly chosen, we also
have

Pr[id0 was thet-th query toH|id0 was queried toH and

(id0,m0,σ0) is a valid signature]≥
1

qH +qE +qS

. (3)

Combining inequalities (1)–(3), we obtain the desired
lower bound for the success probabilityεA1 of A1:

εA1 ≥
1

qH +qE +qS

·

(

1−
1
q

)

·
(

1−
qH

2k

)

· εA

⊓⊔

Building on the adversary constructed in the proof of
Lemma1, one can derive an algorithmA2 which solves
the strong Diffie-Hellman problem in the group pair
underlying the proposed signature scheme.

Lemma 2.LetA1 be a polynomial time adversary against
the scheme in Figure2 andid1 ∈ {0,1}k chosen uniformly
at random. Assume thatA1 submits a total of at most
qh ≥ 1 queries to h and thatℓ ≥ qh− 1. If A1 succeeds
with probabilityεA1 in creating a forgery for the identity
id1, then there is a polynomial time algorithmC which
can solve theℓ-SDH problem in(G1,G2) with probability

εC ≥
1
qh
·
(

1− 1
q

)4
·
(

1− 1
qh

)

· εA1.

Proof.The algorithm C runs A1 as a subroutine,
providing all inputs and simulating all oracles forA1. Let
([r i · G1]

ℓ
i=0, [G2, r · G2]) ∈ G

ℓ+1
1 × G2

2 be the ℓ-SDH
challenge faced byC . To answer queries toh, the
algorithm C chooses (h1, . . . ,hqh) ∈ {0, . . . ,q − 1}qh

uniformly at random. In addition, C selects
t ∈ {1, . . . ,qh} uniformly at random and defines the
polynomial

f (y) =
qh

∏
i=1
i 6=t

(y+hi) ∈ Fq[y]

of degreeqh−1. Note that by expanding this polynomial
into standard distributive form and using the first
component of theℓ-SDH-challenge,C can compute
f (r) ·G1, provided thatℓ≥ qh−1.

If f (r) ·G1 happens to be 0∈G1, the algorithmC can
recoverr as one of thehi-values multiplied by−1 ∈ Fq,
making theℓ-SDH problem trivial. So in the sequel we
may assume thatf (r) 6= 0 modq. To create the public key,
C chooses a master keys∈ {0, . . . ,q− 1} uniformly at
random and handsPpub= s·G2 to the adversaryA1. The
individual oracles forA1 are simulated as follows:
h:In response to thei-th new query, the valuehi is returned.

By keeping track of received queries, repeated queries
are answered consistently.

H:In response to a new query id∈ {0,1}∗ \ {id1}, choose
µid, r id ∈ {0, . . . ,q−1} uniformly at random and return

H(id) =

{
(µid ·G1, r ·G2), , if id 6= id1
(µid · f (r) ·G1, r ·G2) , if id = id1

.

(The value r · G2 is available as part of the
ℓ-SDH-challenge.) By keeping track of received
queries, repeated queries are answered consistently.
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E : The correct key extraction algorithm is executed, using
the simulatedh- andH-oracles.

S :For identities other than id1, the correct signing
algorithm is executed, using the simulatedh- and
H-oracles. When being asked to sign a messagem for
id1, then

s·µid1 ·
f (r)

r +h(m)
·G1

︸ ︷︷ ︸

= 1
r+h(m)

·Hid1,1

is returned, using the simulatedh- and H-oracles.
Unlessh(m) ends up being thet-th new query toh,
knowing the polynomialsf (y) andy+h(m) as well as
s andµid, the algorithmC can compute this signature
by means of the values in theℓ-SDH-challenge.

The above simulation is perfect, provided thatA1 does not
submit an extraction query for id1 or thet-th new query to
h results from a query toS with identity id1. The former
is not allowed for a successful forgery for the identity id1,
and so the success probability ofA1 in creating a forgery
for id1 when interacting with the simulated oracles is at
least (

1−
1
qh

)

· εA1.

Let the forgery output byA1 be for some messagem∗

with corresponding signatureσ∗. If this forgery is not
valid for id1, or if m∗ has not been the new query no.t to
h, then C ’s strategy failed andC simply outputs a
random guess(c,G1) with c ∈ {0, . . . ,q− 1} chosen
uniformly at random. To resist some trivial attacks, we
assume that the master keys 6= 0 modq andHid1,1 6= 0,
which is true with probability(1− 1

q)
2.

If m∗ has never been queried toh, then the left-hand
side of the verification equation is a random element in
GT , and we see that

Pr[m∗ was queried toh|(m∗,σ∗) is a valid forgery for id1]

≥ 1−
1
q
.

Sincet is independently and randomly chosen, ifm∗ has
been queried toh, it was the new query no.t to h with
probability

Pr[h(m∗) = ht |m
∗ was queried toh and(m∗,σ∗) is a valid

forgery for id1]≥
1
qh

.

Thus, algorithmA1 returns a valid forgery(m∗,σ∗) for id1
such thath(m∗) = ht with probability at least

1
qh
·

(

1−
1
q

)3

·

(

1−
1
qh

)

· εA1.

Sinceσ∗ ∈ G1, we can writeσ∗ = d ·G1 for some
value d ∈ {0, . . . ,q − 1}, and we claim that

d = µid1 · s · f (r)/(r + ht) modq. From the verification
condition we obtain

e(d ·G1,Hid1,2+ht ·G2) = e(Hid1,1,Ppub)

⇐⇒ e(G1,G2)
d·(r+ht) = e(µid1 · f (r) ·G1,s·G2)

⇐⇒ e(G1,G2)
d·(r+ht) = e(G1,G2)

µid1
·s· f (r)

,

and we may conclude that indeed

d =
µid1 ·s· f (r)

r +ht
modq.

With probability 1−1/q the conditionµid1 ·s 6= 0 modq
is satisfied and we can write

(µid1 ·s)
−1σ∗ =

f (r)
r +ht

·G1. (4)

By constructiony+ht does not dividef (y), so there exists
a non-zero constantγ0 ∈ F∗q and a polynomialγ(y) ∈ Fq[y]
of degree≤ qh− 1 such thatf (y) = g(y) · (y+ ht) + γ0.
Consequently,

f (r)
r +ht

= γ(r)+
γ0

(r +ht)
,

from which we obtain the relation

f (r)
r +ht

·G1− γ(r) ·G1 =
γ0

r +ht
·G1.

By means of Equation (4) and using the values from the
ℓ-SDH challenge,C can evaluate the left-hand side of this
equation. A final division byγ0 yields

1
r +ht

·G1 = γ−1
0 ·

(
(µid1 ·s)

−1σ∗− γ(r)G1
)
,

i. e., a solution for theℓ-SDH problem. ⊓⊔

From Lemma1 and Lemma2 we immediately obtain
the desired security reduction.1

Theorem 2.Assume there is a polynomial time algorithm
A creating an existential forgery against the scheme in
Figure 2 with non-negligible probability. IfA queries h
no more than qh ≥ 1 times andℓ ≥ qh−1, then there is a
polynomial time algorithm that solves theℓ-SDH problem
in the underlying group pair with non-negligible success
probability.

4.3 Comparison with other identity-based
signature schemes

In this section we compare our identity-based signature
scheme with related schemes from a performance

1 For the sake of readability we do not explicitly state the
success probability and running times, which follow immediately
from these lemmas and their proofs.

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


2022 P. Budhathoki et al.: Pairing-friendly curves with discrete...

perspective. Table1 compares the performance of
selected schemes [1,7,9,12,16,18] in terms of
computations required for signature generation and
verification. Computation complexity for signing and
signature verification is given in number of pairing
evaluations, scalar multiplications inGi , and
exponentiations inGT (denoted as P, M, and E,
respectively). Since several schemes require one less
pairing for subsequent verifications after the first, we
distinguish first verifications for previously unknown
identities (Verify once) from cases where the result of the
constant pairing evaluation of that signer has already been
stored (Verify subseq.). Operations such as point
additions or multiplications inGT are assumed to be of
negligible cost and therefore do not appear in Table1.
This also applies to the inversion necessary during the
signature generation in our scheme. This inversion is in
Z∗q and hence considered negligible compared to the other
arithmetic operations.

The proposed scheme would have several advantages
if the required type of groups is available:

–The proposed scheme is the first identity-based short
signature scheme: Unlike the other schemes, the
signature is a single group elementσ ∈G.

–Our scheme does not require any pairing evaluation in
the signing phase, meaning that no pairing
implementation is required for signature generation.
In fact, only a single scalar multiplication and the
inversion inGT are needed, giving it a more efficient
signing operation than all of the compared schemes.

Unfortunately, our scheme relies on theℓ-SDH problem,
which poses an additional hurdle for the curve
selection [6,8,13]. Suitable parameters for BN curves
have been proposed in [15].

Compared to prior work, the proposed scheme still
appears quite attractive: The only category where our
scheme is outperformed is verification for an unknown
identity, where [1] needs one less pairing. However, it
needs an additional exponentiation inGT for any (i. e.
also for subsequent) verification. In fact, only [7] and our
scheme do not need to compute exponentiation inGT at
all. But compared to [7], our verification requires one less
pairing evaluation for known identities.

Compared to [9], all exponentiations inGT are
replaced by scalar multiplications inGi , with i ∈ {1,2} in
our scheme. Scalar multiplications for elliptic curves are
usually more efficient than the exponentiation inGT . This
is due to the fact that the extension fieldGT has to be
chosen significantly larger than the field the elliptic curve
is defined on [11], especially for larger embedding
degrees.

5 Conclusion

Assuming the availability of pairing-friendly groups with
a discrete logarithm trapdoor, this paper shows how

non-interactive identity-based three-party key
establishment can be achieved. Moreover, we show how
an identity-based signature scheme with short signatures
can be obtained from such curves.
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Ministerio de Econoḿıa y Competitividadthrough the
project grant MTM2013-45588-C3-1-P.

References

[1] Paulo S.L.M. Barreto, Benoı̂t Libert, Noel McCullagh, and
Jean-Jacques Quisquater. Efficient and Provably-Secure
Identity-Based Signatures and Signcryption from Bilinear
Maps. In Bimal Roy, editor,Advances in Cryptology –
ASIACRYPT 2005, Lecture Notes in Computer Science,
pages 515–532. Springer-Verlag, 2005.

[2] Dan Boneh and Xavier Boyen. Short Signatures Without
Random Oracles and the SDH Assumption in Bilinear
Groups.Journal of Cryptology, 21:149–177, 2008.

[3] Dan Boneh and Matt Franklin. Identity-Based Encryption
from the Weil Pairing. In Joe Kilian, editor,Advances
in Cryptology – CRYPTO 2001, volume 2139 ofLecture
Notes in Computer Science, pages 213–229. Springer-
Verlag, 2001.

[4] Dan Boneh and Matthew Franklin. Identity-Based
Encryption from the Weil Pairing. SIAM Journal of
Computing, 32(3):586–615, 2003. Extended abstract
appears in [3].

[5] Dan Boneh, Ben Lynn, and Hovav Shacham. Short
Signatures from the Weil Pairing. In Colin Boyd, editor,
Advances in Cryptology – ASIACRYPT 2001, volume 2248
of Lecture Notes in Computer Science, pages 514–532.
Springer-Verlag, 2001.

[6] Daniel R. L. Brown and Robert P. Gallant. The Static
Diffie-Hellman Problem. Cryptology ePrint Archive: Report
2004/306, June 2005.http://eprint.iacr.org/2004/306.

[7] Jae Choon Cha and Jung Hee Cheon. An Identity-Based
Signature from Gap Diffie-Hellman Groups. In Yvo G.
Desmedt, editor,Public Key Cryptography – PKC 2003,
volume 2567 ofLecture Notes in Computer Science, pages
18–30. Springer-Verlag, 2003.

[8] Jung Hee Cheon. Security Analysis of the Strong Diffie-
Hellman Problem. In Serge Vaudenay, editor,Advances in
Cryptology – EUROCRYPT 2006, volume 4004 ofLecture
Notes in Computer Science. Springer-Verlag, 2006.

[9] Sherman S.M. Chow, Siu-Ming Yiu, Lucas C.K. Hui, and
K.P. Chow. Efficient Forward and Provably Secure ID-
Based Signcryption Scheme with Public Verifiability and
Public Ciphertext Authenticity. In Jong-In Lim and Dong-
Hoon Lee, editors,Information Security and Cryptology –

c© 2016 NSP
Natural Sciences Publishing Cor.

http://eprint.iacr.org/2004/306


Appl. Math. Inf. Sci.10, No. 6, 2015-2023 (2016) /www.naturalspublishing.com/Journals.asp 2023

Table 1: Performance comparison of popular identity-based signature schemes, where P denotes the number of pairing evaluations, M
denotes scalar multiplications inG1 or G2, and E denotes exponentiations inGT

Paterson [16] Cha Cheon [7] CYHC [9] BLM [ 1] Hess [12] here

Sign 3M 2M 1E+1M 1E+1M 1M+1E 1M
Verify once 2E+2P 1M+2P 1E+2P 1E+1M+1P 1E+2P 1M+2P
Verify subseq. 2E+1P 1M+2P 1E+1P 1E+1M+1P 1E+1P 1M+1P

Signature G×G G×G F
∗
q×G F

∗
q×G1 F

∗
q×G G1

ICISC 2003, volume 2971 ofLecture Notes in Computer
Science, pages 352–369. Springer-Verlag, 2004.

[10] Alexander W. Dent and Steven D. Galbraith. Hidden
Pairings and Trapdoor DDH Groups. In Florian Hess,
Sebastian Pauli, and Michael E. Pohst, editors,Algorithmic
Number Theory, 7th International Symposium, ANTS-VII,
volume 4076 ofLecture Notes in Computer Science, pages
436–451. Springer-Verlag, 2006.

[11] David Freeman, Michael Scott, and Edlyn Teske. A
Taxonomy of Pairing-Friendly Elliptic Curves.Journal of
Cryptology, 23(2):224–280, 2010.

[12] Florian Hess. Efficient Identity Based Signature Schemes
Based on Pairings. In Kaisa Nyberg and Howard Heys,
editors, Selected Areas in Cryptography – SAC 2002,
volume 2595 ofLecture Notes in Computer Science, pages
310–324. Springer-Verlag, 2003.

[13] David Jao and Kayo Yoshida. Boneh-Boyen Signatures and
the Strong Diffie-Hellman Problem. In Hovav Shacham and
Brent Waters, editors,Paring-Based Cryptography – Pairing
2009, volume 5671 ofLecture Notes in Computer Science,
pages 1–16. Springer-Verlag, 2009.

[14] Pascal Paillier. Trapdooring Discrete Logarithms on Elliptic
Curves over Rings. In Tatsuaki Okamoto, editor,Advances
in Cryptology – ASIACRYPT 2000, volume 1976 ofLecture
Notes in Computer Science, pages 573–584. Springer-
Verlag, 2000.

[15] Cheol-Min Park and Hyang-Sook Lee. Pairing-Friendly
Curves with Minimal Security Loss by Cheon’s Algorithm.
ETRI Journal, 33(4):656–659, August 2011.

[16] Kenneth G. Paterson. ID-based signatures from pairings
on elliptic curves. Electronics Letters, 38(18):1025–1026,
2002.

[17] Kenneth G. Paterson and Sriramkrishnan Srinivasan. Onthe
relations between non-interactive key distribution, identity-
based encryption and trapdoor discrete log groups.Designs,
Codes and Cryptography, 52:219–241, 2009.

[18] Ryuichi Sakai, Kiyoshi Ohgishi, and Masao Kasahara.
Cryptosystems Based on Pairing. InThe 2000 Symposium
on Cryptography and Information Security (SCIS), volume
C20, 2000.

[19] Edlyn Teske. An Elliptic Curve Trapdoor System.Journal
of Cryptology, 19(1):115–133, 2006.

Parshuram Budhathoki
is a Faculty at the Department
of Mathematics of Salt Lake
Community College (SLCC).
He received his doctoral
degree from Florida Atlantic
University (FAU), USA.

Thomas Eisenbarth
is assistant professor at
the Department of Electrical
& Computer Engineering
at WPI. His research interests
are in applied cryptography
and physical attacks.
He received his doctoral
degree from Ruhr-Universität
Bochum, Germany.

Rainer Steinwandt
is professor and chair at the
Department of Mathematical
Sciences of Florida Atlantic
University (FAU) and
Director of FAU’s Center for
Cryptology and Information
Security. He received
his doctoral degree from
Univ. Karlsruhe, Germany.

Adriana Suárez Corona
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