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Abstract: The vast majority of traditional control strategies aim at the scenario that the propagation is driven by reaction processes
from nodes to all neighbours. A novel and effective control strategyfor restraining epidemic spreading in the situation that epidemic
pathways are defined and driven by traffic flows is proposed in this paper. It is performed by deleting edges in proper order according
to their weights. The advantages of our control strategy are of facility andpractical importance that such a strategy can better retain the
integrity of networks. Simulation results show that the control strategy aimingat deleting edges according to the product of the degrees
of two nodes of the edge is proved to be more effective. Moreover, weanalyze the curve of critical epidemic threshold on deleting more
and more edges and find that there is a sharp transition at the critical pointafter kicking out a certain fraction of edges.

Keywords: Control Strategy, Epidemic Threshold, Traffic Flow, SIS Model.

1 Introduction

Since the seminal work on the small-world phenomenon
by Watts and Strogatz [1] appeared in Nature in 1998 and
on scale-free networks by Barabási and Albert [2] one
year later in Science, the studies of complex networks
have attracted more and more interest in recent years. The
important issue is to understand how the network effects
influence dynamical processes taking place upon it. Many
models have been proposed to characterize the epidemics
spread among human, animal, and plant [3,4,5,6]. In
those most extensively studied models, an individual is
represented by a node which can be classified in three
states: susceptible (which will not infect others but may
be infected), infected (which is infective) and recovered
(which has recovered from the disease and has
immunity). On the basis of those former studies, how to
control the epidemic spreading is one of the hot topics of
recent research taking place in complex networks [7,8,9,
10,11,12].

A simple model often used to study the generic
features of epidemic spreading is the SIS model, which is
often used for these in which the infected nodes will
return to the susceptible state again and does not take into

account the possibility of nodes removal due to death or
acquired immunization, and thus nodes run stochastically
through the cycle susceptible→ infected→ susceptible.
It is generally used to study epidemics leading to endemic
states with a stationary average density of infected nodes.
Assume that a susceptible node will be infected by a
certain infected one during one time step with probability
ν , and the recovering rate of infected ones isδ . Then the
effective spreading rateλ is defined asλ = ν/δ for the
disease. Without lack of generality, we set can setδ = 1,
since it only affects at the definition of the time scale of
the disease propagation.

2 Models

In the previous epidemic spreading model which assumes
that each node’s infectivity is strictly equal to its degree,
each infected node will contact every neighbor once
within onetime step and infect them with a certain
probability. However, lots of networks are found that the
nodes only interact with some of their neighbors at
intervals. For instance, Internet connection at a given time
depends on the specific traffic and routing protocols. In
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this paper, we also investigate the propagation process
driven by traffic flows along the shortest path. The
traffic-driven epidemic spreading SIS model can be
described as follows: all the nodes can create packets with
addresses of destination, receive packets from other
nodes, and route packets to their destinations; at each
time step, an information packet is generated at every
node with probabilityβ , with randomly chosen sources
and destinations and all the packets are forwarded one
step toward their destinations through the shortest path;
each node has unbounded packet delivery capability for
simplicity which means congestion cannot arise in the
model; a packet, upon reaching its destination, is removed
from the system; a susceptible node has an effective
spreading rateλ of becoming infected every time it
receives a packet from an infected neighbor while the
recovering rate is fixed to 1 for simplicity.

In the familiar immunization strategies such as
random immunization [4] and targeted immunization [9],
they focus on how to immunize nodes to realize the
control of epidemic spreading on complex networks
which often isolate the related nodes from networks and
break the integrity. In this paper, we propose a new
control strategy which can maintain the integrity by
deleting some edges.

The edges have close relationship with the nodes they
linked. The degreeki of node i which has been widely
used to describe the importance of a node is usually
defined to be the total number of its links. However, it is
just a local measure of a node. Another important
measure that takes advantage of the global information of
a network is betweenness. The most widely used is that of
Freeman [13,14], called shortest-path betweenness of
nodei, which is defined as:

bsht(i) = ∑
s,t

σ(s, i, t)
σ(s, t)

(1)

whereσ(s, i, t) is the number of shortest paths between
nodess and t that pass through nodei andσ(s, t) is the
total number of shortest paths between nodes andt, and
the sum is over all pairss, t of all distinct nodes. In the
same way, to find which edges in a network are most
between other pairs of nodes, we generalize Freeman’s
betweenness centrality to edges and define the edge
betweenness of an edge linking nodesi and j,ei j, as the
number of shortest paths between pairs of nodes that run
along it.

Epidemic, however, more likely spreads around
randomly, infecting who it encounters. To address these
problems, Newman suggested a more sophisticated
betweenness measure, usually called random-walk flow
betweenness. The random-walk betweenness of a nodei
is equal to the number of times that a random walk
starting ats and ending att passes throughi along the
way, averaged over alls and t. In this paper, we use the

traditional random-walk betweenness introduced by
Newman as follows [15]:

brw(i) =
∑

s<t
Ii(st)

n(n−1)/2
(2)

We give our control strategies as follow: at first, we
defined the weight of the edge linking two nodesi and
j,wi j, in different way according to different control
strategies as shown in Table 1 which will not be changed;
then we sort the edges by their weights from large to
small to delete a fractionfe of the edges ranked first.
However, we should maintain the integrity of the network
which means that, if deleting an edge will cause some
nodes to be disconnected, we will not delete it, and go to
deal with the edge ranked next.

Table 1 The Weight of Edge in Different Control Strategies

Weight of Edge RBP DP SBP EB
wi j brw(i)∗brw( j) ki ∗ k j bsht(i)∗bsht( j) ei j

In a BA network withn nodes and BA parameterm,
there are totallyn ∗m edges. And there should be at least
n− 1 edges to maintain the integrity of the network. So
we can kick out about(n ∗ m − n + 1) ≈ n ∗ (m − 1) at
most, that is(n ∗ (m − 1))/(n ∗ m) = (m − 1)/m of the
total amount. In BA networks, the average node degree
< k >= 2∗m, so the fraction of edges we can kick out is
(m−1)/m = (< k >−2)/ < k >. After kicking out some
edges, there are fewer connections between the hub nodes
which are always super spreader, a larger effective
spreading rate is expected to make the epidemic become
endemic. But after deleting(< k > −2)/ < k > of the
total edges, the network become a treelike topology and a
smaller value of spreading rate can cause epidemic. So
there must be a critical point where a phase transition
occurs, if more edges are deleted, the effect of the control
strategy is less obvious.

3 Simulation Results and Analysis

It’s of first importance to obtain the critical epidemic
thresholdλc of networks where a phase transition occurs
from absorbing phase (healthy state) to active phase
(infected state). This critical thresholdλc can best reflect
the maximum capability of a certain network handling
epidemic spreading. If the value ofλ is above the critical
threshold,λ ≥ λc, the epidemic spreads and becomes
endemic. On the contrary, the epidemic will die out
gradually. We are interested in determining critical
thresholdλc in order to address which kind of control
strategy is more susceptible to phase transition and
therefore epidemic spreading. By using mean-field theory,
Pastor-Satorras and Vespignani figured out the epidemic
threshold of the traditional SIS dynamics model where
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Fig. 1 λc VS fe for different control strategies in the traditional
SIS model in the BA networks withn = 1000 nodes. a)m = 2, b)
m = 4.

epidemic spreads to all the neighbors, the critical
epidemic thresholdλc is given as follow [16]:

λc =
< k >
< k2 >

(3)

where k denotes the degree, with< · · · > indicating
average over all nodes.

While in the traffic-driven SIS model where the
epidemic pathways are defined and driven by traffic
flows, the critical epidemic thresholdλc is [17]:

λc =
< b >

< b2 > ∗β ∗n
(4)

whereβ is the packet generation rate,n is the total nodes
number, andb denotes the shortest-path betweenness of
a certain node, with< · · · > indicating average over all
nodes.

To find out which control strategy is more effective,
numerical simulations will be performed on the BA
network to get the critical epidemic thresholdλc. BA
networks withn = 1000 or 1500 nodes are generated and
the parameterm is different for comparison. Andfe is the
fraction of deleted edges of then ∗ (m− 1) edges which
can be deleted while maintain the integrity of the
network. It means that whenfe is up to 1, there are still
about (n−1) edges in the network.

Fig. 2 λc VS fe in the traffic-driven SIS model,n = 1000 and
m = 2. a)β = 1, b)β = 2.

Fig. 1 shows the critical threshold of different control
strategies in the traditional SIS model (In all simulations,
we generate 50 instances, and the result is the average of
the 50 instances). One can see clearly from Fig. 1 that
while edges are deleted continuously, the value of
spreading threshold is increasing gradually which means
deleting edges has great effect on restraining the epidemic
spreading. And the different definition of the weight of
edges has little effect on the control strategies.

While it changes to the other situation where the
epidemic pathways are defined by traffic-driven, different
curves of threshold are derived, as shown in Fig. 2. In
both Fig. 2 (a) and Fig. 2 (b), no matter how much the
packet generation rate is, the curves of epidemic threshold
present an inverse U shape which always goes up when
fe ≤0.5 and declines when more edges are deleted in all
control strategies. Especially, when 0< fe ≤ 0.1 of edges
are deleted, the value of epidemic threshold increases
rapidly. It shows that all control strategies are much more
efficient while kicking out a small fraction of edges with
large weight, whereas the efficiency will be lower when
more than half of edges which can be deleted are kicked
out. And when n ∗ (m − 1) edges are deleted, which
meansfe = 1 and the number of edges is almost equal to
the number of nodes, the network will be modified to a
treelike topology that only one shortest path between two
nodes. The epidemic can become endemic with a very
smaller spreading rate.
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Fig. 3 λc VS fe in the traffic-driven SIS model,n = 1000 and
m = 4. a)β = 1, b)β = 2.

Fig. 4 λc VS fe in the traffic-driven SIS model,n = 1500 and
β = 1. a)m = 2, b)m = 4.

Fig. 5 λc VS fe in the traffic-driven SIS model in the email
network,β = 1.

If a more thorough study is carried out on the epidemic
threshold of four strategies as shown in both Fig. 2 (a) and
Fig. 2 (b), we can discover that there is only some slight
difference between the four strategies. As a result, we can
choose the control strategy DP, where the weight of edge is
defined as the product of the degree of the node at the end
of the edge, as the best one for constraining the epidemic
spreading in complex networks. For one thing, to calculate
the degree of a certain node is using only local information
while the others need to know the topology of the whole
network; for another, it takes the least time to calculate
while the time complexity of calculating the shortest-path
betweenness of node is up toO(n3).

Comparing Fig. 2 (a) and Fig. 2 (b), we also notice
that while the packet generation rate is doubled, the
epidemic threshold is reduced to half which agree well
with formula (4). In traffic-driven epidemic spreading SIS
model, epidemics only spread through links which
transfer the packets, thus the number of nodes which can
spread epidemic is based on the paths at every time step.
At lower packet generation rate, there are only a few
packets traveling throughout the network and a majority
of nodes do not interact with others, so the epidemic
simply dies out. When the packet generation rate
increases, there are more links between nodes which
spread the epidemic to a larger fraction of nodes in the
network. So the epidemic spreads and becomes endemic
even it has a smaller spreading rate itself.

To further demonstrate this proposition, we changem
from 2 to 4. The results are shown in Fig. 3. All the curves
show a common property which is the same as shown in
the previous figures: the epidemic threshold increase along
with the fraction of deleting edges in traditional SIS model
while it has a sharp transition after deleting about half of
edges which can be deleted in traffic-driven SIS model.
And DP strategy is also proved more effective.

Then we check the validity of DP control strategy with
different parameters. The results are shown in Fig. 4 which
also presents the same feature.
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Finally we employ a real-world network to test our test
DP control strategy which is the E-mail network with 1133
nodes [18]. As shown in Fig. 5, the epidemic threshold is
enhanced by 38.5% while kicking out only 10% of edges.
It means our DP control strategy also makes effect in some
real-world network.

4 Conclusions

The research purpose of control strategy is to restrain
epidemic spreading to the greatest possible extent. Four
control strategies are proposed in this paper. By deleting
some edges with larger weight, simulations have
indicated that the critical epidemic threshold is enhanced
greatly which means the proposed strategies can
effectively control the epidemic. The strategy which
deletes the edges according to the product of the degree of
the nodes at the end of the edge is proved to be the most
feasible. And there is found a transition at the critical
point after kicking out about half of edges. Though our
control strategy may be less cost effective than the
traditional strategies, it can maintain the integrity of the
whole network which makes it is worthwhile in some
particular practical situations. Thus, our control strategy
may be of great significance for controlling the epidemic
spreading in real systems.
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