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Abstract: Vehicle routing problem(VRP) is important combinatorial optimization problems which have received considerable
attention in the last decades. The optimization of vehicle routing problem is a well-known research problem in the logistics distribution.
In order to overcome the prematurity of Ant Colony Algorithm (ACA) for logistics distribution routing optimization, a hybrid algorithm
combining improved ACA with Iterated Local Search (ILS) is proposed.The proposed algorithm adjusts the pheromone trail to balance
the convergence rate and diversification of solutions self-adaptively.The exponential entropy is used to control the path selection and
pheromone updating strategy. Combining with ILS is to avoid local best solutions and accelerate the search. Computational results
denote the efficiency of the proposed algorithm on some standard benchmark problems.
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1 Introduction

The optimization of Vehicle Routing Problem (VRP) in
the logistics distribution is a well-known research
problem. Nowadays, companies acknowledge the
importance of a better design and an efficient
management of their logistics distribution, for achieving
higher quality services at the lowest effort. VRP is a
well-known combinatorial optimization problem with
considerable economic significance. A typical VRP can
be described as the problem of designing routes from one
depot to a set of geographically scattered points, such as
cities, warehouses, customers with the least effort. VRP
has been studied extensively because of the interest in its
applications in logistic and supply-chains management.

Biological inspired computation is a field focusing on
the development of computational tools modeled
following the principles that exist in natural systems. The
results presented in recent publications show that
bio-inspired approaches are now highly competitive with
other state-of-the-art heuristics [1,2].

The Ant System (AS), introduced by Colorni, Dorigo
and Maniezzo [3], is a distributed meta-heuristic for hard
combinatorial optimization problems. It was first used on
solving the Traveling Salesman Problem (TSP). One of

the most efficient Ant Colony Optimization (ACO) based
implementations is based on Ant Colony System (ACS)
[4], which introduced a particular pheromone trail
updating procedure for intensifying the search in the
neighborhood of the best computed solution. Silvia
Mazzeo et al. [5] have improved Capacitated Vehicle
Routing Problem (CVRP) by means of an ACO
algorithm. Watcharasitthiwat & Wardkein [6] developed
an improved ACO for optimization of network topology.

Entropy comes from physics. It is used to describe
chaos and disorder. The bigger the entropy value is, the
more the confusion degree is. In the information theory,
Shannon defined the information entropy as the
probability of random event. A larger uncertainty of the
variables has more information entropy.

Iterated Local Search (ILS) [7] is a very simple and
powerful stochastic local search method that has proved
to be one of the best performing approximation
algorithms. Prins presented a hybrid metaheuristic
method for VRP [8]. The method extends the classical
ILS. The result shows that ILS is able to create efficient
and fast algorithms for the VRP.

In this paper, we propose an improved Ant Colony
Algorithm (ACA), named E2ACA (Exponential
Entropy-Based Ant Colony Algorithm), to overcome the
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problem of premature convergence of ACA for logistics
distribution routing optimization. The information
entropy is used to control the path selection and the
pheromone updating strategy. Self-adaptively adjustment
mechanism of pheromone adopted in our algorithm can
balance the speed of convergence and diversity of
solutions. Combining with ILS is to avoid local-best
solutions and accelerate the search.

The paper is organized as follows. In Section2
introduces the VRP and the solution construction
mechanism used by the ACA. Section3 presents the
entropy-based hybrid ACA. In Section4 we provide
computational results of E2ACA on a set of benchmark
problems. We conclude in Section5 with a brief summary
of the contributions of this paper.

2 Problem formulation

In this section, we will introduce VRP and apply ant
colony algorithm to the VRP.

2.1 Vehicle Routing Problem

Vehicle routing problem is a combinatorial optimization
and integer programming problem, which with a fleet of
vehicles aims at investigating how to service a number of
customers. It is a fundamental research problem in the
fields of logistics and transportation, and has attracted the
attention of a large number of researchers. The vehicle
routing problem was first introduced by Dantzig and
Ramser [9]. As an NP-hard problem, a number of
approximation techniques were proposed to solve it. In
the last 15 years, Meta-heuristic algorithms, such as Tabu
Search [10,11,12], Simulated annealing [13], Variable
Neighborhood Search [14], self adaptive local search [15]
and Greedy Randomized Adaptive Search Procedure [8,
16] are also applied efficiently in the VRP.

Recently, a number of nature inspired metaheuristic
algorithms have been applied for the VRP. They are
genetic algorithms [17,18,19], ant colony optimization
[20], particle swarm optimization [21].

The capacitated vehicle routing problem is the basic
version of the VRP. The name derives from the constraint
of having vehicles with limited capacity. The capacitated
vehicle routing problem is NP-hard, a CVRP is more
difficult to solve than a TSP because it contains one or
more TSP as subproblems.

The classic capacitated vehicle routing problem can
be described as follows:N customers geographically
dispersed in a planar region must be served from a unique
depot. Each customer asks for a quantity
qi(i = 1,2, · · · ,n) of goods.The transport cost from nodei
to nodej is ci j. m vehicles with a fixed capacityQ are
available to deliver the goods stored in the depot. Each
customer must be visited just once by only one vehicle.

The objective of the problem is minimizing the total cost
of all routes without violating the individual capacity of
each vehicle. The depot is denoted byi=0. The model can
be written as follows:

min
m
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The objective function (1) is minimizing the total
distance traveled. Constraint (2) assures the number of
vehicles originating from the depot is not more thanm.
Constraint (3) states that each of thek vehicles has to
leave and go back to the depot. Constraints (4) and (5)
assure that each customer is visited exactly once.
Constraint (6) is the capacity constraints.

2.2 Applying ant colony algorithm to the VRP

In order to solve the VRP, the artificial ants choose cities
to visit to construct routes, continuing until each customer
has been served. A new route will be started from the depot
when all remaining choices have been visited.

At each step, every antk computes a set of feasible
expansions to its current partial solution and
probabilistically selects one of these, according to a
probability specified distribution as follows. For antk the
probability pk

i j of visiting customerj after customeri, the
last visited customer, depends on the combination of two
values [22]:the attractivenessηi j of arc (i,j), and the
pheromone levelτi j of arc(i,j).

This heuristic uses a population ofm agents which
construct solutions step by step. The best solution are
rewarded when all the ants have constructed their tour.

Construction of vehicle routes. ACO goal is to find a
shortest tour. In ACAm ants build tours in parallel, where
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m is a parameter. Each ant is randomly assigned to a
starting node and build a solution (complete tour). A tour
is built node by node: each ant iteratively adds new nodes
until all nodes have been visited. When antk is located in
nodei, it chooses the next nodej probabilistically in the
set of feasible nodesNk

i (i.e., the set of nodes that still
have to be visited). The probabilistic rule used to
construct a tour is the following: with probabilityq0 a
node with the highest[τi j]

α [ηi j]
β , j ∈ Nk

i is chosen
(exploitation), while with probability(1− q0) the nodej
is chosen with a probability pi j proportional to
[τi j]

α [ηi j]
β , j ∈ Nk

i (exploration).
With Ω = {v j ∈V : v j is feasible to be visited}∪{v0},

city v j is selected to be visited after cityvi according to a
random-proportional rule [4] that can be stated as follows:

pi j =

{

[τi j ]
α ·[ηi j ]

β

∑h∈Ω [τi j ]α ·[ηi j ]β
if v j ∈ Ω

0 otherwise
(7)

This probability distribution is determined by the
parametersα andβ that exert the relative influence of the
trails and the visibility, respectively. For the TSP Dorigo
et al. [23] define the visibility as the reciprocal of the
distance. The same is done for the VRP in [24] where the
probability selected is then further extended by problem
specific information. There, the inclusion of savings and
capacity utilization both lead to better results. The latter is
relative costly in terms of computation time for it is
calculated in each step of an iteration.

Pheromone trail update: An ant iteratively
constructed a complete solution. After all ants have
generated their solutions, according to certain rules, the
most suitable solution is gotten. A solution can be
improved by applying a local search. In addition, ants are
allowed to deposit pheromone, taking into consideration
the quality of the solutions they have constructed.

Initially no information is contained in the pheromone
trail, meaning that all pheromone trails are equal to a
value. Since pheromone trails are updated by taking into
account the absolute value of the solution obtained, must
take a value that depends on the value of the solutions
being visited.

In this paper, we adopt the strategy that dynamically
adjusts pheromone trails by limiting the possible trail
values between some maximum and minimum limitations
[τmin,τmax]. The update of the pheromone trail is done in a
different way than those of the standard model where all
the ants update the pheromone trail. Indeed, this manner
of updating the pheromone trail results in a very slow
convergence of the algorithm [4]. For speeding-up the
convergence, we update the pheromone trail by taking
into account only the best solution. The update is made
according to the following equation:

τi j(t +1) = ρ f (k)τi j(t)+
m

∑
k=1

∆τk
i j (8)

where m is the number of ants;ρ is a coefficient
representing the trace’s persistence ((1−ρ) represents the
evaporation), andρ ∈ [0,1]. f (k) is the function which is
directly proportional to the numbers of improved solution
in iterations, such as,f (k) = k/c, (c is a constant);τk

i j is
the pheromone trail on route (i,j) constructed by thek-th
ant.

Constructive procedure is described briefly as follows.
Step 1. Read the input data;
Step 2.Initialize parameters and pheromone matrix;
Step 3. Construct a VRP subtour solution according to

Eq.(7);
Step 4. Put the chosen vertices in the tabu list of the

k-th;
Step 5. Repeat Step 3 Step 4 until every ant have visited

all vertices, i.e. each ant construct a tour;
Step 6. Select the best tour found solution so far.
Step 7. Update the pheromone matrix Eq.(8).
Step 8. Repeat from Step 3 to Step 7 until a

pre-specified stopping criterion is met.

3 Iterated local search and entropy-based
hybrid ACA

In this section, we present our hybrid algorithm E2ACA.
The approach applies local search algorithm to ACA
iteratively. The information entropy is used to control the
path selection and the pheromone updating strategy.

3.1 Iterated local search

The iterated local search meta-heuristic works as follows:
one builds a sequence of solutions iteratively generated
by the heuristic, leading to far better solutions than one
used repeated random trials of that heuristic. In order to
apply an ILS algorithm, three basic procedures have to be
specified. Given the current solutions0, these is a
procedure Perturbation, which perturbs the current
solutions leading to the same intermediate solutions′, a
procedureLocalSearch that takess′ to a local optimums′′,
and an AcceptanceCriterion that decides from which
solution the next perturbation step is applied [25]. Each
solution established in the former stages0 is taken to a
local optimum. Then, a local search procedure is applied
iteratively from a starting solution obtained by a
perturbation of the current search point. The iterated local
search procedure is described briefly as follows.

Step 1 (Initialization). Generate some initial solution
s0.

Step 2 (Local search). Lets the best solution:s =
LocalSearch(s0).

Step 3 (Perturbation). Lets′ the intermediate solution
after Perturbation:s′ = Perturbation(s,history), where
history is previous solution set.
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Step 4 (Local search). Run local search ons′: s′′=
LocalSearch(s′).

Step 5 (AcceptanceCriterion). AcceptanceCriterion
decides from which solution the next perturbation step is
applied:s = AcceptanceCriterion(s,s′′,history).

Step 6. Repeat from Step 3 to Step 5 until termination
condition met.

Step 7. Outputs, the best local solution ever found.
In the ant colony algorithms, the path selection is

related to the pheromone of each edge, where uncertainty
exists. So we introduce the entropy to measure the
uncertainty of pheromone in each edge, and use
information entropy to adjust the path chosen strategies
and pheromone updated strategy. Specifically, for every
i-th customer,i ∈ [1,m] of an ant during the process of
constructing a solution we computed the entropy

S(t) =− ∑
j∈D

Pi jlogPi j (9)

wherepi j is defined in Eq. (7).
In order to choose the path we can get the information

entropy value and determine the degree of certainty. This
definition is a combination of its own characteristics of
the ant colony algorithm, which combined a sequence of
arithmetic with information entropy, to regulate the
algorithm adaptively.

Exponential entropy overcame the deficiency of the
logarithmic information entropy through improving
undefined value and zero problems of logarithmic
entropy. In addition, because logarithmic computational
speed is slow, exponentiation computation can be greatly
reduce computational time.

In this paper, we defined information quantity of an
eventi with probability pi as Eq. (10):

△I(pi) = e(1−pi) (10)

exponential entropy is Eq. (11):

EH = E(△I) =
L−1

∑
i=0

pie
(1−pi) (11)

Then, we introduceHlocal(t) (Eq. (12)) and Hopt(t)
(Eq. (13)) denote the proportion of ants which were
permitted to select routing and the probability of
maintaining the optimal routing, respectively. In the begin
of algorithm, according to the change in the entropy
value, we can ensure smallerHlocal(t) value to search for
the solution space as possible. In the later period, the
larger Hlocal(t) value can enhance Local optimization
capability to avoid premature stagnation. Additionally,
largerHopt(t) value contributes to find the optimal path as
much as possible in the initial operation. In the later
period, Hopt(t) value decreased slowly in order to
increase random operations and avoid premature
phenomenon.

Hlocal(t) =
Smax −S(t)√

λSmax
(12)

Hopt(t) = 1− Smax −S(t)√
ωSmax

(13)

whereλ ∈ [0.8,1.2], ω ∈ [3.8,4.2] are constants.
The whole algorithm process is repeated until a

stopping criterion is met. In the final cycle, the best ever
solution found is submitted to 50 iterations of the ACA,
for a final solution. For each isolated tour, the later stage
is reduced to a TSP,and ILS can balance global
exploration (distribution of consumers in tours,
satisfaction of constraints) and local exploitation
(minimizing tours). Gambardella et al.[26] have
developed a multiple ant colony system for a more
complex version of the VRPs. Their approach used two
ant colonies to optimize a multiple objective function: the
first colony minimizes the number of vehicles while the
second colony minimizes the traveled distances.
However, our work differs in the second stage where we
apply iterated local search to minimize tours.

4 Experimental results

We now evaluate the performance of E2ACA in Java on a
Pentium IV, 4GMB of RAM, 2.6 GHz processor. The
algorithm was tested on two sets of benchmark problems.
The 14 benchmark problems proposed by Christofides et
al. [27] and the 20 large scale vehicle routing problems
proposed by Golden et al. [28]. These include the best
known solutions to each problem. The first benchmark
problem contains between 51 and 200 nodes including the
depot while second contains between 200 and 483 nodes
including the depot. For each instance of the datasets, the
number of customers is given by the first number on the
instance name. The main difference between these sets of
problems is their tightness (the ratio between demand and
capacity) and the location of customers.

we used n = 10 artificial ants and set
α = 1,q0 = 0.9,β = 2 and ρ = 0.1. For all problems
maximum iteration times are 2∗ n. The quality of the
generated solutions is given in terms of their relative
deviation from the best known solutions (BKS), that is
computed as
dev = (costE2ACA − costBKS)/costBKS × 100%, where
costE2ACA denotes the cost of the solution found by
E2ACA, and costBKS is the cost of the best known
solution.

The results are reported in the Table1 and Table2,
where the number of nodes of each instance is presented
in the left column. The six columns of the right side
present (i) the best solutions (BKS) that were known
when our research started, (ii) the results of the best run
of the E2ACA algorithm (best), (iii) the average results of
the 50 runs of the E2ACA algorithm (average), (iv)the
quality of the best run of the proposed algorithm (devbest),
(v)the average quality of the 50 runs of the algorithm
(devavg) and (vi) the CPU time (in minute) of the best run
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Table 1: Results of E2ACA in 14 benchmark Christofides instances

Instance BKS Best Average devavg devbest CPUbest

vrpnc1 524.61 [29] 524.61 526.34 0.00 0.33 0.03
vrpnc2 835.26 [29] 837.26 839.38 0.24 0.49 0.12
vrpnc3 826.14 [29] 826.14 828.46 0.00 0.28 0.13
vrpnc4 1028.42 [29] 1031.34 1036.43 0.28 0.78 0.38
vrpnc5 1291.29 [29] 1316.45 1314.26 1.95 1.78 1.22
vrpnc6 555.43 [29] 555.43 557.23 0.00 0.32 0.03
vrpnc7 909.68 [29] 911.44 913.65 0.19 0.44 0.17
vrpnc8 865.94 [29] 865.94 867.25 0.00 0.15 0.53
vrpnc9 1162.55 [29] 1173.86 1176.86 0.97 1.23 0.86
vrpnc10 1395.85 [29] 1414.12 1418.61 1.31 1.63 1.81
vrpnc11 1042.11 [29] 1045.55 1049.19 0.33 0.68 0.16
vrpnc12 819.56 [29] 819.56 821.45 0.00 0.23 0.11
vrpnc13 1541.14 [29] 1547.55 1551.34 0.42 0.66 0.23
vrpnc14 866.37 [29] 867.98 871.32 0.19 0.57 0.19

Table 2: Results of E2ACA in 20 benchmark Golden instances

Instances BKS Best Average devavg devbest CPUbest

Kelly01 5627.54 [2] 5627.43 5675.84 0.80 0.86 0.93
Kelly02 8444.5 [8] 8470.52 8477.15 0.31 0.39 1.41
Kelly03 11036.22 [30] 11109.72 11118.25 0.67 0.74 3.95
Kelly04 13624.52 [19] 13704.43 13712.61 0.59 0.65 5.73
Kelly05 6460.98 [31] 6472.26 6481.55 0.17 0.32 0.76
Kelly06 8412.88 [19] 8417.48 8425.76 0.05 0.15 0.74
Kelly07 10181.75 [32] 10221.97 10243.66 0.40 0.61 1.14
Kelly08 11643.9 [8] 11741.48 11763.21 0.84 1.02 3.91
Kelly09 583.39 [2] 583.39 583.39 0.00 0.00 0.44
Kelly10 741.56 [2] 745.78 747.26 0.57 0.77 1.67
Kelly11 918.45 [2] 922.41 926.75 0.43 0.90 1.94
Kelly12 1107.19 [2] 1117.09 1122.35 0.89 1.37 5.43
Kelly13 859.11 [2] 862.33 867.68 0.37 1.00 1.82
Kelly14 1081.31 [2] 1089.44 1097.43 0.75 1.49 1.23
Kelly15 1345.23 [2] 1349.33 1356.56 0.30 0.84 4.98
Kelly16 1622.69 [2] 1631.24 1636.78 0.53 0.87 6.18
Kelly17 707.79 [2] 707.79 708.36 0.00 0.08 1.04
Kelly18 997.52 [33] 1003.27 1008.32 0.58 1.08 1.69
Kelly19 1366.86 [2] 1379.98 1381.67 0.96 1.08 2.78
Kelly20 1820.09 [2] 1830.33 1837.78 0.56 0.97 3.15

of the proposed algorithm (CPUbest) are presented,
respectively.

By exponential entropy, we observe that the entropy
values are larger in the middle of the construction process
of a solution than at the end or at the beginning of the
process. A reason for this is that selection in the middle
has a larger set of candidate customers, while selection at
the beginning and at the end has similar entropy values.
Also in this case, the entropy values are higher in later
generations than in former generations. All entropy values
are below 0.3 for the first 50 selections after generation
1000. This indicates an advantage of the combined

evaluation method - it prevents the algorithm to converge
too early.

In Table 2 the algorithm has found the best known
solution in two of them (In Table1 the number is five).
For the rest instances, the averages obtained are close to
the values of the best solutions, the quality is between
0.05% and 0.96% (In Table1 the quality is between
0.19% and 1.95%) and the average quality of the best run
for the twenty instances is 0.48% (In Table1 the value is
0.42%).

In Tables, the computation time need (in minutes) for
finding the best solution by E2ACA is presented. The
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problems are more complicated and the computational
time is increased but is still less than 7 minutes for all
instances. These results show the efficiency of our
algorithm. In ten instances of both sets out of all 50 runs,
the algorithm found the best known solution. The
solutions found were very close to the best solutions even
if the best solution was not found in all runs. It should be
noted that we present a very fast and effective algorithm
and the choice of the parameters was performed in such a
way in order the algorithm to combine a fast convergence
results.

5 Conclusion

Basic ant colony algorithm has some defects, such as
slow convergence speed, easy to get stagnate, and low
ability of full search. To overcome these problems, this
paper proposes a hybrid algorithm which combines
improved ant colony algorithm with one of the best local
search algorithms, the iterated local search algorithm, for
the merits of the two. By introducing the concept of
exponential entropy, we use the entropy represents the
uncertainty of the routing selection process to control the
probability of routing selection and local random
disturbance. Combined with the local optimization
method, the second optimization for the solution is
achieved. It overcomes the prematurity of the basic ant
colony algorithm effectively making use of the
pheromone updating strategy adaptively. Computational
results show the efficiency of the proposed algorithm with
respect to some standard benchmark problems.
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