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Abstract: Vehicle routing problem(VRP) is important combinatorial optimization protdewhich have received considerable
attention in the last decades. The optimization of vehicle routing problem if-&mesvn research problem in the logistics distribution.
In order to overcome the prematurity of Ant Colony Algorithm (ACA) fogistics distribution routing optimization, a hybrid algorithm
combining improved ACA with Iterated Local Search (ILS) is propo3éek proposed algorithm adjusts the pheromone trail to balance
the convergence rate and diversification of solutions self-adaptiViet/exponential entropy is used to control the path selection and
pheromone updating strategy. Combining with ILS is to avoid local bestisofiand accelerate the search. Computational results
denote the efficiency of the proposed algorithm on some standardrbaricproblems.

Keywords: Ant Colony System, Information Entropy, Iterated Local Search jdtars vehicle Routing

1 Introduction the most efficient Ant Colony Optimization (ACO) based

implementations is based on Ant Colony System (ACS)
The optimization of Vehicle Routing Problem (VRP) in [4], which introduced a particular pheromone trail
the logistics distribution is a well-known research updating procedure for intensifying the search in the
problem. Nowadays, companies acknowledge theneighborhood of the best computed solution. Silvia
importance of a better design and an efficient Mazzeo et al. §] have improved Capacitated Vehicle
management of their logistics distribution, for achieving Routing Problem (CVRP) by means of an ACO
higher quality services at the lowest effort. VRP is a algorithm. Watcharasitthiwat & Wardkeir6] developed
well-known combinatorial optimization problem with an improved ACO for optimization of network topology.
considerable economic significance. A typical VRP can  Entropy comes from physics. It is used to describe
be described as the problem of designing routes from onehaos and disorder. The bigger the entropy value is, the
depot to a set of geographically scattered points, such asore the confusion degree is. In the information theory,
cities, warehouses, customers with the least effort. VRPShannon defined the information entropy as the
has been studied extensively because of the interest in ifgrobability of random event. A larger uncertainty of the
applications in logistic and supply-chains management. variables has more information entropy.

Biological inspired computation is a field focusing on Iterated Local Search (ILS)] is a very simple and
the development of computational tools modeledpowerful stochastic local search method that has proved
following the principles that exist in natural systems. Theto be one of the best performing approximation
results presented in recent publications show thatlgorithms. Prins presented a hybrid metaheuristic
bio-inspired approaches are now highly competitive withmethod for VRP §]. The method extends the classical
other state-of-the-art heuristics, p]. ILS. The result shows that ILS is able to create efficient

The Ant System (AS), introduced by Colorni, Dorigo and fast algorithms for the VRP.
and Maniezzo3], is a distributed meta-heuristic for hard In this paper, we propose an improved Ant Colony
combinatorial optimization problems. It was first used on Algorithm  (ACA), named E2ACA (Exponential
solving the Traveling Salesman Problem (TSP). One ofEntropy-Based Ant Colony Algorithm), to overcome the
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problem of premature convergence of ACA for logistics The objective of the problem is minimizing the total cost
distribution routing optimization. The information of all routes without violating the individual capacity of
entropy is used to control the path selection and theeach vehicle. The depot is denotediby. The model can
pheromone updating strategy. Self-adaptively adjustmenbe written as follows:
mechanism of pheromone adopted in our algorithm can m on on
balance the speed of convergence and diversity of min z Cin,!(,- (1)
solutions. Combining with ILS is to avoid local-best kzljzg#“;‘)
solutions and accelerate the search.

The paper is organized as follows. In Secti@n
introduces the VRP and the solution construction K 1 if vehiclek goes fromi to ]
mechanism used by the ACA. Sectiéh presents the 0 otherwise
entropy-based hybrid ACA. In SectioA we provide
computational results of E2ACA on a set of benchmark Do .
problems. We conclude in Secti&with a brief summary st.y Y xj<m =0 @)

of the contributions of this paper. k=1j=1
= K k
. <= X5 <1 i=0ke{1,2,---,m 3
2 Problem formulation J;X” ,Zl = { JEC)
In this section, we will introduce VRP and apply ant AL .
colony algorithm to the VRP. Y ox=1 0 ief2.n) (4)
k=1]=0,)#i
m

n
k o .
2.1 Vehicle Routing Problem > Xj=1 je{12--.n} (5)

Vehicle routing problem is a combinatorial optimization N N

and integer programming problem, which with a fleet of d Z Xik' <Q je{12---,m} (6)

vehicles aims at investigating how to service a number of i; =674 =

customers. It is a fundamental research problem in the

fields of logistics and transportation, and has attracted th  The objective function X) is minimizing the total

attention of a large number of researchers. The vehiclalistance traveled. Constrain2)(assures the number of

routing problem was first introduced by Dantzig and vehicles originating from the depot is not more than

Ramser 9]. As an NP-hard problem, a number of Constraint B) states that each of thie vehicles has to

approximation techniques were proposed to solve it. Inleave and go back to the depot. Constraidsand 6)

the last 15 years, Meta-heuristic algorithms, such as Tabassure that each customer is visited exactly once.

Search 10,11,12], Simulated annealing1f], Variable  Constraint ) is the capacity constraints.

Neighborhood Searciifl], self adaptive local searcif]

and Greedy Randomized Adaptive Search Procedjre |

16] are also applied efficiently in the VRP. 2.2 Applying ant colony algorithm to the VRP
Recently, a number of nature inspired metaheuristic

algorithms have been applied for the VRP. They areln order to solve the VRP, the artificial ants choose cities

genetic algorithms 1[7,18,19], ant colony optimization  to visit to construct routes, continuing until each custome

[20], particle swarm optimizatior2fl]. has been served. A new route will be started from the depot
The capacitated vehicle routing problem is the basicwhen all remaining choices have been visited.

version of the VRP. The name derives from the constraint At each step, every ark computes a set of feasible

of having vehicles with limited capacity. The capacitated expansions to its current partial solution and

vehicle routing problem is NP-hard, a CVRP is more probabilistically selects one of these, according to a

difficult to solve than a TSP because it contains one ormprobability specified distribution as follows. For dathe

more TSP as subproblems. probability p}‘j of visiting customejj after customet, the
The classic capacitated vehicle routing problem canlast visited customer, depends on the combination of two

be described as followsN customers geographically values P2):ithe attractivenessy;; of arc (i,j), and the

dispersed in a planar region must be served from a uniqugheromone levet;; of arc(i,j).

depot. Each customer asks for a quantity This heuristic uses a population of agents which

gi(i=1,2,---,n) of goods.The transport cost from node construct solutions step by step. The best solution are

to nodej is ¢jj. m vehicles with a fixed capacit® are  rewarded when all the ants have constructed their tour.

available to deliver the goods stored in the depot. Each  Construction of vehicle routes. ACO goal is to find a

customer must be visited just once by only one vehicle.shortest tour. In ACAn ants build tours in parallel, where

© 2014 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.8, No. 6, 3167-3173 (2014)www.naturalspublishing.com/Journals.asp NS 2 3169

16

m is a parameter. Each ant is randomly assigned to a wherem is the number of antsp is a coefficient
starting node and build a solution (complete tour). A tour representing the trace’s persistente« p) represents the
is built node by node: each ant iteratively adds new node®vaporation), an@ € [0,1]. f(k) is the function which is
until all nodes have been visited. When &ri$ located in  directly proportional to the numbers of improved solution
nodei, it chooses the next nodeprobabilistically in the in iterations, such asf(k) = k/c, (c is a constant)ri"j is
set of feasible nodebl(i.e., the set of nodes that still the pheromone trail on route (i,j) constructed by Kath
have to be visited). The probabilistic rule used to ant.

construct a tour is the following: with probabilitgp a Constructive procedure is described briefly as follows.
node with the highes{r;|?[nij]?, j € NK is chosen Sep 1. Read the input data;
(exploitation), while with probability1 — qp) the nodej Sep 2.Initialize parameters and pheromone matrix;
is chosen with a probability pi; proportional to Sep 3. Construct a VRP subtour solution according to
[1,;]9[mij]P, j € NX (exploration). Eq.(7);

With Q = {v; €V :v; is feasible to be visitedJ {vo}, Step 4. Put the chosen vertices in the tabu list of the
city vj is selected to be visited after city according toa  k-th;
random-proportional rule[4] that can be stated as follows: Sep 5. Repeat Step 3 Step 4 until every ant have visited

all vertices, i.e. each ant construct a tour;
[5]% (i 1P fve o Sep 6. Select the best tour found solution so far.
pij = { Shealmj)@- i € (7 Sep 7. Update the pheromone matrix E8)(
0 otherwise Sep 8. Repeat from Step 3 to Step 7 untl a

pre-specified stopping criterion is met.
This probability distribution is determined by the
parametersr andf that exert the relative influence of the
trails and the visibility, respectively. For the TSP Dorigo
et al. R3] define the visibility as the reciprocal of the 3 lterated local search and entropy-based
distance. The same is done for the VRP2d][where the ~ hybrid ACA
probability selected is then further extended by problem
specific information. There, the inclusion of savings andIn this section, we present our hybrid algorithm E2ACA.
capacity utilization both lead to better results. The lage The approach applies local search algorithm to ACA
relative costly in terms of computation time for it is iteratively. The information entropy is used to control the
calculated in each step of an iteration. path selection and the pheromone updating strategy.
Pheromone trail update: An ant iteratively
constructed a complete solution. After all ants have
generated their solutions, according to certain rules, the3 1 |terated local search
most suitable solution is gotten. A solution can be

;ﬂggfgscﬂob)égg&lﬁ'%%er:gnseei:k%énigg)dgf:s'iggit?gﬁhe iter_ated local search meta-h_euris_tic W(_)rks as follows:
the quality of the solutions they,have constructed one builds a sequence of solutions |terat|yely generated
I : o ) : ' by the heuristic, leading to far better solutions than one
.Inltlally no information is contained n the pheromone ;50 q repeated random trials of that heuristic. In order to
trail, meaning that all pheromone trails are equal to &y, an |1 S algorithm, three basic procedures have to be
value. Since pheromone trails are updated by taking 'ntqspecified. Given the current solutios, these is a
account the absolute value of the solution obtained, musf ., aqure Perturbation. which pertur,bs the current
take a value that depends on the value of the SOIUtiongolutions leading to the same intermediate solutgna
being visited. ~ procedurd_ocal Search that takess' to a local optimuns”,
In this paper, we adopt the strategy that dynamicallyang an AcceptanceCriterion that decides from which
adjusts pheromone trails by limiting the possible trail 5o\ tion the next perturbation step is applieXb][ Each
values between some maximum and minimum limitationsgg| tion established in the former staggeis taken to a

[Tnin, Tmax]. The update of the pheromone trail is done in a4¢a optimum. Then, a local search procedure is applied
different way than those of the standard model where a”iteratively from a starting solution obtained by a
the ants update the pheromone trail. Indeed, this mann&ertyrbation of the current search point. The iteratediloca
of updating the pheromone trail results in a very slow gearch procedure is described briefly as follows.

convergence of the algorithmi]f For speeding-up the Sep 1 (Initialization). Generate some initial solution
convergence, we update the pheromone trail by takin

into account only the best solution. The update is made Sep 2 (Local search). Les the best solutions =
according to the following equation: LocalSearchg). '

Sep 3 (Perturbation). Les' the intermediate solution
after Perturbation:s = Perturbation(s,history), where

m
. _ iy «
Ti(t+1) =p i) + k;A fij (8) history is previous solution set.
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Sep 4 (Local search). Run local search sh s'=
LocalSearchy). . Smx—St)
Sep 5 (AcceptanceCriterion). AcceptanceCriterion v/ (WSmax
decides from which solution the next perturbation step is
applied:s = AcceptanceCriterion(s, history). whereA € [0.8,1.2], w € [3.8,4.2] are constants.

Sep 6. Repeat from Step 3 to Step 5 until termination The Wh.OIG. algonthm process IS repeated until a
condition met. stopping criterion is met. In the final cycle, the best ever

Sep 7. Outputs, the best local solution ever found solution found is submitted to 50 iterations of the ACA,
X ' X for a final solution. For each isolated tour, the later stage

In the ant colony algorithms, the path selection is.
related to the pheromone of each edge, where uncertaint reduped to a TS_P,and ILS can balance global
xploration  (distribution of consumers in tours,

exists. So we introduce the entropy to measure th . . . "
by atisfaction of constraints) and local exploitation

uncertainty of pheromone in each edge, and use® ™ “- i Gambardell C a8 h
information entropy to adjust the path chosen strategieém'mm'Zlng ours). ambardeila € f] have
eveloped a multiple ant colony system for a more

and pheromone updated strategy. Specifically, for ever . .
i-th cFiJstomer,i c [1ij] of an antg)éurilgg the p?/ocess of )gomplex version of the VRPs. Their approach used two

constructing a solution we computed the entropy ant colonies to optimize a multiple objective function: the
first colony minimizes the number of vehicles while the

St)=— S PjlogR; 9) second colony minimizes the traveled distances.
jZD R However, our work differs in the second stage where we

wherepi; is defined in Eq.7). apply iterated local search to minimize tours.

In order to choose the path we can get the information
entropy value and determine the degree of certainty. This .
definition is a combination of its own characteristics of 4 EXperimental results

the ant colony algorithm, which combined a sequence of _
arithmetic with information entropy, to regulate the e now evaluate the performance of E2ACA in Java on a

algorithm adaptively. Pentium 1V, 4GMB of RAM, 2.6 GHz processor. The
Exponential entropy overcame the deficiency of thealgorithm was tested on two sets of benchmark problems.
logarithmic information entropy through improving The 14 benchmark problems proposed by Christofides et
undefined value and zero problems of logarithmical- [27] and the 20 large scale vehicle routing problems
entropy. In addition, because logarithmic computationalProposed by Golden et al2§. These include the best
speed is slow, exponentiation computation can be greatljnown solutions to each problem. The first benchmark

reduce computational time. problem contains between 51 and 200 nodes including the

In this paper, we defined information quantity of an depot while second contains between 200 and 483 nodes

eventi with probability p; as Eq. (0): including the depot. For each instance of the datasets, the
number of customers is given by the first number on the

Al (pi) = ellP) (10) instance name. The main difference between these sets of

problems is their tightness (the ratio between demand and

exponential entropy is EQLY): capacity) and the location of customers.

L_1 we used n = 10 artificial ants and set
En =E(Al) = Z) piell—p) (11) o =10qo =093 =2 andp = 0.1. For all problems
i= maximum iteration times are 2n. The quality of the

Then, we introduceH|oca (t) (EQ. (12) and Hop(t) gen.erated solutions is given in terms of their relatiye
(Eq. (13)) denote the proportion of ants which were deviation from the best known solutions (BKS), that is
permitted to select routing and the probability of computed as
maintaining the optimal routing, respectively. In the lregi dev = (Costeaaca — COstaks)/costeks x 100%, where
of algorithm, according to the change in the entropyCOSie2aca denotes the cost of the solution found by
value, we can ensure smalldc (t) value to search for E2ACA, and costeks is the cost of the best known
the solution space as possible. In the later period, theéolution. _
larger Hiocal (t) value can enhance Local optimization ~ The results are reported in the Tatileand Table2,
capability to avoid premature stagnation. Additionally, Where the number of nodes of each instance is presented
largerHop () value contributes to find the optimal path as in the left column. The six columns of the right side
much as possible in the initial operation. In the later Present (i) the best solutions (BKS) that were known
period, Hopt(t) value decreased slowly in order to when our research started, (ii) the results of the best run

increase random operations and avoid prematur@®f the E2ACA algorithm (best), (iii) the average results of
phenomenon. the 50 runs of the E2ACA algorithm (average), (iv)the

quality of the best run of the proposed algorithtieveq ),
H ) — Shax — S(t) 12 (V)the average quality of the 50 runs of the algorithm
local () = VA Srex 12) (devayg) and (vi) the CPU time (in minute) of the best run
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Table 1: Results of E2ACA in 14 benchmark Christofides instances

Instance BKS Best Average devayg devpes CPUpeg
vrpncl 524.6129 524.61 526.34 0.00 0.33 0.03
vrpnc2 835.2629| 837.26 839.38 0.24 0.49 0.12
vrpnc3 826.1429 826.14 828.46 0.00 0.28 0.13
vrpnc4 1028.4229] 1031.34 1036.43 0.28 0.78 0.38
vrpncs 1291.2929] 1316.45 1314.26 1.95 1.78 1.22
vrpnc6 555.4329] 555.43 557.23 0.00 0.32 0.03
vrpnc7 909.6829] 911.44 913.65 0.19 0.44 0.17
vrpnc8 865.9429] 865.94 867.25 0.00 0.15 0.53
vrpnc9 1162.5529] 1173.86 1176.86 0.97 1.23 0.86
vrpncl0 1395.8579] 1414.12 1418.61 1.31 1.63 1.81
vrpncll 1042.1179 1045.55 1049.19 0.33 0.68 0.16
vrpncl2 819.5679] 819.56 821.45 0.00 0.23 0.11
vrpncl3 1541.1479 1547.55 1551.34 0.42 0.66 0.23
vrpncl4d 866.3779] 867.98 871.32 0.19 0.57 0.19

Table 2: Results of E2ACA in 20 benchmark Golden instances

Instances BKS Best Average  devayg deVpeg CPUpeg

Kelly01 5627.54 9] 5627.43 5675.84 0.80 0.86 0.93
Kelly02 84445 8] 8470.52 8477.15 0.31 0.39 1.41
Kelly03 11036.22 30| 11109.72 11118.25 0.67 0.74 3.95
Kelly0o4 13624.5219 13704.43 13712.61 0.59 0.65 5.73
Kelly05 6460.98 81] 6472.26 6481.55 0.17 0.32 0.76
Kelly06 8412.8819| 8417.48 8425.76 0.05 0.15 0.74
Kelly07 10181.7532 10221.97 10243.66 0.40 0.61 1.14
Kelly08 11643.9 8] 11741.48 11763.21 0.84 1.02 3.91
Kelly09 583.39 P] 583.39 583.39 0.00 0.00 0.44

Kelly10 741.56 P] 745.78 747.26 0.57 0.77 1.67
Kelly11 918.45 P 922.41 926.75 0.43 0.90 1.94
Kelly12 1107.192] 1117.09 1122.35 0.89 1.37 5.43
Kelly13 859.11P] 862.33 867.68 0.37 1.00 1.82
Kellyl4 1081.31 2] 1089.44 1097.43 0.75 1.49 1.23
Kellyl5 1345.23 2] 1349.33 1356.56 0.30 0.84 4.98
Kelly16 1622.69 2] 1631.24 1636.78 0.53 0.87 6.18
Kelly17 707.79 ] 707.79 708.36 0.00 0.08 1.04

Kelly18 997.52 B3] 1003.27 1008.32 0.58 1.08 1.69
Kelly19 1366.86 2] 1379.98 1381.67 0.96 1.08 2.78
Kelly20 1820.09 2] 1830.33 1837.78 0.56 0.97 3.15

of the proposed algorithmCPUuy) are presented, evaluation method - it prevents the algorithm to converge
respectively. too early.

By exponential entropy, we observe that the entropy !N Table 2 the algorithm has found the best known
values are larger in the middle of the construction proces$0!ution in two of them (In Tabld the number is five).
of a solution than at the end or at the beginning of the' °f the rest instances, the averages obtalr_led_ are close to
process. A reason for this is that selection in the middlefn® Values of the best solutions, the quality is between
has a larger set of candidate customers, while selection .05% and 0.96% (In Tabld the quallty is between
the beginning and at the end has similar entropy valuesd:19% and 1.95%) and the average quality of the best run
Also in this case, the entropy values are higher in laterfOr the twenty instances is 0.48% (In TaHi¢he value is
generations than in former generations. All entropy value A2%).
are below 0.3 for the first 50 selections after generation In Tables, the computation time need (in minutes) for
1000. This indicates an advantage of the combinedinding the best solution by E2ACA is presented. The
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problems are more complicated and the computational [7] O. Martin, S.W. Otto, & E.W. Felten. Large-Step Markov
time is increased but is still less than 7 minutes for all Chains for the Traveling Salesman Problem. Complex
instances. These results show the efficiency of our  Systemsb, 299-326 (1991).

algorithm. In ten instances of both sets out of all 50 runs, [8] Prins, C. A GRASPx evolutionary local search hybrid
the algorithm found the best known solution. The for the vehicle routing problem. In F. B. Pereira & J.
solutions found were very close to the best solutions even ~ Tavares (Eds.). Bio-inspired algorithms for the vehicle
if the best solution was not found in all runs. It should be ~ routing problem, SCI, Berlin, Heideberg: Spring#8], 35-
noted that we present a very fast and effective algorithm 53 (2008). . .
and the choice of the parameters was performed in such g% Dantzig, G. B., & Ramser, J. H. The truck dispatching

. : . roblem. Management Scien&e ,80-91 (1959).
way I|n order the algorithm to combine a fast convergence[lo] Earbarosoglu % & Ozgurﬁé A tab(u e zirch algorithm
results. o P

for the vehicle routing problem.Computers and Operations
Research26, 255-270 (1999).
) [11] Cordeau, J. F., Gendreau, M., Laporte, G., Potvin, J. Y., &
5 Conclusion Semet, F. A guide to vehicle routing heuristics. Journal of
the Operational Research Sociég$, 512-522 (2002).
Basic ant colony algorithm has some defects, such a2l Toth, P., & Vigo, D. The granular tabu search (and its
slow convergence speed, easy to get stagnate, and low application to the 'vehlcle routing problem). INFORMS
ability of full search. To overcome these problems, this __ Journalon Computings, 333-348 (2003).
paper proposes a hybrid algorithm which combines!13]Osman, I. H. Metastrategy simulated annealing and tabu
improved ant colony aigorithm with one of the best local search algorlthm_s for combinatorial optimization problems.
search algorithms, the iterated local search algorithm, fo [14] éﬂgﬂlsg (I)_lzzr:gor;ls lf(eszalrja;in,;zi-% 1”(81;?221' variable
g;eporrr‘]lz:ll’:;ﬂO(fanttr;gp;(/w?/\./eBL)J/s:anttrr(])guecll?r%;;ere%?gggﬁ;[s Otfhe neighborhood descent algorithm for the capacitated vehicle

. : . routing problem. Expert Systems with Applicatiory,
uncertainty of the routing selection process to control the  1650.1627 (2010).

probability of routing selection and local random [15) Alabas-Uslu, C., & Dengiz, B. A self-adaptive local
disturbance. Combined with the local optimization search algorithm for the classical vehicle routing

method, the second optimization for the solution is  problem. Expert Systems with Applications. doi: 10.1016/

achieved. It overcomes the prematurity of the basic ant  j.eswa.2011.01.116.

colony algorithm effectively making use of the [16] Yannis Marinakis. Multiple Phase Neighborhood

pheromone updating strategy adaptively. Computational  Search-GRASP for the Capacitated Vehicle Routing

results show the efficiency of the proposed algorithm with Problem. Expert Systems with Applications. doi:

respect to some standard benchmark problems. 10.1016/j.eswa.2012.01.015.

[17] Baker, B. M., & Ayechew, M. A. A genetic algorithm
for the vehicle routing problem.Computers and Operations
Research30, 787-800 (2003).
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