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Abstract: Pattern matching problem aims to search the most similar pattern or object by matching to an instance of that pattern in a
scene image. In order to address the issue of finding an objectin the target image efficiently, the most distinctive features are computed
from the query pattern and need to be searched in the scene image. The scene image is logically divided into a number of candidate
windows which are then to be matched with the query pattern. Due to repeated matching of the query pattern with local candidate
windows, the pattern matching process requires a large amount of space in memory as well as it needs to be executed fast. Thus,
pattern matching algorithms need to be memory efficient and as fast as possible. This paper makes an attempt to deal with these issues
by presenting two effective pattern matching algorithms, namely, strip subtraction and strip division. The efficacy ofthe proposed
pattern matching algorithms is tested on two databases, viz. a local database and MIT-CSAIL database containing randomobjects. The
experimental results are proved to be computationally efficient ones while the proposed algorithms are compared with some existing
algorithms possessing a uniform experimental setup.
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1 Introduction

Pattern matching/template matching [1], [10], [19] is
considered as a well-known and widely accepted research
area in computer vision and pattern recognition. Pattern
matching requires to use a convolution mask or template
which is to be customized to specific features of the
search image and perform the scanning operation of the
entire image to find similar instances (local window) of
that template in the searched image. In this paper, pattern
or template can be understood as any shape of an object
or some non-contiguous ones. These shapes or
non-contiguous objects are then served as models to be
matched to local window in the search image for
similarity measurement. With the advancements of latest
pattern matching technologies and development of novel
algorithms, the pattern matching field has been emerged
as a significant area of computer vision, which has many
impressive and extensive applications in automotive
industry, robot visions, object tracking and detection,
motion estimation, road and vehicle tracking, human
activity recognition, law enforcement, forensics, military,

transport systems, etc. For example, pattern matching
problems could be used for finding a hand-shape in
particular orientation or finding a face in an image
consists of human faces as well as objects of different
shapes with a non-uniform background. Even it could be
a problem to find a missing object or pattern in some
industrial products while inspection of finishing products
are accomplished in an assembly line, etc. In addition to
these applications, pattern matching has a large number of
fascinating applications in content-based image retrieval,
object localization, image segmentation, boundary
information extraction, block matching in motion
estimation, image-based rendering, feature extraction and
many more. In these applications, as priori information
about the target pattern which is available in the form of
deformable shape, texture, boundary information, etc.
The task of pattern matching is to find the pattern in the
image with the available priori information.

Broadly speaking, the pattern matching problem [1],
[10], [19] is one of the efficient approaches of identifying,
localizing and recognizing a template or a pattern within
an image. The pattern is a 2D image fragment which is
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very small in size compare to search image and this
pattern may represent any living or non-living object
given in digital form in the search image. In video
applications, a pattern may take the form of a 3D
spatio-temporal fragment, representing a collection/group
of 2-D patterns. To find a pattern in an image, the entire
image is scanned and then the similarity between the
pattern and the local window (block) at every pixel
location is computed (block matching) for object
matching. Typically, we are interested in finding a pattern
in a given image and for that, we could extend the
technique which finds patterns in a search image using
strip sum technique [10], [13], [15]. However, this pattern
matching technique is not much proved to be a
computationally efficient one both in terms of taking
space in memory and time required by the algorithm and
therefore, overall performance gets slow down for large
datasets. Although a good number of fast pattern
matching algorithms is proposed as an alternative to full
search algorithms exploited and discussed in [10], [13],
[15] and they are used Haar like features for pattern
representations and subsequently, Haar Projection Values
(HPV) are extracted. Finally, matching of the input
pattern with the window in the image using the image
square sum technique is performed.

The rectangle sum and Haar like features are widely
used in the applications like object detection [20], object
localization and classification [8] and pattern matching
[19], etc. In [20], a new machine learning approach has
been described using integral image method and Haar like
features to represent the image characteristics and
adaboost is used for learning. This approach is capable of
processing the image rapidly and it is being determined
that detection rates are found to be high for visual object
detection. In addition, it combines a set of classifiers to
form a cascade which easily discards background images.
In [8], the branch-and-bound approach has been used to
maximize a large class of classifier functions efficiently
on sub-images having good speed and for that, the
classifiers which have this property are used for object
localization and classification. In [19], a fast full-search
equivalent pattern matching method has been proposed.
The method is based on Lp-norm based dissimilarity
functions like sum of absolute differences (SAD) and the
sum of squared differences (SSD). Correlation (a measure
of the degree to which two objects agree, not necessarily
in actual value, but in general behaviour) and phase angle
method has been used in [1] for pattern matching to
recognize an object. To achieve higher computational
speed, spatial correlation architecture has replaced with
spectral correlation spectrum for logic utilization in
FPGA [11]. In [7], a fast pattern matching algorithm
which can handle arbitrary 2D affine transformations to
minimize the sum of absolute differences (SAD) error, has
been proposed. It uses a sublinear algorithm that
randomly examines a small number of pixels and further
the algorithm is accelerated by branch and bound scheme.
A method to speed-up the pattern matching process has

been proposed in [22] where candidate match locations
are determined using a cascaded block-wise computation
of integral image based binary test patterns. Further,
traditional template matching is applied at the candidate
match locations to determine the best overall match. A
one-dimensional template matching algorithm was
proposed in [4] which is considered as an alternative for
2-D full search block matching algorithms. The algorithm
consists of three steps. The first step converts the 2-D
images into 1-D by summing up the intensity values of
the image in two directions, viz. horizontal and vertical
directions. In the second step, the template matching is
performed among 1-D vectors using the similarity
function sum of square differences. Finally, the decision
of acceptance or rejection is taken based on the value of
similarity function. A quick technique for pattern
matching using cross-correlation has been proposed in [6]
where cross correlation has performed on odd or even
signals samples only.

In this paper, strip subtraction and strip division based
pattern matching techniques have been exploited. An
extension of strip sum has been presented in the proposed
work and both strip subtraction and strip division
operators are used to calculate the rectangle sum on both
the pattern and sliding window in the image. Three
subtraction operations are needed to compute the
rectangle sum and obtain the Haar projection value
(HPV). Due to changes in basic arithmetic operations by
extending the strip sum technique into strip subtraction
and strip division, it reduces memory usage as well as it
takes less time to find the pattern in the given image. The
contributions are five-fold. (a) It provides solid
mathematical foundations for strip subtraction and strip
division techniques in both the horizontal and vertical
directions. These techniques are known as horizontal strip
subtraction, vertical strip subtraction, horizontal strip
division and vertical strip division in this paper. (b)
Essential mathematical derivations and computation of
Orthogonal Haar Transform (OHT) are also provided. (c)
Extensive experiments are conducted on two databases
and results are presented for the techniques mentioned in
(a). (d) The next contribution provides a common
framework that exploits time and space complexity for
both strip subtraction and strip division techniques and it
is to be proved that both these techniques are memory and
time efficient. (e) The last contribution concentrates on
comparing the proposed strip subtraction and strip
division pattern matching techniques with two existing
techniques, namely, strip sum and integral image.

1.1 Problem Formulation

In order to find a pattern in the given image, a search
process is initiated and tells whether a pattern of size
M1 × M2 is present in an image of sizeN1 ×N2 or not,
whereM1 < N1 and M2 < N2. The pattern is compared
with all the candidate windows of equal sizes determined
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from the image. Let us consider, the pattern and candidate
windows are represented as vectors̄Xt and X̄ j

w
respectively of dimensionN, wherej = 0. . . (number of
candidate windows (w) - 1) and N = M1×M2. Now, for
example, if a 2× 2 pattern is to be searched in an image
of dimension 16× 16, then we haveN = 4 and W =
(16−2+ 1)2 = 225. Orthogonal Haar Transform (OHT)
[13], [15] and subsequently, Fast Orthogonal Haar
Transform (FOHT) [10] for pattern matching has been
presented with the sum of squared differences (SSD) in
[3], [5] which is used to measure the distance ’d’ or
dissimilarity between the vectors̄Xt andX̄ j

w correspond to
the pattern and candidate windows and it is represented as
|X̄t − X̄ j

w|2. Horizontal strip subtraction (HSSub), vertical
strip subtraction (VSSub), horizontal strip division (HSD)
and vertical strip division (VSD) techniques are applied to
the pattern as well as on the candidate windows. The
rectangle sums are calculated using these techniques and
determine vectors which represent pattern and candidate
windows. These vectors are then characterized by
Orthogonal Haar transform (OHT) and Fast Orthogonal
Haar Transform (FOHT) to obtain the Haar Projection
Value (HPV). The Haar transformation that projects a
vectorX̄ ∈ RN onto a linear subspace havingB orthogonal

basis vectorsV̄ 0
N ,V̄

1
N , · · · ,V̄

(B−1)
N is represented as a

projection value vector̄Y (B) of length B and havingB
number of projection values. Now,

Ȳ (B) = V B
N X̄ = [V̄ 0

N ,V̄
1
N , · · · ,V̄

(B−1)
N ]t X̄ wheret stands for

matrix transposition,̄X is of lengthN, V B
N is a matrix of

size B × N. Every candidate window is then compared
with the pattern at a time to find thed (dissimilarity
between the pattern and selected candidate window).dmin
is determined from alld to find the threshold(T), which is
then used to discriminate the matched and unmatched
windows and when it is found thatd(X̄t , X̄

j
w) ≤ T or

| X̄t − X̄ j
w |≤ T or | V B

N X̄t − V B
N X̄ j

w |≤ T (pattern and
candidate windows are represented as vectorsX̄t and X̄ j

w

respectively), thenX j
w( jth candidate window) is saved as

’matched candidate window’.

1.2 Related Works

On object tracking and pattern matching, lots of work has
been done so far and still, researches are going on to
achieve desired results to be determined in complex
environments. In this section, we have mentioned briefly
a few similar pattern matching techniques which have
shown advanced performance than earlier pattern
matching algorithms. For example, the methods using
incremental dissimilarity approximations (IDA) [19], low
resolution pruning (LRP) [2], Walsh Hadamard
Transform (WHT) [5], Gray-code kernels (GCK) [3] and
Fast Walsh Hadamard Transform (FWHT) [14] are
successfully applied for pattern matching. In pattern
matching, one of the fundamental operations is to search

a pattern within an image over sliding windows. To
achieve this goal pattern matching algorithms have been
designed and implemented. Among these techniques, the
sum of absolute differences (SAD) [19], the sum of
squared differences (SSD), Lp distance as dissimilarity,
Hamming distance [17] are found to be very relevant to
the proposed one. However, there exists a technique based
on a computation of the rectangle sum [13], [15] using
horizontal strip sum and vertical strip sum shows that
only one addition is required to get one rectangle sum and
only three subtraction operations are needed to calculate
Haar Projection Value (HPV) [10]. To achieve speed-up
in the pattern matching process, a method is discussed in
[22] where candidate match locations are determined
using a cascaded block-wise computation of integral
image based binary test patterns. Thereafter, traditional
template matching is applied at the candidate match
locations to determine the best overall match. In [19], a
fast full-search equivalent pattern matching method is
exploited. The method is based on Lp-norm based
dissimilarity functions like the sum of absolute
differences (SAD) and the sum of squared differences
(SSD).

The manuscript is organized as follows. Section 2
describes computation of Haar Projection Value (HPV)
on applying Haar wavelets using strip subtraction and
strip division operations. Next section discusses the basic
strip sum operation which is used to derive the proposed
techniques. Section 4 exploits strip subtraction and strip
division operations which are to be computed using
rectangle sum and further, it reports how Haar Projection
Value (HPV) can be determined from these two proposed
techniques. In addition, pattern matching in the context of
strip subtraction and strip division operations is also
presented. Section 5 takes a dig into analyse the time and
space required by the proposed algorithms and this
section also shows the number of arithmetic operations to
be needed by algorithms. Experimental results and
comparison of the proposed techniques with two existing
techniques are presented in Section 6 and concluding
remarks are made in the last section.

2 Extraction of Haar Projection Values
(HPVs)

Wavelets are described as a set of non-linear basis
functions and to project a function in terms of wavelets,
the wavelet basis functions can be chosen. In the context
of graphical interpretation, basis vectors look like waves,
so they are known as’wavelets’. Haar wavelets are a
sequence of ’square-shaped’ functions.

The mother Haar wavelet functionφ(t) can be
described as

φ(t) =











1, i f 0≤ t < 1
2

−1, i f 1
2 ≤ t < 1

0, otherwise
(1)
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Its scaling functionφ ′(t) is given by

φ ′(t) =

{

1, i f 0≤ t < 1
0, otherwise

(2)

From Equations (1) and (2), it can be said that the Haar
matrix depends on the size of the image. An image of size
N = 2n × 2n, whereN is a number of 2-D Haar wavelet
basis functions (HWBF) are formed with orthogonal
property from mother Haar wavelet functionφ(t). Like
for n = 1 andN = 4, four 2-D HWBF are to be formed and
they are represented as vectorsV 0

N ,V
1
N ,V

2
N and V 3

N . Now,
rows are to be concatenated whenN = 4 and it is given by
V 0

N = (1,1,1,1)T , V 1
N = (1,1,−1,−1)T , V 2

N =

(1,−1,0,0)T , and V 3
N = (0,0,1,−1)T . Therefore, the

Haar matrix or Haar wavelet basis function (HWBF) can
be written as

HN=4 = (V 0
N ,V

1
N ,V

2
N ,V

3
N)

T =







1 1 1 1
1 1 −1 −1
1 −1 0 0
0 0 1 −1






(3)

Haar basis vector in Equation (3) can be constructed
by applying dilation or squeezing and shifting operations
shown in Figure 1. It squeezes the vector< 1,1,1,1> to
< 1,1,−1,−1 > and further, squeezes the vector
< 1,1,−1,−1> to< 1,−1,0,0>. The< 1,1> pair gets
squeezed and becomes a single 1, and similarly the pair
< −1,−1> becomes a single -1. Next, shift operation on
the resultant basis vector is performed and obtain
< 0,0,1,−1 > which is our final basis vector. Figure 1
shows a 2×2 Haar wavelet basis functions (HWBF).

Fig. 1: Shows a 2×2 Haar Wavelet Basis Functions (HWBF)

Then magnitude of every HWBF in Equation (3) is
calculated and each HWBF is divided row wise by its
magnitude and obtain Haar normalized basis function
(HNBF). The magnitudes of all vectors are given by

Magnitude of V 0
N =

√
12+12+12+12 = 2

Magnitude of V 1
N =

√

12+12+(−1)2+(−1)2 = 2

Magnitude of V 2
N =

√

12+(−1)2+02+02 =
√

2

Magnitude of V 3
N =

√

02+02+12+(−1)2 =
√

2

Then Haar normalized basis function (HNBF) is then
given by

HNBF =











1
2

1
2

1
2

1
2

1
2

1
2 − 1

2 − 1
2

1√
2
− 1√

2
0 0

0 0 1√
2
− 1√

2











(4)

HNBF determined in Equation (4) can be applied to
pattern and all the candidate windows in the image and
this results the Haar Projection Value (HPV) is also
known as Haar Transform. Since HWBF have orthogonal
property, therefore Haar transform in this case will be
called Orthogonal Haar Transform (OHT) and the input
image matrix can be represented as

IM =







a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44







To obtain the transformed 1-D Haar Matrix, each row of
the input image matrix will have row-wise dot product
with HNBF in Equation (4). For the first row in the input
matrix [a11 a12 a13 a14] the representation would be done
as follows

1dh11= a11/2+ a12/2+ a13/2+ a14/2;

1dh12= a11/2+ a12/2− a13/2− a14/2;

1dh13= a11/
√

2− a12/
√

2+ a13 ·0+ a14·0;

1dh14= a11 ·0+ a12·0+ a13/
√

2− a14/
√

2;

Therefore,⌊1dh11 1dh12 1dh13 1dh14⌋ would be the
1-D Haar like representation of the first row
[a11 a12 a13 a14] and this can be placed in the first row of
transformed 1-D Haar Matrix. Similar operations are
performed for all remaining rows of input image matrix.
Then the transformed 1-D Haar matrix would be







1dh11 1dh12 1dh13 1dh14
1dh21 1dh22 1dh23 1dh24
1dh31 1dh32 1dh33 1dh34
1dh41 1dh42 1dh43 1dh44







Now, the dot product is performed between each column
of the above transformed 1-D Haar matrix and HNBF of
Equation (4) and we obtain the transformed 2-D Haar
matrix which is also known as Haar Projection Value
(HPV) for the input matrixIM. For the first column in
transformed 1-D Haar matrix[1dh11 1dh21 1dh31 1dh41]
the representation would be done as follows

c© 2017 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.11, No. 4, 1163-1184 (2017) /www.naturalspublishing.com/Journals.asp 1167

2dh11= 1dh11/2+1dh21/2+1dh31/2+1dh41/2;

2dh12= 1dh11/2+1dh21/2−1dh31/2−1dh41/2;

2dh13= 1dh11/
√

2−1dh21/
√

2+1dh31·0+1dh41·0;

2dh14= 1dh11 ·0+1dh21·0+1dh31/
√

2−1dh41/
√

2;

So, [2dh11 2dh21 2dh31 2dh41] is 2-D Haar like
representation of[a11 a12 a13 a14] is placed in the first
row of transformed 2-D Haar matrix. Similarly, the
operations would be performed for all remaining columns
of transformed 1-D Haar matrix and the transformed 2-D
Haar matrix can now be written as







2dh11 2dh12 2dh13 2dh14
2dh21 2dh22 2dh23 2dh24
2dh31 2dh32 2dh33 2dh34
2dh41 2dh42 2dh43 2dh44







3 Overview of Strip Sum

Strip sum is considered as one of the rectangle sum
techniques and this includes horizontal strip sum and
vertical strip sum operations. Rectangle sum involves two
edge operations, viz. one on the left and other at the top
from the current location. In this section, basic building
block of strip sum framework is exploited in both
horizontal and vertical directions and this process initiates
the development of strip subtraction and strip division
characterized rectangle sum techniques.

3.1 Horizontal Strip Sum

Let HSSh(x,y) in Figure2 be the horizontal strip sum with
height’h’ at (x,y) pixel. The horizontal strip sum can be
defined as follows

HSSh(x,y) =

{

I(x,y), y = 0
I(x,y+ h)− I(x,y−1), y > 0

(5)

In Equation (5), for any point (x,y) and fory = 0,
HSSh(x,y) would result only the image, otherwise, for
y > 0, HSSh(x,y) would be given the result in horizontal
extension. Rectangle sum using strip sum is calculated
and the sumRect area is given by

(P1,P2,N1,N2) = [I(P1+N1,P2+N2) (6)

−I(P1+N1,P2)]− [I(P1,P2+N2)− I(P1,P2)]

= HSS(P1+N1,P2,N2)−HSS(P1,P2,N2)

where HSS(P1 + N1,P2,N2) =
I(P1+N1,P2+N2)− I(P1+N1,P2)
andHSS(P1,P2,N2) = I(P1,P2+N2)− I(P1,P2)]

Fig. 2: An Illustration of Horizontal Strip Sum.

3.2 Vertical Strip Sum

Let, VSSw(x,y) in Figure2 be the vertical strip sum with
width ′w′ at (x,y) pixel. Then vertical strip sum can be
defined as follows

VSSw(x,y) =

{

I(x,y), x = 0
I(x+w,y)− I(x−1,y), x > 0

(7)

Rectangle Sum using strip sum is calculated and the
sumRect area is given by

(P1,P2,N1,N2) = [I(P1+N1,P2+N2) (8)

−I(P1,P2+N2)]− [I(P1+N1,P2)− I(P1,P2)]

=VSS(P1,P2+N2,N1)−VSS(P1,P2,N1)

where VSS(P1,P2 + N2,N1) =
I(P1+N1,P2+N2)− I(P1,P2+N2)
andV SS(P1,P2,N1) = I(P1+N1,P2)− I(P1,P2)

4 Proposed Pattern Matching Process

In this section strip sum mechanism is extended with two
basic arithmetic operations, namely, subtraction and
division and they are to be used to achieve pattern
matching in a given image. We call these two techniques
as strip subtraction and strip division and they are being
used to compute rectangle sum in both horizontal and
vertical directions. From Equations (3) and (4) we
compute Haar wavelets basis function (HWBF) and Haar
normalized basis function (HNBF) using Haar wavelets,
respectively. Further, these two basis functions are used to
determine orthogonal Haar transform (OHT) and
subsequently, we determine fast orthogonal Haar
transform (FOHT). On both pattern and sliding windows
rectangle sum using strip subtraction and strip division
are computed and is characterized by orthogonal Haar
transform. In Section 4.1 we compute rectangle sum
using horizontal and vertical strip sum operations, and
cumulative subtraction is performed on each pixel point
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along two edges, viz. on the left and on the top. On the
other hand, computation of rectangle sum using
horizontal and vertical strip division operations are
presented in Section 4.2. Section 4.3 discusses pattern
matching with these two proposed techniques. In addition
to comprehensive descriptions about the techniques, a
solid mathematical foundation has been provided.

4.1 Horizontal and Vertical Strip Subtraction

To achieve horizontal and vertical strip subtraction, the
cumulative subtraction operation is applied on the
intensity values correspond to pixel points in the image.
Suppose the gray value of a pixel(x,y) in an image is
g(x,y). The cumulative subtractionCS(x,y) method
cumulatively then subtracts values of all the gray levels in
the rectangle area from origin the(0,0) to (x,y).

To calculate cumulative subtraction of gray level for
any location(x,y), the updated value (using cumulative
subtraction) of the pixel(x−1,y) and original pixel value
of all the pixels from(x,0) to (x,y − 1) are subtracted
from the original image value at(x,y). The algorithm is
given in Algorithm 1. The cumulative sum is given by the
following equation

CS(x,y) = (g(x,y)−CS(x−1,y))−
y−1

∑
i=0

g(x, i) (9)

Horizontal strip subtractionHSSub(P1,P2,N2) in
Figure3 can now be defined as the sum of pixelsX(m,n)
for 0 ≤ m ≤ P1− 1, P2 ≤ n ≤ P2+N2 −1 with the fixed
height N2 and any widthN1. HSSub(P1,P2,N2) can be
computed by only one addition per pixel as follows using
the cumulative subtraction defined in Equation (9)

HSSub(P1,P2,N2) =
P1−1

∑
m

P2+N2−1

∑
n=P2

X(m,n) = · · · (10)

P1−1

∑
m=0

P2+N2−1

∑
n=0

X(m,n)−
P1−1

∑
m=0

P2−1

∑
n=0

X(m,n) · · ·

CS(P1,P2+N2)−CS(P1,P2)

To calculate the rectangle sum ofRect area
RS(P1,P2,N1,N2) andRS(P1,P2,N′

1,N2), where(N1 6= N′
1)

for
0 ≤ P1,P1 +N1 ≤ W,P1 +N′

1 ≤ W ;0 ≤ P2,P2 +N2 ≤ H,
then rectangle sum in the context of horizontal strip sum
is given by

RS (P1,P2,N1,N2) = [CS(P1+N1,P2+N2)−·· ·
CS (P1+N1,P2)]− [CS(P1,P2+N2)−·· ·
CS (P1,P2)] = HSSub(P1+N1,P2,N2)−·· · (11)

HSSub (P1,P2,N2)

RS (P1,P2,N
′
1,N2) = HSSub(P1+N′

1,P2,N2)−·· ·
HSSub (P1,P2,N2) (12)

Vertical Strip SubtractionVSSub(P1,P2,N1) in Figure 3
can be defined as the sum of pixelsX(m,n) for
P1 ≤ m ≤ P1+N1−1, 0≤ n ≤ P2−1 with the any height
N2 and fixed width N1. V SSub(P1,P2,N1) can be
computed by only one addition per pixel as follows using
the cumulative subtraction defined in Equation (9)

VSSub (P1,P2,N1) =
P1+N1−1

∑
m=P1

P2−1

∑
n=0

X(m,n) = · · ·

∑ P1+N1−1
m=0

P2−1

∑
n=0

X(m,n)−
P1−1

∑
m=0

P2−1

∑
n=0

X(m,n) · · ·

CS (P1+N1,P2)−CS(P1,P2) (13)

To calculate rectangle sum ofRect areaRS(P1,P2,N1,N2),
where for 0≤ P2, P2+N2 ≤ H; 0≤ P1, P1+N1 ≤ W , we
can calculate rectangle sum as follows

RS (P1,P2,N1,N2) = [CS(P1+N1,P2+N2)−·· ·
CS (P1,P2+N2)]− [CS(P1+N1,P2)−·· ·
CS (P1,P2)] =VSSub(P1,P2+N2,N1)−·· · (14)

VSSub (P1,P2,N1)
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For slidingN2, whereN′
2 > N2, we can write

RS (P1,P2,N1,N
′
2) =VSSub(P1,P2+N′

2,N1)−·· ·
VSSub (P1,P2,N1) (15)

With respect to the transformed image values on the
use of Haar basis function, Haar Projection Values (HPVs)
are calculated and from Equations (11) and (14), rectangle
sum by horizontal strip subtraction (HSSub) and vertical
strip subtraction (VSSub) being calculated.

Fig. 3: Rectangle Sums sharing same heightN2. Two rectangle
sums use the same Strip Subtraction or Strip Division for
computation.

4.2 Horizontal and Vertical Strip Division

In order to achieve strip division in both horizontal and
vertical directions for rectangle sum, the cumulative
division operation is applied on the intensity values of
every point in the image. We repeat the same process that
we have discussed in Section 4.1. However, in this case,
the basic arithmetic operation would be division rather
than subtraction or sum operation. Let us consider, the
gray value of a pixel(x,y) in an image beg(x,y). Then
cumulative division CD(x,y) would be cumulatively
divided value of all the gray values in the rectangle area
from origin the(0,0) to (x,y).

To calculate the image cumulative division pixel value
for any location(x,y) the original image value at(x,y) is
divided by the updated value (using cumulative division)
of the pixel (x − 1,y) and it is also divided by original
pixel value of all the pixels from(x,0) to (x,y−1). The
algorithm of the cumulative division is given in
Algorithm 2. Therefore, cumulative division can be
defined as follows

CD(x,y) = ((x,y)/CD(x−1,y))/g(x, i) (16)

wherei = 0,1, ...,y−1

Horizontal Strip DivisionHSD(P1,P2,N2) in Figure3
can be defined as the sum of pixelsX(m,n) for
0 ≤ m ≤ P1 − 1, P2 ≤ n ≤ P2 + N2 − 1 with the fixed
height N2 and any widthN1. HSD(P1,P2,N2) can be
computed by only one addition per pixel as follows using
the Cumulative Division defined in Equation (16).

HSD (P1,P2,N2) =
P1−1

∑
m=0

P2+N2−1

∑
n=P2

X(m,n) = · · · (17)

∑ P1−1
m=0

P2+N2−1

∑
n=0

X(m,n)−
P1−1

∑
m=0

P2−1

∑
n=0

X(m,n) · · ·

CD (P1,P2+N2)−CD(P1,P2)

In order to calculate rectangle sum ofRect area
RS(P1,P2,N1,N2) andRS(P1,P2,N′

1,N2), where(N1 6= N′
1)

for 0 ≤ P1, P1 + N1 ≤ W ; P1 + N′
1 ≤ W ; 0 ≤ P2,

P2+N2 ≤ H, then we can write

RS (P1,P2,N1,N2) = [CD(P1+N1,P2+N2)−·· ·
CD (P1+N1,P2)]− [CD(P1,P2+N2)−·· ·
CD (P1,P2)] = HSD(P1+N1,P2,N2)−·· · (18)

HSD (P1,P2,N2)

RS (P1,P2,N
′
1,N2) = HSD(P1+N′

1,P2,N2)−·· ·
HSD (P1,P2,N2) (19)

Vertical Strip DivisionVSD(P1,P2,N1) can be defined as
the sum of pixelsX(m,n) for P1 ≤ m ≤ P1 + N1 − 1,
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0≤ n ≤ P2−1 with the any heightN2 and fixed widthN1.
VSD(P1,P2,N1) can be computed by only one addition
per pixel as follows using the Cumulative Division
defined in Equation (16).

VSD (P1,P2,N1) =
P1+N1−1

∑
m=P1

P2−1

∑
n=0

X(m,n) = · · ·

∑ P1+N1−1
m=0

P2−1

∑
n=0

X(m,n)−
P1−1

∑
m=0

P2−1

∑
n=0

X(m,n) · · · (20)

CD (P1+N1,P2)−CD(P1,P2)

To calculate rectangle sum ofRect area
RS(P1,P2,N1,N2), where for 0≤ P2, P2+N2 ≤ H; 0≤ P1,
P1+N1 ≤W , we can write the expression as

RS (P1,P2,N1,N2) = [CD(P1+N1,P2+N2)−·· ·
CD (P1,P2+N2)]− [CD(P1+N1,P2)−·· ·
CD (P1,P2)] =V SD(P1,P2+N2,N1)−·· · (21)

VSD (P1,P2,N1)

We can write RS(P1,P2,N1,N′
2) =

VSD(P1,P2 + N′
2,N1) − VSD(P1,P2,N1), for sliding N2

whereN′
2 > N2 and obtain Haar Projection Values (HPVs)

from the transformed image values using Haar basis
function. Further, rectangle sum is determined using
horizontal strip division and vertical strip division
operations which are derived from the Equations (18) and
(21).

4.3 Pattern Matching using Strip Subtraction
and Strip Division

This section exploits pattern matching methodology on
the use of strip subtraction and strip division operations
characterized by orthogonal Haar Transform (OHT). To
accomplish pattern matching with a pattern shown in
Figure 4(b), the pattern is to be searched in the input
image Figure4(a). In order to initiate the process, the
input image is divided into a number of candidate
windows (also known as sliding window) as that of the
size of the pattern. All the candidate windows need to be
compared with the pattern to check the presence of the
pattern in the image. At first, cumulative subtraction or
cumulative division is applied on the pattern and also on
the candidate windows. Then 2-D Haar representation is
computed for both the pattern and candidate windows
either using horizontal strip subtraction or horizontal strip
division or vertical strip subtraction or vertical strip
division. Each candidate window is now compared with
the pattern at a time to find theSSD (dissimilarity
between pattern and selected candidate window). SSDmin
is determined from allSSD scores to find the threshold
(T ) usingT = V × SSDmin +N, whereV is the variable

number,N is the number of pixels present in the pattern.
Let us consider, during the experiment it has been
determined at some instant thatd(X̄t , X̄

j
w) ≤ T (where

both pattern and candidate windows are represented by
vectorsX̄t and X̄ j

w, respectively), then̄X j
w ( jth candidate

window) will be labelled as’matched candidate window’.

Fig. 4: 4(a) shows pattern, candidate windows and matched
window, and 4(b) shows pattern.

5 Algorithm Complexity

This section presents time complexity analysis of strip
subtraction and strip division for computing rectangle
sum with orthogonal Haar transform (OHT). We initiate
the analysis by assuming thatN2 is fixed. Then we can
calculateHSSub(x,y) andHSD(x,y) without giving extra
efforts. However, when the image size is given byW ×H,
the complexity to calculate allHSSubN2 and HSDN2
would beO(W (H −N2 + 1)) for N2. For example, ifI is
an image of size 4× 4 and N2 = 2, then complexity
becomesO(4(4− 2+ 1)) = O(4× 3). It means when
W = 4, each rectangle sum would be determined with
respect to other three rectangle sum corresponds to three
arithmetic subtraction operations. IfH varies arbitrarily,
then complexity becomesO(WH(H − 1)/2). For a
pattern of 2n × 2n size needs(n + 1) different heights
(h = 1,2, ..,2n). A pattern of 21 × 21 size, (1+1)=2
different heights are needed(h = 1,2), from (x,y) to
(x,y + h). Here, h = 2, point change with respect to
different height would be(x,y) → (x,y+ 1) → (x,y+ 2)
and complexity would become
O([(n + 1)(H + 1)− 2n+1 + 1]W ). So, for an image of
size 4×4 and pattern of dimension 2×2, the complexity
would become O(7 × 4). Because, from (x,y) to
(x+w,y+ h), three subtractions are needed to obtain the
rectangle sum; from(x,y + 1) to (x + w,y + h), three
subtractions are needed to obtain rectangle sum and
finally from (x,y + 2) to (x + w,y + h) = [(number of
subtractions for(x,y) to (x + w,y + h)), (1 subtraction)
and (number of subtractions for(x,y + 1) to
(x+w,y+ h)], three subtractions are needed to obtain the
rectangle sum.
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6 Evaluation

This section describes the performance of the proposed
pattern matching techniques strip subtraction and strip
division methods using rectangle sum and Orthogonal
Haar Transform (OHT) and results are determined on two
databases, such as a local database and MIT-CSAIL
database [23] of objects and scenes. The local database is
prepared by collecting most of the image objects from
World Wide Web (WWW) and rest of them from a
personal photo library. Some sample images from the
local database are shown in Figure5. MIT-CSAIL
database contains indoor and outdoor objects captured in
office and urban environments. However, a part of the
database is prepared by collecting images from the web.
The database contains thousands of static images and
sequences with 2500 annotated frames and it provides
annotations for more than 30 objects. The images are
captured by webcam as well as by digital camera. Some
sample images from MIT-CSAIL database are shown in
Figure6.

Fig. 5: Some sample images from local database of objects and
scenes are shown.

As this has been reported in [10], [13], [15] that the
Orthogonal Haar Transform (OHT) performs better than
the full search or full search equivalent algorithms,
therefore to compute Haar-like features using strip
subtraction and strip division would lead to construct
better pattern searching algorithms and the sums of pixels
within a rectangle (rectangle sums) are the building
blocks for Haar-like features.

Fig. 6: Some sample scene images from MIT-CSAIL database
are shown.

Table 1: Image data sets, different sizes of corresponding scene
images and different sizes of patterns for Local Database are
specified.

Data Set Image Size Pattern / Template Size
S1 160×120 4×4
S2 160×120 8×8
S3 256×256 12×12
S4 256×256 16×16
S5 640×480 16×16
S6 1280×960 16×16

6.1 Experimental Results on Local Database

In order to evaluate the OHT using both strip subtraction
and strip division methods for searching a pattern in the
scene images, the efficacy of the proposed algorithms is
tested with six different image data sets prepared from the
local database. The six data sets containing images of
different sizes and patterns of four different sizes, viz.
4×4, 8×8, 12×12 and 16×16 are used for experiments
are shown in Table1. In order to perform the test and
measure the dissimilarity between reference pattern and
matching window, sum-of-squared-differences (SSD) [14]
metric is used. The dissimilarity score happens to be
compared with a threshold (T ) and it can be defined by
T = 1.2×SSDmin+N, whereN is the number of pixels in
a pattern and SSDmin defines minimum of
sum-of-squared-differences between the reference pattern
and the best matching window [14].

To understand the nature of coefficients of
transformed pattern for pattern searching using trade-off
between pixel positions and intensity values in the pattern
prior to obtain Haar Projection Values (HPVs) and after
obtaining Haar Projection Values, three techniques such
as cumulative addition, cumulative subtraction and
cumulative division are used to determine range of values
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Fig. 7: Cumulative addition, cumulative subtraction and cumulative division algorithms are used to determine range of valueson local
database using different size of patterns ((a) 4×4,(b) 8×8, (c) 12×12 and (d) 16×16).
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Fig. 8: (a) Time Speed-ups measurements of integral image, strip sum, strip subtraction and strip division on local datasets from S1
throughS6 of normal images are shown. (b) The trade-offs between accuracy and threshold on local datasets ranging fromS1 through
S6 containing normal images, on which integral image, strip sum, strip subtraction and strip division are tested, are shown.
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Table 2: TPR, FPR, TNR, FNR and pattern matching accuracy determinedon datasets from S1 through S6 of local database of normal
images at optimal threshold, are shown.

Dataset Method TPR FPR TNR FNR Accuracy
S1 Integral Image 0.978814 0.125 0.875 0.021186 0.956667

Strip Sum 0.985401 0.192308 0.807692 0.014599 0.97
Strip Subtraction 0.989209 0.136364 0.863636 0.010791 0.98

Strip Division 0.989209 0.090909 0.909091 0.010791 0.983333
S2 Integral Image 0.979079 0.180328 0.819672 0.020921 0.946667

Strip Sum 0.988806 0.125 0.875 0.011194 0.976667
Strip Subtraction 0.985294 0.107143 0.892857 0.014706 0.976667

Strip Division 0.992647 0.071429 0.928571 0.007353 0.986667
S3 Integral Image 0.967871 0.098039 0.901961 0.032129 0.956667

Strip Sum 0.988679 0.142857 0.857143 0.011321 0.973333
Strip Subtraction 0.992424 0.055556 0.944444 0.007576 0.986667

Strip Division 0.992509 0.060606 0.939394 0.007491 0.986667
S4 Integral Image 0.982979 0.153846 0.846154 0.017021 0.953333

Strip Sum 0.992126 0.043478 0.956522 0.007874 0.986667
Strip Subtraction 0.992509 0.090909 0.909091 0.007491 0.983333

Strip Division 0.992593 0.066667 0.933333 0.007407 0.986667
S5 Integral Image 0.983607 0.142857 0.857143 0.016393 0.96

Strip Sum 0.98855 0.105263 0.894737 0.01145 0.976667
Strip Subtraction 0.992565 0.129032 0.870968 0.007435 0.98

Strip Division 0.992537 0.0625 0.9375 0.007463 0.986667
S6 Integral Image 0.98008 0.142857 0.857143 0.01992 0.96

Strip Sum 0.992395 0.108108 0.891892 0.007605 0.98
Strip Subtraction 0.984962 0.147059 0.852941 0.015038 0.97

Strip Division 0.992647 0.071429 0.928571 0.007353 0.986667

Table 3: Different sizes of scene images and patterns from MIT-CSAILdatabase are used in datasets S1 through S6 in the experiment.
Data Set Image Size Pattern / Template Size

S1 160×120 16×16
S2 320×240 32×32
S3 640×480 64×64
S4 1280×960 128×128
S5 1280×960 64×64
S6 1280×960 32×32

on the local database using four different sizes of patterns
(4× 4, 8× 8, 12× 12 and 16× 16) shown in Figure7. It
has been noticed that OHT calculation using strip
subtraction (using cumulative subtraction) and strip
division (using cumulative division) need very less
amount of time for execution with respect to strip sum
(using cumulative addition) and the intensity of each pixel
(after applying cumulative subtraction or cumulative
division for strip subtraction and strip division
respectively), HPV guided intensity value of each pixel
are very less in compare to generated intensity value of
each pixel (after applying cumulative addition for strip
sum), that means that values represented by strip
subtraction and strip division would take very less amount
of memory space. The results are shown with respect to
pattern size of four different data sets. Similarly, we can
show that strip subtraction and strip division reduces the
time and memory requirement in comparison with strip
sum for different size images or windows.

In Figure 7, we can see that strip sum using
cumulative addition takes a higher value range for all the
data sets, whereas strip subtraction using cumulative
subtraction (CS) and strip division using cumulative
division (CD) represent the image intensity value along
with HPV of the image in very small range of value. Thus
memory requirement using cumulative subtraction and
cumulative division for strip subtraction and strip division
respectively is very low in compare to cumulative
addition for strip sum. Therefore, the rectangle sum of a
particular rectangle region calculated by the cumulative
sum for strip sum is much higher than the rectangle sum
value calculated by two techniques (CS and CD).

Figure 8(a) shows that the speedup for the entire
process of pattern matching using the existing techniques
such as integral image and strip sum, and proposed
techniques such as strip subtraction and strip division. We
can understand from Figure8(a) that pattern matching
process using strip subtraction and strip division are
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Table 4: TPR, FPR, TNR, FNR and pattern matching accuracy are determined on six datasets ranging from S1 to S6 are containing
normal images prepared from MIT-CSAIL database, at optimalthreshold, are shown.

Dataset Method TPR FPR TNR FNR Accuracy
S1 Integral Image 0.979592 0.181818 0.818182 0.020408 0.95

Strip Sum 0.989011 0.185185 0.814815 0.010989 0.973333
Strip Subtraction 0.992701 0.115385 0.884615 0.007299 0.983333

Strip Division 0.99278 0.086957 0.913043 0.00722 0.986667
S2 Integral Image 0.979079 0.213115 0.786885 0.020921 0.94

Strip Sum 0.988806 0.15625 0.84375 0.011194 0.973333
Strip Subtraction 0.992593 0.1 0.9 0.007407 0.983333

Strip Division 0.992647 0.107143 0.892857 0.007353 0.983333
S3 Integral Image 0.979253 0.220339 0.779661 0.020747 0.94

Strip Sum 0.988417 0.121951 0.878049 0.011583 0.973333
Strip Subtraction 0.992424 0.083333 0.916667 0.007576 0.983333

Strip Division 0.992509 0.090909 0.909091 0.007491 0.983333
S4 Integral Image 0.978814 0.203125 0.796875 0.021186 0.94

Strip Sum 0.988235 0.111111 0.888889 0.011765 0.973333
Strip Subtraction 0.992509 0.090909 0.909091 0.007491 0.983333

Strip Division 0.992593 0.1 0.9 0.007407 0.983333
S5 Integral Image 0.979424 0.175439 0.824561 0.020576 0.95

Strip Sum 0.98855 0.131579 0.868421 0.01145 0.973333
Strip Subtraction 0.992565 0.16129 0.83871 0.007435 0.976667

Strip Division 0.992537 0.09375 0.90625 0.007463 0.983333
S6 Integral Image 0.98008 0.204082 0.795918 0.01992 0.95

Strip Sum 0.988636 0.138889 0.861111 0.011364 0.973333
Strip Subtraction 0.988679 0.142857 0.857143 0.011321 0.973333

Strip Division 0.992481 0.088235 0.911765 0.007519 0.983333

Table 5: TPR, FPR, TNR, FNR and pattern matching accuracy are determined on six datasets ranging fromS1 to S6 are containing
noisy images prepared from MIT-CSAIL database, at optimal threshold, are shown.

Dataset Method TPR FPR TNR FNR Accuracy
S1 Integral Image 0.977778 0.186667 0.813333 0.022222 0.936667

Strip Sum 0.988235 0.133333 0.866667 0.011765 0.97
Strip Subtraction 0.992337 0.153846 0.846154 0.007663 0.973333

Strip Division 0.992308 0.075 0.925 0.007692 0.983333
S2 Integral Image 0.979592 0.236364 0.763636 0.020408 0.94

Strip Sum 0.988636 0.166667 0.833333 0.011364 0.97
Strip Subtraction 0.992509 0.090909 0.909091 0.007491 0.983333

Strip Division 0.992593 0.1 0.9 0.007407 0.983333
S3 Integral Image 0.979592 0.236364 0.763636 0.020408 0.94

Strip Sum 0.988593 0.135135 0.864865 0.011407 0.973333
Strip Subtraction 0.988593 0.108108 0.891892 0.011407 0.976667

Strip Division 0.99262 0.068966 0.931034 0.00738 0.986667
S4 Integral Image 0.978723 0.2 0.8 0.021277 0.94

Strip Sum 0.988593 0.108108 0.891892 0.011407 0.976667
Strip Subtraction 0.99262 0.068966 0.931034 0.00738 0.986667

Strip Division 0.992509 0.090909 0.909091 0.007491 0.983333
S5 Integral Image 0.979592 0.181818 0.818182 0.020408 0.95

Strip Sum 0.992509 0.090909 0.909091 0.007491 0.983333
Strip Subtraction 0.992647 0.178571 0.821429 0.007353 0.976667

Strip Division 0.992565 0.096774 0.903226 0.007435 0.983333
S6 Integral Image 0.980159 0.208333 0.791667 0.019841 0.95

Strip Sum 0.988764 0.151515 0.848485 0.011236 0.973333
Strip Subtraction 0.988636 0.138889 0.861111 0.011364 0.973333

Strip Division 0.992593 0.1 0.9 0.007407 0.983333

c© 2017 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1176 D. S. Dev, D. R. Kisku: Improved pattern matching algorithm

Fig. 9: Time Speed-ups measurements on six datasets S1 through S6 oforiginal images are shown.

giving a competitively better speedup compare to strip
sum and integral image techniques. In Figure8(b), we can
see at the threshold level (level 6) for accuracy
measurement for all datasets, strip subtraction and strip
division outperform the Integral Image. For datasets 4 and
6, strip sum has better accuracy than strip subtraction and
for dataset 4, strip sum has the same accuracy as that of
strip division. But for the other cases, both strip
subtraction and strip division exhibit better performance
than strip sum. In order to show the efficacy of the
proposed techniques, viz. strip subtraction and strip
division on local database, and compare them with two
existing techniques integral image and strip sum, the
values of essential parameters are determined such as
True Positive Rate (TPR), False Positive Rate (FPR), True
Negative Rate (TNR), False Negative Rate (FNR) and
pattern matching accuracy. Table2 shows the
performance of strip subtraction and strip division
techniques along with integral image and strip sum in
terms of TPR, FPR, TNR, FNR and pattern matching
accuracy. In can be seen from Table2 that, in most of the
cases, strip subtraction and strip division outperform
integral image and strip sum methods except few ones
while pattern matching accuracy is taken into
consideration. The results are determined for the optimal
threshold. Other non-optimal thresholds can be used to
determine the parameter values. However, that would not
be good results.

6.2 Experimental Results on MIT-CSAIL
Database

In the next experiment, we have tested the performance of
two proposed algorithms strip subtraction and strip

division along with existing pattern matching algorithms
such as integral image and strip sum on six datasets
prepared from MIT-CSAIL database [23] and Table 3
show the different size of scene images and patterns. The
experimental results determined on MIT-CSAIL database
using strip subtraction and strip division methods are also
compared with integral image [10] and strip sum [15]
methods. Six datasets are prepared with 120 Images taken
from MIT-CSAIL database. These six datasets are
uniformly sampled and four different sizes of scene
images, viz. 160× 120, 320× 240, 640× 480 and
1280× 960 are considered and each 30 images have the
same resolution. Similarly, four different sizes of patterns
(16×16, 32×32, 64×64 and 128×128) are used in the
experiment. For each image, 10 different randomly
selected patterns are considered. So each dataset will have
300 pattern image pairs. The proposed methods along
with the existing methods are tested with three different
image types: original images, noisy images, and blurred
images. DatasetsS5 andS6 are used for scrutinizing the
consequences of pattern size in pattern matching process
with same scene image size varying pattern size.

For each test on a particular image type,SSD is used
to find degree of similarity when the threshold is set as

T = 1.1× SSDmin+N, (22)

where N is the number of pixels present in pattern
image andSSDmin represents the minimum ofSSD in
between pattern and best matching candidate window.

Following three sub-sections will summarize the
experimental results determined on original, noisy and
blur images prepared from MIT-CSAIL database. As only
the original images are given in the database, however for
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Fig. 10: The trade-offs between accuracy and threshold determined on six datasets ranging fromS1 throughS6 containing normal
images prepared from MIT-CSAIL database on which strip subtraction, strip division, integral image and strip sum algorithms are
tested, are shown.

Fig. 11: An original image with noisy images at four different levelsare shown.
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Fig. 12: Speed-ups in execution time on six datasets ranging fromS1 to S6 with four different noise levels.

the experiment, noisy and blur images are being
generated and performance parameters are measured.

6.2.1 Experimental results on original images

As per the distribution of database into six datasets
described in Table3, the experiment with the proposed
techniques strip subtraction and strip division along with
the existing techniques strip sum and integral image is
conducted on original images in order to understand and
exhibit the performance in terms of speed against the
datasets, shown in Figure9. The time or operation

speedup of algorithmX over algorithmY is given by

=
executiontimeornumbero f operationsrequiredbyY
executiontimeornumbero f operationsrequiredbyX

(23)
From Figure9 we can see that both strip subtraction

and strip division are found to be much faster than
integral image and almost overlapping speed-ups
compare to strip sum method for a small size of the scene
image. However, pattern matching for a large size of
scene image with a large size of the pattern (datasetS4) or
varying pattern size (datasetsS5 and S6), both strip
subtraction and strip division methods perform better
having improved speed-ups compare to strip sum.

While the proposed pattern matching algorithms, viz.
strip subtraction and strip division are tested on six
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Fig. 13: The trade-offs between accuracy and threshold determined on six datasets ranging fromS1 throughS6 containing noisy images
prepared from MIT-CSAIL database on which strip subtraction, strip division, integral image and strip sum algorithms are tested, are
shown.

different datasets of normal images prepared from
MIT-CSAIL database, a comparison is also presented
with two existing algorithms on the same datasets to
exhibit the efficacy of the proposed algorithms. During
the experiment, it has been observed that both strip
subtraction and strip division outperform integral image
as well as strip sum algorithms on first five datasets in
terms of pattern matching accuracy. However, for dataset
S6, both strip subtraction and strip division along with
strip sum are found competitive to each other. Table4
shows TPR, FPR, TNR, FNR and accuracy which are
determined on six datasets using the proposed and
existing algorithms. In case of the integral image,
accuracy slows down when the algorithm is evaluated on
six datasets of normal images.

The trade-off between accuracy and threshold levels
determined on six datasets of normal images are shown in
Figure10 where accuracy is determined for six different
thresholds on each dataset and curves are plotted for the
proposed as well as for the existing algorithms. However,
Table 4 shows the accuracy which is given for optimal
threshold only when threshold varies between 1.0 and 1.1.

6.2.2 Experimental results on noisy images

To assess the performance of the algorithms on noisy
images, four low-to-high levels (i.e.,N1, N2, N3 andN4)
of iid zero-mean Gaussian noise are added to every image
of the six datasets in featured in Table3. These 4-level of
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Fig. 14: Four levels of blurred images correspond to an original image are depicted.

Fig. 15: Speed-ups in execution time on datasetsS1 throughS6 having four different blur levels.

Gaussian noisesN1, N2, N3 andN4 range from low to high
noise with deviations 100, 200, 400 and 800 respectively.
With respect to one original image, how it changes with
applying of four different noises are depicted in Figure
11.

The time speed-ups of the proposed algorithms over
existing algorithms in different size of patterns and scene
images with four different noise levels are depicted in
Figure12. It has been seen that strip subtraction and strip
division are found very competitive to strip sum for
datasetsS1, S2 andS3, and faster than the integral image
for all datasets. It can also be observed that strip
subtraction and strip division perform better for large
scene image (i.e.,S4, S5 andS6). Moreover, when pattern

small in size is compared to scene image, the proposed
two algorithms are at their very best for images with
increasing noise levels. So, the speed-ups are not only
depending on different noise levels, but also on the
different size of patterns and scene images.

Noisy images are generated by adding four different
noise levels to normal images contained in MIT-CSAIL
database and then the performance of the proposed
algorithms are exhibited by determining TPR, FPR, TNR,
FNR and accuracy on six datasets. The accuracy versus
threshold curves determined noisy images are shown in
Figure 13 and the experimental results are depicted in
Table 5. It is being observed that, when algorithms are
tested on datasetS1, strip subtraction has shown better
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Fig. 16: The trade-offs between accuracy and threshold determined on six datasets ranging fromS1 throughS6 containing blur images
prepared from MIT-CSAIL database on which strip subtraction, strip division, integral image and strip sum algorithms are tested, are
shown.

TPR compared to strip sum, integral image and strip
division methods, whereas strip division outperforms
other three methods when accuracy is measured. On
datasetS2, both strip subtraction and strip division have
shown better TPR and accuracy compared to strip sum
and integral image, however, both strip subtraction and
strip division have the same accuracy. On datasetS3, strip
division has shown better TPR and accuracy than the
other methods, whereas both strip sum and strip
subtraction have the same TPR and strip subtraction is
found with better accuracy than strip sum and integral
image. Both strip subtraction and strip division have
determined better TPR and accuracy on datasetS4
compared to strip sum and integral image, however, strip
subtraction exhibits better accuracy as well as better TPR

than strip division. On datasetS5, both strip subtraction
and strip division show better TPR than strip sum and
integral image, whereas strip division and strip sum have
determined higher accuracy compared to strip subtraction
and integral image which are having the same accuracy.
When algorithms are tested on datasetS6, strip sum has
found lesser TPR than strip division and better TPR than
strip subtraction and integral image, whereas strip
division returns best accuracy compare to other methods
and strip sum has the same accuracy as that of strip
subtraction.

c© 2017 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1182 D. S. Dev, D. R. Kisku: Improved pattern matching algorithm

Table 6: TPR, FPR, TNR, FNR and pattern matching accuracy are determined on six datasets ranging fromS1 to S6 are containing
blur images prepared from MIT-CSAIL database, at optimal threshold, are shown.

Dataset Method TPR FPR TNR FNR Accuracy
S1 Integral Image 0.978261 0.2 0.8 0.021739 0.936667

Strip Sum 0.988372 0.142857 0.857143 0.011628 0.97
Strip Subtraction 0.992308 0.15 0.85 0.007692 0.973333

Strip Division 0.992366 0.078947 0.921053 0.007634 0.983333
S2 Integral Image 0.979675 0.240741 0.759259 0.020325 0.94

Strip Sum 0.98893 0.172414 0.827586 0.01107 0.973333
Strip Subtraction 0.99262 0.103448 0.896552 0.00738 0.983333

Strip Division 0.992593 0.066667 0.933333 0.007407 0.986667
S3 Integral Image 0.979675 0.240741 0.759259 0.020325 0.94

Strip Sum 0.99262 0.103448 0.896552 0.00738 0.983333
Strip Subtraction 0.98893 0.172414 0.827586 0.01107 0.973333

Strip Division 0.992647 0.071429 0.928571 0.007353 0.986667
S4 Integral Image 0.979167 0.216667 0.783333 0.020833 0.94

Strip Sum 0.988593 0.108108 0.891892 0.011407 0.976667
Strip Subtraction 0.992481 0.058824 0.941176 0.007519 0.986667

Strip Division 0.99262 0.103448 0.896552 0.00738 0.983333
S5 Integral Image 0.980315 0.195652 0.804348 0.019685 0.953333

Strip Sum 0.992565 0.096774 0.903226 0.007435 0.983333
Strip Subtraction 0.99262 0.137931 0.862069 0.00738 0.98

Strip Division 0.992593 0.1 0.9 0.007407 0.983333
S6 Integral Image 0.980392 0.222222 0.777778 0.019608 0.95

Strip Sum 0.992593 0.1 0.9 0.007407 0.983333
Strip Subtraction 0.988764 0.151515 0.848485 0.011236 0.973333

Strip Division 0.992647 0.071429 0.928571 0.007353 0.986667

6.2.3 Experimental results on blurred images

Similar to normal and noisy images, the proposed, as well
as existing algorithms, are also evaluated on blurred
images which are used four different levels (i.e.,B1, B2,
B3 andB4) of Gaussian low-pass filters to blur each scene
image of the datasets featured in Table3. The four blur
levels correspond to Gaussian low-pass filters with
standard deviations 0.9, 1.6, 2.3 and 3.0 respectively.
With respect to one original image, how it changes or
distorts with the effects of four different blur levels are
depicted in Figure14.

The time speed-ups curves of the proposed algorithms
over existing algorithms with different size of patterns
and scene images are shown in Figure15. It is being seen
that both strip subtraction and strip division are found
very competitive when they are compared to strip sum
and also found faster than the integral image in all cases.
When the algorithms are tested on datasetsS1, S2, S3 and
S5, both strip subtraction and strip division show better
achievable speed-ups for scene image with four different
blur effects. As we can see that for the combination of
large scene image and decreasing pattern size (datasetsS4
& S6), strip subtraction and strip sum are found very
much competitive to each other, however, strip division
outperforms strip sum when speed-ups is measured.

The performance of the proposed algorithms strip
subtraction and strip division along with the existing
algorithms strip sum and integral image are also tested on

images with different blur levels contained in six datasets.
The experimental results and accuracy versus threshold
curves are shown in Table6 and in Figure16 respectively.
The pattern matching accuracies are determined against
heuristically computed threshold having a range between
1.0 and 1.1 with interval length 0.02. However, the
accuracies for all six datasets containing blur images are
given in Table6, are determined at an optimal threshold.
In this experiment, different performance parameters such
as TPR, FPR, TNR, FNR and accuracy, are determined on
six datasets containing blur images prepared from
MIT-CSAIL database. When the evaluation is performed
on datasetS1, both strip subtraction and strip division
have shown better TPR and accuracy compared to strip
sum and integral image. When the experiment is
conducted on datasetS2, strip subtraction exhibits better
TPR than strip sum, integral image and strip division,
however, on the other hand, strip division shows higher
accuracy than other three methods. On datasetsS3 andS6,
strip sum exhibits lesser TPR and accuracy when it is
compared to strip division, though it shows better TPR
and accuracy with respect to strip subtraction and integral
image. On datasetS4, strip division determines better
TPR when it is compared to strip subtraction, strip sum
and integral image, however, strip subtraction has
determined better accuracy than other three pattern
matching methods. When the experiment is performed on
dataset S5, strip subtraction has shown better TPR
compared to other methods, however, strip division and
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strip sum exhibit better accuracy than strip subtraction
and integral image while they possess the same accuracy.

7 Conclusion

This paper has reported some pattern matching
techniques, viz. horizontal strip subtraction, horizontal
strip division, vertical strip subtraction and vertical strip
division methods which compute the sum of pixels
available within a rectangle called rectangle sum. In order
to obtain the Haar like features, rectangle sum is always
found to be very important property. We have shown that
horizontal strip subtraction, horizontal strip division,
vertical strip subtraction and vertical strip division
methods can be used to compute orthogonal Haar
transform (OHT) in a very comprehensive way and then
OHT is used for equivalent pattern matching where image
cumulative subtraction and image cumulative division
methods are representing input image in small values
compared to values calculated by cumulative sum in
image integral method. Also, the rectangle sum of a
particular rectangle region calculated by the cumulative
sum for strip sum is much higher than the rectangle sum
value calculated by two techniques cumulative subtraction
for horizontal strip subtraction, vertical strip subtraction
and cumulative division for horizontal strip division and
vertical strip division. The proposed techniques are
compared with some existing techniques in determining
the results on a local database and MIT-CSAIL databases.
The results exhibit that the proposed techniques
outperform the existing methods except for a few cases
where similar effects have been recorded.
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