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Abstract: Pattern matching problem aims to search the most similaenmadr object by matching to an instance of that pattern in a
scene image. In order to address the issue of finding an ahjdwt target image efficiently, the most distinctive featuare computed
from the query pattern and need to be searched in the scege.imbe scene image is logically divided into a number of whatd
windows which are then to be matched with the query pattetre © repeated matching of the query pattern with local chaidi
windows, the pattern matching process requires a large mimafuispace in memory as well as it needs to be executed fass, Th
pattern matching algorithms need to be memory efficient arfdst as possible. This paper makes an attempt to deal \eisie iesues

by presenting two effective pattern matching algorithmamaly, strip subtraction and strip division. The efficacytiod proposed
pattern matching algorithms is tested on two databasesa Wxal database and MIT-CSAIL database containing ramagects. The
experimental results are proved to be computationallyiefftciones while the proposed algorithms are compared withesexisting
algorithms possessing a uniform experimental setup.
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1 Introduction transport systems, etc. For example, pattern matching
problems could be used for finding a hand-shape in

Pattern matching/template matching],[[10], [19] is partic_:ular orientation or finding a facg in an image
considered as a well-known and widely accepted researcf:l‘r)]ns's'[S thhuman fa_(;:es ag WE" as 3bjects of dn‘fﬁjrebnt
area in computer vision and pattern recognition. Patterr® apebsl wit afno;—unl orm acbgroun - Even it could be
matching requires to use a convolution mask or templaté® Proplem to find a missing object or pattern in some
which is to be customized to specific features of the!Ndustrial products while inspection of finishing products

search image and perform the scanning operation of thé‘hre accorr|1'pl|s.hed Inan assembrlly I'nﬁ' etcl. In addmobn tof
entire image to find similar instances (local window) of these applications, pattern matching has a large number o
that template in the searched image. In this paper, patterf?‘s_c'nat'ng aPP“?a“O”,S in content-based mage retieva
or template can be understood as any shape of an objefPiect localization, image segmentation, ~boundary

or some non-contiguous ones. These shapes pformation  extraction, block matching in motion

non-contiguous objects are then served as models to b%stimation, image-based rendering, feature extraction an

matched to local window in the search image for many more. In these applipatipns, as prio'ri information
similarity measurement. With the advancements of latesfPOUt the target pattern which is available in the form of
pattern matching technologies and development of novefiéformable shape, texture, boundary information, etc.
algorithms, the pattern matching field has been emerged N€ t@sk of pattern matching is to find the pattern in the
as a significant area of computer vision, which has manyMage with the available priori information.

impressive and extensive applications in automotive  Broadly speaking, the pattern matching probleij) [
industry, robot visions, object tracking and detection,[10], [19] is one of the efficient approaches of identifying,
motion estimation, road and vehicle tracking, humanlocalizing and recognizing a template or a pattern within
activity recognition, law enforcement, forensics, mifita ~ an image. The pattern is a 2D image fragment which is
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very small in size compare to search image and thisheen proposed in2pP] where candidate match locations
pattern may represent any living or non-living object are determined using a cascaded block-wise computation
given in digital form in the search image. In video of integral image based binary test patterns. Further,
applications, a pattern may take the form of a 3D traditional template matching is applied at the candidate
spatio-temporal fragment, representing a collectionigro match locations to determine the best overall match. A
of 2-D patterns. To find a pattern in an image, the entireone-dimensional template matching algorithm was
image is scanned and then the similarity between theroposed in 4] which is considered as an alternative for
pattern and the local window (block) at every pixel 2-D full search block matching algorithms. The algorithm
location is computed (block matching) for object consists of three steps. The first step converts the 2-D
matching. Typically, we are interested in finding a patternimages into 1-D by summing up the intensity values of
in a given image and for that, we could extend thethe image in two directions, viz. horizontal and vertical
technique which finds patterns in a search image usinglirections. In the second step, the template matching is
strip sum techniquelf0], [13], [15]. However, this pattern  performed among 1-D vectors using the similarity
matching technique is not much proved to be afunction sum of square differences. Finally, the decision
computationally efficient one both in terms of taking of acceptance or rejection is taken based on the value of
space in memory and time required by the algorithm andsimilarity function. A quick technique for pattern
therefore, overall performance gets slow down for largematching using cross-correlation has been propose] in [
datasets. Although a good number of fast patternwhere cross correlation has performed on odd or even
matching algorithms is proposed as an alternative to fullsignals samples only.
search algorithms exploited and discussediii,[[13], In this paper, strip subtraction and strip division based
[15 and they are used Haar like features for patternpattern matching techniques have been exploited. An
representations and subsequently, Haar Projection Valuesxtension of strip sum has been presented in the proposed
(HPV) are extracted. Finally, matching of the input work and both strip subtraction and strip division
pattern with the window in the image using the image operators are used to calculate the rectangle sum on both
square sum technique is performed. the pattern and sliding window in the image. Three
The rectangle sum and Haar like features are widelysubtraction operations are needed to compute the
used in the applications like object detecti@@]f object  rectangle sum and obtain the Haar projection value
localization and classification8] and pattern matching (HPV). Due to changes in basic arithmetic operations by
[19], etc. In [2Q], a new machine learning approach has extending the strip sum technique into strip subtraction
been described using integral image method and Haar likand strip division, it reduces memory usage as well as it
features to represent the image characteristics anthkes less time to find the pattern in the given image. The
adaboost is used for learning. This approach is capable ofontributions are five-fold. (a) It provides solid
processing the image rapidly and it is being determinednathematical foundations for strip subtraction and strip
that detection rates are found to be high for visual objectdivision techniques in both the horizontal and vertical
detection. In addition, it combines a set of classifiers todirections. These techniques are known as horizontal strip
form a cascade which easily discards background imagesubtraction, vertical strip subtraction, horizontal stri
In [8], the branch-and-bound approach has been used tdivision and vertical strip division in this paper. (b)
maximize a large class of classifier functions efficiently Essential mathematical derivations and computation of
on sub-images having good speed and for that, theérthogonal Haar Transform (OHT) are also provided. (c)
classifiers which have this property are used for objectExtensive experiments are conducted on two databases
localization and classification. I §], a fast full-search  and results are presented for the techniques mentioned in
equivalent pattern matching method has been proposeda). (d) The next contribution provides a common
The method is based on Lp-norm based dissimilarityframework that exploits time and space complexity for
functions like sum of absolute differenceé8AD) and the  both strip subtraction and strip division techniques and it
sum of squared differenceS3D). Correlation (a measure is to be proved that both these techniques are memory and
of the degree to which two objects agree, not necessarilyime efficient. (e) The last contribution concentrates on
in actual value, but in general behaviour) and phase angleomparing the proposed strip subtraction and strip
method has been used id][for pattern matching to division pattern matching techniques with two existing
recognize an object. To achieve higher computationatechniques, namely, strip sum and integral image.
speed, spatial correlation architecture has replaced with
spectral correlation spectrum for logic utilization in
FPGA [11]. In [7], a fast pattern matching algorithm 1.1 Problem Formulation
which can handle arbitrary 2D affine transformations to
minimize the sum of absolute differenc&\D) error, has  In order to find a pattern in the given image, a search
been proposed. It uses a sublinear algorithm thaiprocess is initiated and tells whether a pattern of size
randomly examines a small number of pixels and furtherM; x My is present in an image of siZé; x N, or not,
the algorithm is accelerated by branch and bound schemavhereM; < N; and M, < N,. The pattern is compared
A method to speed-up the pattern matching process hawith all the candidate windows of equal sizes determined
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from the image. Let us consider, the pattern and candidata pattern within an image over sliding windows. To
windows are represented as vectods and XJ achieve this goal pattern matching algorithms have been
respectively of dimensiolN, wherej = 0...(number of designed and implemented. Among these techniques, the
candidate windowsw) - 1) andN = My x M,. Now, for ~ sum of absolute differencesSAD) [19], the sum of
example, if a 2« 2 pattern is to be searched in an image squared differencesSgD), L, distance as dissimilarity,

of dimension 16x 16, then we haveN = 4 andW = Hamming distancel[7] are found to be very relevant to
(16— 2+ 1)2 = 225. Orthogonal Haar Transform (OHT) the proposed one. However, there exists a technique based
[13], [15 and subsequently, Fast Orthogonal Haar©on a computation of the rectangle sudg], [15] using
Transform (FOHT) 10] for pattern matching has been horizontal strip sum and vertical strip sum shows that
presented with the sum of squared differencg3D) in only one addition is required to get one rectangle sum and
[3], [5] which is used to measure the distanak or only three_ sqbtraction operations are ne.eded to calculate
dissimilarity between the vecto¥ andX,, correspondto  Haar Projection Value (HPV)1[)]. To achieve speed-up
the pattern and candidate windows and it is represented &8 the pattern matching process, a method is discussed in
% — XJ|2. Horizontal strip subtractionHSSub), vertical [22] where candidate match locations are determined

strip subtraction\{SSub), horizontal strip divisioniSD _using a cascaded block-wise computation of int'e'gral
andp vertical strip\(divisi())n\(SD) techniql?es are apiglieci to IMmage based binary test patterns. Thereafter, traditional
the pattern as well as on the candidate windows. Thd€MPlate maiching is applied at the candidate match
rectangle sums are calculated using these techniques al gations to determ'ne the best overall match. 16]{ a .
determine vectors which represent pattern and candidat st fyll-search equwalen_t pattern matching method is
windows. These vectors are then characterized by *Ploited. The method is based on Lp-norm based
Orthogonal Haar transform (OHT) and Fast OrthogonaldiSSimilarity functions like the sum of absolute
Haar Transform (FOHT) to obtain the Haar Projection differences $AD) and the sum of squared differences
Value (HPV). The Haar transformation that projects a(SSD)'

vectorX € R onto a linear subspace haviBgrthogonal The manuscript'is organized as fO.HOWS' Section 2
. —0 \71 —(B-1) . describes computation of Haar Projection Value (HPV)
basis vectorsVy,Vy, -, Vy is represented as a

_ on applying Haar wavelets using strip subtraction and
projection value vectol(B) of length B and havingB  strip division operations. Next section discusses thechasi
number of projection values. Now, strip sum operation which is used to derive the proposed
Y(B) = VX = MO Vg, - - ,\7,55*1)]‘)? wheret stands for  techniques. Section 4 exploits strip subtraction and strip
matrix transpositionX is of lengthN, Vi§ is a matrix of ~ division operations which are to be computed using
size B x N. Every candidate window is then compared rectangle sum and further, it reports how Haar Projection
with the pattern at a time to find thé (dissimilarity ~ Value (HPV) can be determined from these two proposed
between the pattern and selected candidate winddyy.  techniques. In addition, pattern matching in the context of
is determined from alfl to find the thresholdT), whichis  Strip subtraction and strip division operations is also
then used to discriminate the matche_d _and unmatcheﬂresented. Section 5 takes a dlg into analyse the time and

windows and when it is found thad(X,X}) < T or  space required by the proposed algorithms and this
| X — X} [< T or | VB _VNBXVJ;/ |< T (pattern and section also shows the number of arithmetic operations to

did ind ted i~ be needed by algorithms. Experimental results and
candidate windows are represented as veco@ndXu  omparison of the proposed techniques with two existing

respectively), theny(j™ candidate window) is saved as techniques are presented in Section 6 and concluding

"matched candidate window’ . remarks are made in the last section.
1.2 Related Works 2 Extraction of Haar Projection Values
(HPVS)

On object tracking and pattern matching, lots of work has

been done so far and still, researches are going on toVavelets are described as a set of non-linear basis
achieve desired results to be determined in compleXunctions and to project a function in terms of wavelets,
environments. In this section, we have mentioned brieflythe wavelet basis functions can be chosen. In the context
a few similar pattern matching techniques which haveof graphical interpretation, basis vectors look like waves
shown advanced performance than earlier patterrso they are known aswavelets. Haar wavelets are a
matching algorithms. For example, the methods usingsequence of 'square-shaped’ functions.

incremental dissimilarity approximations (IDA}9], low The mother Haar wavelet functiop(t) can be
resolution pruning (LRP) J], Walsh Hadamard described as

Transform (WHT) p], Gray-code kernels (GCK)3] and

; 1
Fast Walsh Hadamard Transform (FWHTL4] are 1 !f ?§t< 2
successfully applied for pattern matching. In pattern pt)=49-1 if 3<t<1 1)
matching, one of the fundamental operations is to search 0, otherwise
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Its scaling functiony/(t) is given by Then Haar normalized basis function (HNBF) is then
given by
1, if 0<t<1
qo’(t):{’ o (2) 1 1 1 1
0, otherwise s 5 5 5
15 -1
From EquationsX) and @), it can be said that the Haar HNBF = | £ %1 0 0 (4)
matrix depends on the size of the image. An image of size ‘65 (‘)/i 11
N = 2" x 2", whereN is a number of 2-D Haar wavelet V2 V2

basis functions (HWBF) are formed with orthogonal
property from mother Haar wavelet functiap(t). Like
forn=1 andN =4, four 2-D HWBF are to be formed an
they are represented as vectufs Vi,V and V3. Now,
rows are to be concatenated whérr 4 and it is given by
VNo = (17 17 17 1)T7 Vl\:} = (17 17_17_1)T7 V[\% =
(1,-1,0,0)7, and Vg = (0,0,1,—-1)". Therefore, the
Haar matrix or Haar wavelet basis function (HWBF) can
be written as

HNBF determined in Equatiord) can be applied to

g Pattern and all the candidate windows in the image and
this results the Haar Projection Value (HPV) is also
known as Haar Transform. Since HWBF have orthogonal
property, therefore Haar transform in this case will be
called Orthogonal Haar Transform (OHT) and the input
image matrix can be represented as

ail a2 43 14

1111 Iy = a1 822 823 &24
11-1-1 a31 @32 as3 a4

Hn=g = (VNOaV&aVszvl\?)T 110 0 3) ay1 Au u3 Aus
0 1-1

To obtain the transformed 1-D Haar Matrix, each row of

Haar basis vector in EquatioB)(can be constructed the input image matrix will have row-wise dot product
by applying dilation or squeezing and shifting operationsyith HNBF in Equation 4). For the first row in the input
shown in Figure 1. It squeezes the vectoll,1,1,1>1t0  matrix [a;1 a1 a13 a14] the representation would be done
< 1,1,-1,-1 > and further, squeezes the vector 35 follows
<1,1,-1,-1>t0o<1,-1,0,0>. The< 1,1 > pair gets
squeezed and becomes a single 1, and similarly the pair
< —1,—1> becomes a single -1. Next, shift operation on _ .
the resultant basis vector is performed and obtain Ldhyy = 801/2+815/2+ 213/2+ 814/ 2;
< 0,0,1,—1 > which is our final basis vector. Figure 1 1dhi2 = a11/2+a12/2 — 813/2 — a14/2;
shows a Z 2 Haar wavelet basis functions (HWBF). 1dhi3 = a11/V2—a12/V/2+ar3- 0+ ays-0;

ldhis=a1;-0+a12-0+ alg/\/é— a14/\/§;

=il B B 2 e Therefore, | 1dhy; 1dhg, 1dhy3 1dhy4| would be the
1|1 |-l LR HE 1-D Haar like representation of the first row
B v o i [a11 @12 a13 a14] and this can be placed in the first row of

transformed 1-D Haar Matrix. Similar operations are
performed for all remaining rows of input image matrix.

Fig. 1: Shows a Z 2 Haar Wavelet Basis Functions (HWBF) Then the transformed 1-D Haar matrix would be

Then magnitude of every HWBF in Equatio8) (is
calculated and each HWBF is divided row wise by its
magnitude and obtain Haar normalized basis function
(HNBF). The magnitudes of all vectors are given by

Magnitude of V= v12+124+124+12=2

1dhy4 1dhgs 1dhg3 1dhig
1dhy1 1dhyy 1dhys 1dhoa
1dhg; 1dhgy 1dhss 1dhza
1dhgs 1dhap 1dhss 1dhga

Now, the dot product is performed between each column
of the above transformed 1-D Haar matrix and HNBF of
Equation 4) and we obtain the transformed 2-D Haar
_ matrix which is also known as Haar Projection Value
Magnitude of Vi = /124 (—1)2+ 02402 = /2 (HPV) for the input matrixly. For the first column in

transformed 1-D Haar matrikldh; 1 1dhy; 1dhz; 1dhgg)
Magnitude of Vi§ = /02+02+12+ (-1)2= /2 the representation would be done as follows

Magnitude ofVid = /12+12+ (-1)2+(-1)2=2
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2dhy; = 1dhgy/2+ 1dh21/2+ 1dhg1/2+ 1dh41/2;
2dh;p = 1dhyy/2+ 1dh21/2— 1dhg1/2 — 1dh41/2; B
(Py.|P;) (M. Py

2dhy3 = 1dhy1/v'2 — 1dhpy/v/2+ 1dhg; - 0+ 1dhy; - 0; ‘al S b
2dhy4 = 1dhyq- 0+ 1dhys - 0+ 1dhgy/v/2 — 1dhs1/V/2; N Xy

(Py, Pr+N-) (Br+ s PreNa) ||

So, [Zdhll 2dh21 2dh31 2dh41] is 2-D Haar like
representation ofaj; a12 a13 a14] is placed in the first r
row of transformed 2-D Haar matrix. Similarly, the
operations would be performed for all remaining columns Fig. 2: An lllustration of Horizontal Strip Sum.
of transformed 1-D Haar matrix and the transformed 2-D
Haar matrix can now be written as

3.2 Vertical Srip Sum
2dhy; 2dhy, 2dhy3 2dhy4

2dhp1 2dhy, 2dhyg 2dhog Let, VSS,(x,y) in Figure2 be the vertical strip sum with
2dhg; 2dhg; 2dhzz 2dhsy width ‘w’ at (x,y) pixel. Then vertical strip sum can be
2dhyy 2dhg 2dhys 2dhgg defined as follows

3 Overview of Strip Sum (7)

) Ixy), X=0
VSSN(X,Y)—{|(X+W7y)_|(x—1,)’)a x>0

Strip sum is considered as one of the rectangle sum
techniques and this includes horizontal strip sum and  Rectangle Sum using strip sum is calculated and the
vertical strip sum operations. Rectangle sum involves tWosymRect area is given by

edge operations, viz. one on the left and other at the top

from the current location. In this section, basic building (P1,P2,Np, N2) = [I(PL+ N1, P+ N2) (8)
block of strip sum framework is exploited in both —I(Py, P+ N2)] — [l (PL+ Ny, P) — 1 (P, P)]

horizontal and vertical directions and this process itésa =VSS(PL, P> + Ny, Ny ) — VSS(PL, Po, Ny )

the development of strip subtraction and strip division

characterized rectangle sum techniques. where VSSPLR,  +  Np,Np) =

I (PL+Ng, P2+ Np) — 1 (P, P2+ Np)
andVSS(Pl, P, Nl) = (Pl + Nq, Pz) —1 (Pl, Pz)
3.1 Horizontal Strip Sum

Let HSS(x,y) in Figure2 be the horizontal strip sumwith 4 Proposed Pattern Matching Process
height’h’ at (x,y) pixel. The horizontal strip sum can be

defined as follows In this section strip sum mechanism is extended with two
basic arithmetic operations, namely, subtraction and

1(X,Y), y=0 division and they are to be used to achieve pattern

HSS,(xy) = Ixy+h) —1(xy—1), y>0 (5)  matching in a given image. We call these two techniques

’ ’ ’ as strip subtraction and strip division and they are being

used to compute rectangle sum in both horizontal and
vertical directions. From Equations3)( and @) we

compute Haar wavelets basis function (HWBF) and Haar
dpormalized basis function (HNBF) using Haar wavelets,
respectively. Further, these two basis functions are used t
determine orthogonal Haar transform (OHT) and

In Equation B), for any point (x,y) and fory = 0,
HSS,(x,y) would result only the image, otherwise, for
y > 0, HSS,(x,y) would be given the result in horizontal
extension. Rectangle sum using strip sum is calculate
and the sunikect area is given by

(P1,P2,N3,N2) = [I(P1+ N3, P+ Np) (6)  subsequently, we determine fast orthogonal Haar
—1(PL+ N3, P)] = [1 (P, Pa+Np) — | (P, P,)] transform (FOHT). On both pattern and sliding windows
_ B rectangle sum using strip subtraction and strip division

= HSS(Py+ Ny, P2, Np) — HSS(PL, P2, o) are computed and is characterized by orthogonal Haar
where HSS(PL + N1, P2, N2) = transform. In Section 4.1 we compute rectangle sum

[ (P4 Np,Po+Np) — (P + Ny, P) using horizontal and vertical strip sum operations, and
andHSS(Py, P, Np) = | (P, P2+ N2) — [ (P, P2)] cumulative subtraction is performed on each pixel point
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along two edges, viz. on the left and on the top. On the  Horizontal strip subtractionHSSub(Pi,P,Ny) in
other hand, computation of rectangle sum usingFigure3 can now be defined as the sum of pix&len,n)
horizontal and vertical strip division operations areforO<m<P;—1,P, <n<P,+ N, —1 with the fixed
presented in Section 4.2. Section 4.3 discusses pattermeight N, and any widthN;. HSSub(P;, P, N,) can be
matching with these two proposed techniques. In additiorcomputed by only one addition per pixel as follows using
to comprehensive descriptions about the techniques, the cumulative subtraction defined in Equatidh (

solid mathematical foundation has been provided.

P —1P+No—1
HSSub(Py, P, Np) = z 252 X(mn)=--. (10)
4.1 Horizontal and Vertical Strip Subtraction & L
PL—1P+Np—1 Pi-1P—1
To achieve horizontal and vertical strip subtraction, the Z Z X(m,n) — z z X(mn)---
m=0 n=0 m=0 n=0

cumulative subtraction operation is applied on the
intensity values correspond to pixel points in the image.
Suppose the gray value of a pixel,y) in an image is To calculate the rectangle sum oRect area
g(x,y). The cumulative subtractiorCS(x,y) method RS(Py, P2, Ni,Ny) andRS(Py, Po, NJ, Np), where(Ny £ NJ)
cumulatively then subtracts values of all the gray levels in¢,,
the rectangle area from origin tti@, 0) to (x,y). 0<PLP+N, <W,P+N, <W;0< PP+ N, < H,

To calculate cumulative subtraction of gray level for then rectangle sum in the context of horizontal strip sum
any location(x,y), the updated value (using cumulative jg given by

subtraction) of the pixelx — 1,y) and original pixel value
of all the pixels from(x,0) to (x,y — 1) are subtracted
from the original image value dk,y). The algorithm is RS
given in Algorithm 1. The cumulative sum is given by the g
following equation cs

HSSub

CS(P,P>+Np) —CS(P, P,)

P1,Po,N1,Np) = [CS(PL+ Ny, P+ Np) — - --
P1+Np,P)] — [CS(P, P+ Np) — -

Py, Pz)] = HSSJb(Pl-i- Ny, P, Nz) — (11)
P, P, Np)

~ I~

y—1

CS(x,y) = (9(xy) =CS(x—1,y)) — ; g(xi)  (9)

RS (Pl, P, Ni, Nz) = HSSJb(Pl-i- Ni, P, Nz) — .
HSSub (Pl,Pz,Nz) (12)

Vertical Strip Subtractior’VSSub(Py,P>,N;) in Figure 3
can be defined as the sum of pixe)(m,n) for
PL<m<P+N;—1,0<n<P,— 1 with the any height
N, and fixed width N;. VSSub(P;,P,,N;) can be

Algorithm 1 Cumulative Subtraction (CS)
1: Let, €5{0,0} = g{0,0) and &, ¢ are two matrices having all

zeros with size h > w.

computed by only one addition per pixel as follows using

2 forx=01wh—1do the cumulative subtraction defined in Equatioh (

3: for y=0t0w—1do

4: blx,v)=glx,y)

¥ end for P+N;—1P—1

6: end for VSaub (Py,P2,Ny) = Z?‘ ZO X(mn)=---

7 forx=11wh—1do m=Py n=

8: ComputeCSix,0} = gix,0) —C5(x—1,0) boN 1P2—1 P —1P—1

9: end for 1™ X(m,n) — X(myn)---

10: fory=1tow—1do m=0 nZo (mn) ngo = (m,n)

11 fork=0toy—1do o

12 d(0,y) = b(0,.k) — (0, v) CS (P4 Ny, P) —CS(PL, ) (13)
:; E,“d B R e To calculate rectangle sum Bect areaRS(Py, P>, Ny, Ny),
15: end r:::r"pm SV where for 0< Py, P+ N, <H; 0< P, PL+ Ny <W, we
16: forx— 110k —1do can calculate rectangle sum as follows

17: forv=0t0w—1do

18: fork=0twy—1do

19: elx,y) = blx k) —clr.5) RS (P, Po;N1,Np) = [CS(PL+ Ny, Po o+ Np) — -
:’.;{]': enq fﬂl.' ca ) . CS (P,P+No)]—[CS(PL+Nyp,P) — -
B wae ) el R CS  (PLPy)] = VSSUD(PL P+ No,Np) =+ (14)

VSSub (P, P, N;p)
(@© 2017 NSP
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For slidingNy, WhereNé > Ny, we can write Algorithm 2 Cumulative Division (CD)
1: Let, CD{0,0) = g(0,0) and d, ¢ are iwo matrices having all

RS (P, Po. Ny, Ng) = VSSub(Py Py + Ng. Ny — - Bl

VSSub (P, P2, Np) (15) 3 for y=0tow—1do
. . 4: bix.y)=glx.y)

With respect to the transformed image values on the 5. .nd for
use of Haar basis function, Haar Projection Values (HPVS) &: end for
are calculated and from Equatiorid) and (L4), rectangle 7: forx=110h—1do
sum by horizontal strip subtractiofd 8Sub) and vertical 8 CamputeCD{x,0) = g{x,0)/CD(x— 1,0}
strip subtraction\{ SSub) being calculated. 9: end for

10: fory=1low—1do
11: fork=0twyv—1do

12: d(0,v) = b(0,k) /d(0,y)
w 13: end for
S | 14: CompuieCD{0, y) = gl0,v) /d(0.y)

Wi o 15: end for

- - - l6: forx=1toh—1do
P 17: fory=0tow—1do

@..|Py) b+ N, Ph 18: fork=0twy—1do
- e H 19: clx,¥) = b{x.k}/clx,¥)
. 20 end for
- 21: COix.v) = (glx,¥)/CD(x — 1,¥})/clx,¥)
(B 2R (@1+1 ‘1 BpN2) 22: end for
RS(PLP:NLN2) RS(PLP3Ny N2

Fig. 3: Rectangle Sums sharing same heijht Two rectangle Horizontal Strip DivisionHSD(Py, P2, Np) in Figure3

sums use the same Strip Subtraction or Strip Division for €& be defined as the sum of pingS(m,n) .for
computation. b P 0<mM<P -1 P <n<P+N;—1 with the fixed

height N, and any widthN;. HSD(P,P,,Nz) can be
computed by only one addition per pixel as follows using
the Cumulative Division defined in Equatiobg).

4.2 Horizontal and Vertical Strip Division PL1PotNo—1
HED (PPl = 5 05 X(mm=- ()
In order to achieve strip division in both horizontal and m=0 n=
vertical directions for rectangle sum, the cumulative g2t P11
division operation is applied on the intensity values of 2 m=0 z X(m,n) — z z X(mn)---
every point in the image. We repeat the same process that n=0 m=0 n=0
we have discussed in Section 4.1. However, in this case, CD (PL,P2+N2) = CD(P1,P)
the basic arithmetic operation would be division rather |, order to calculate rectangle sum &kct area

than subtraction or sum operation. Let us consider, thergp, p,, Ny, N,) andRS(Py, P, N, N,), where(Ny # N})
gray value of a pixe(x,y) in an image begg(x,y). Then oy 0 < P, P+ N; < W; P, + N, <W; 0< P,
cumulative division CD(x,y) would be cumulatively p, N, < H, then we can write B B
divided value of all the gray values in the rectangle area -

from origin the(0,0) to (x,y).

To calculate the image cumulative division pixel value RS (P1,P2,Ni,Nz) = [CD(PL+Ng, P2+ Np) — -+
for any location(x,y) the original image value dk,y) is CD (P1+Ng,P>)] — [CD(Py, P2+ Np) — - --
divided by the updated value (using cumulative division) _ -
of the pixel (x—1,y) and it is also divided by original CD (P, P)] =HSD(Py 4Ny, P2, Ne) (18)
pixel value of all the pixels fronix,0) to (x,y—1). The HSD (P1. P2, No)
algorithm of the cumulative division is given in
Algorithm 2. Therefore, cumulative division can be , ,
defined as follows RS (P1,P2,Ny,N2) = HSD(PL+ Ny, P, N) — -
HSD (P, P, Ny) (19)
CD(xy) = ((xy)/CD(x=1y))/g(x.i)  (16)  \/ical Strip DivisionVSD(Py, P, N;) can be defined as
wherei =0,1,....y—1 the sum of pixelsX(m,n) for P, < m < Pp + N; — 1,
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0 < n < P, — 1 with the any heighiN, and fixed widthNj. number,N is the number of pixels present in the pattern.
VSD(Py,P;,N;) can be computed by only one addition Let us consider, during the experiment it has been
per pixel as follows using the Cumulative Division determined at some instant thd(Xt,Xv’v) < T (where

defined in Equationl(6). both pattern and candidate windows are represented by
vectorsX;, and XJ, respectively), therX), (j!" candidate
PN —1P—1 window) will be labelled asmatched candidate window' .

VSD (P1,P,Ny) = Z: ZOX(m,n) — ...

-1 P-1P-1
PNy —1 EOX(m n)— s
n=

m=0 X
m=0 n=

CD (P.+Ni,P,) —CD(PL,P,)

(mn)--- (20

To calculate rectangle sum ofRect area
RS(P1, P>, N1, Np), where for 0< Py, P+ N, < H; 0 < Py,
P; +Ni <W, we can write the expression as

RS (P1,P2,Ni,N2) = [CD(PL+ Ny, Po 4 Np) —- -

CD (Pi,P,+Np)] — [CD(Py1+ Ng,Po) — - Fig. 4. 4(a) shows pattern, candidate windows and matched
CD (P1,P,)] =VSD(Py,Po+No,Ny) — - (21) window, and 4(b) shows pattern.
VSD (P, P, Np)

We can write RSP, P,N,Ny) =
VS:)(Pl,Pz—l- Né,Nl) —VS:)(PJ_, P2,N1), for sliding No . .
whereN} > N, and obtain Haar Projection Values (HPVs) 5 Algorithm Complexity
from the transformed image values using Haar basisT
function. Further, rectangle sum is determined using X R )
horizontal strip division and vertical strip division subtraction and strip division for computing rectangle

. . : ; sum with orthogonal Haar transform (OHT). We initiate
(ozpsratlons which are derived from the Equatiat# @nd the analysis by assuming thhl is fixed. Then we can

calculateH SSub(x,y) andHSD(x,y) without giving extra
efforts. However, when the image size is giverMiy H,
. . . . the complexity to calculate alHSSuby, and HSDy

4.3 Pattern Matching using Strip Subtraction would beO(W(H — Ny + 1)) for Ny. For example, ifl is
and Strip Division an image of size 4 4 and N, = 2, then complexity

becomesO(4(4 — 2+ 1)) = O(4 x 3). It means when
This section exploits pattern matching methodology onW = 4, each rectangle sum would be determined with
the use of strip subtraction and strip division operationsrespect to other three rectangle sum corresponds to three
characterized by orthogonal Haar Transform (OHT). Toarithmetic subtraction operations. i varies arbitrarily,
accomplish pattern matching with a pattern shown inthen complexity becomeO(WH(H — 1)/2). For a
Figure 4(b), the pattern is to be searched in the inputpattern of 2 x 2" size needgn+ 1) different heights
image Figure4(a). In order to initiate the process, the (h = 1,2,..,.2"). A pattern of 2 x 2! size, (1+1)=2
input image is divided into a number of candidate different heights are neededh = 1,2), from (x,y) to
windows (also known as sliding window) as that of the (x,y + h). Here, h = 2, point change with respect to
size of the pattern. All the candidate windows need to bedifferent height would béx,y) — (x,y+1) — (X,y+2)
compared with the pattern to check the presence of theand complexity would become
pattern in the image. At first, cumulative subtraction or O([(n+ 1)(H + 1) — 21 + 1]w). So, for an image of
cumulative division is applied on the pattern and also onsize 4x 4 and pattern of dimension:22, the complexity
the candidate windows. Then 2-D Haar representation isvould become O(7 x 4). Because, from(x,y) to
computed for both the pattern and candidate windows(x+w,y+ h), three subtractions are needed to obtain the
either using horizontal strip subtraction or horizontaipst  rectangle sum; fromx,y + 1) to (x+w,y + h), three
division or vertical strip subtraction or vertical strip subtractions are needed to obtain rectangle sum and
division. Each candidate window is now compared with finally from (x,y + 2) to (x+ w,y+ h) = [(number of
the pattern at a time to find th&SD (dissimilarity  subtractions for(x,y) to (x+w,y -+ h)), (1 subtraction)
between pattern and selected candidate window). SSDin and (number of subtractions for(x,y + 1) to
is determined from alBSD scores to find the threshold (x-+w,y+ h)], three subtractions are needed to obtain the
(T) usingT =V x SDyin + N, whereV is the variable rectangle sum.

his section presents time complexity analysis of strip
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6 Evaluation

This section describes the performance of the proposel
pattern matching techniques strip subtraction and strip~
division methods using rectangle sum and Orthogonalg
Haar Transform (OHT) and results are determined on two
databases, such as a local database and MIT-CSAIL}®
databaseZ3] of objects and scenes. The local database is§
prepared by collecting most of the image objects from
World Wide Web (WWW) and rest of them from a
personal photo library. Some sample images from the
local database are shown in Figue MIT-CSAIL
database contains indoor and outdoor objects captured i
office and urban environments. However, a part of the
database is prepared by collecting images from the web.
The database contains thousands of static images antlg. 6: Some sample scene images from MIT-CSAIL database
sequences with 2500 annotated frames and it providegre shown.

annotations for more than 30 objects. The images are

captured by webcam as well as by digital camera. Some

sample images from MIT-CSAIL database are shown inTaple 1: Image data sets, different sizes of corresponding scene

Figure®6. images and different sizes of patterns for Local Database ar
specified.
Data Set | Image Size | Pattern/ Template Size
S1 160x 120 4x4
S2 160x 120 8x8
S3 256x 256 12x12
S4 256x 256 16x 16
S5 640x 480 16x 16
S6 1280x 960 16x 16

6.1 Experimental Results on Local Database

In order to evaluate the OHT using both strip subtraction
and strip division methods for searching a pattern in the
scene images, the efficacy of the proposed algorithms is
tested with six different image data sets prepared from the
local database. The six data sets containing images of
different sizes and patterns of four different sizes, viz.
4x4,8x8,12x 12 and 16x 16 are used for experiments
are shown in Tabld. In order to perform the test and
measure the dissimilarity between reference pattern and
matching window, sum-of-squared-differencg8Sp) [ 14]
metric is used. The dissimilarity score happens to be
Fig. 5: Some sample images from local database of objects an@ompared with a threshold'} and it can be defined by
scenes are shown. T = 1.2 x SDpin+ N, whereN is the number of pixels in

a pattern and SSDpin defines minimum  of

sum-of-squared-differences between the reference patter

As this has been reported id(), [13], [15 that the  and the best matching window4].

Orthogonal Haar Transform (OHT) performs better than  To understand the nature of coefficients of
the full search or full search equivalent algorithms, transformed pattern for pattern searching using trade-off
therefore to compute Haar-like features using stripbetween pixel positions and intensity values in the pattern
subtraction and strip division would lead to construct prior to obtain Haar Projection Values (HPVs) and after
better pattern searching algorithms and the sums of pixelsbtaining Haar Projection Values, three techniques such
within a rectangle (rectangle sums) are the buildingas cumulative addition, cumulative subtraction and
blocks for Haar-like features. cumulative division are used to determine range of values

(@© 2017 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

1172 NS B D. S. Dev, D. R. Kisku: Improved pattern matching algorithm

PatternSize (4 x4) PatternSize (4x4) PatternSize (8x8)

PatternSize (8x8)

k
B

HPV gulded Intencity Value J Pixel

Template Size [Piels Positions] Template Size [Pinels Positions]

Template Size [Pixels Positions){n * 4)

Template Size [Pixels Positions) [n*4)

PatternSize [12112) PatternSize (12x12) PatternSize {16x 16} % Pattern Size (16x 18]

4 o
£ Hijeo
o | o
: i =
Template Size (Plxels Positions] {n * 9] Template Size (Pixels Positions) {n * 9) Template Size [Pixels Positions] [n * 16] Template Size [Pixals Positions] [n * 16)

—
~—

Patternsize (dx 8] PatternSize (8x4) Pattern Size (8 8) PatternSize (83 8}

Intencity Value / Pixel

3

5

3%

; ......... —
Template Size [Pixels Psitians) Template Size Pixels Positions) plate Size [ Jinal inels Positionslin * 4]

PattemSize {12x12)

Pattern size {12 12) PatternSize (16 16) Patternsize (16 16)

{ Piasl

1

i

L H
£ 3
£ z
3 %
3 1
z :
2 T
H 3
= 2

; iy kG it || e vl i
Template Size [Pixels Positions) (n * 9} Template Size [Pixels Positions) n * 3) Template Size (Pixels Positions] [n * 16] Template Size [Pixels Positions) [n * 16)

(c) (d
(i)

PatternSize (42 4] 3 PatternSize (4x 8] PatternSize (8 8) H PatternSize (8x8)

mt 48 3
= & E]
H ) z
3 . 12
| 3 H
z z £
i 3 i

i

s wmwinioionl ||| [P Semaciiekimiiioinm
Template Size (Pixels Positions) Templote Size [Pixels Positions] Template Size i J i 4

Pamemnsize (121 12)

Pinel

HPV guidad Intancity Valus / Pixel

PatternSize {12 12) Pattensie {16 16) Patternsize (16x 16)

Tomplate ize [Pixels Postions) (n *3) Template Size [Pixels Positions) n * 9} ‘Template size Pl Positions) [n * 15] Template Size (Piets Positions) n * 16]

© (@
(i)

Fig. 7. Cumulative addition, cumulative subtraction and cumuéadivision algorithms are used to determine range of vatwescal
database using different size of patterns ((&)4(b) 8x 8, (c) 12x 12 and (d) 16« 16).
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Fig. 8: (a) Time Speed-ups measurements of integral image, stmip stip subtraction and strip division on local datasedsnfSL
through$S6 of normal images are shown. (b) The trade-offs between acgwand threshold on local datasets ranging f&inthrough
6 containing normal images, on which integral image, strip sstrip subtraction and strip division are tested, are show
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Table2: TPR, FPR, TNR, FNR and pattern matching accuracy deternunethtasets from S1 through S6 of local database of normal
images at optimal threshold, are shown.
Dataset Method TPR FPR TNR FNR Accuracy
S1 Integral Image | 0.978814| 0.125 0.875 | 0.021186| 0.956667
Strip Sum 0.985401| 0.192308| 0.807692| 0.014599 0.97
Strip Subtraction| 0.989209| 0.136364| 0.863636| 0.010791 0.98
Strip Division | 0.989209| 0.090909| 0.909091| 0.010791| 0.983333
S2 Integral Image | 0.979079| 0.180328| 0.819672| 0.020921| 0.946667
Strip Sum 0.988806| 0.125 0.875 | 0.011194| 0.976667
Strip Subtraction| 0.985294| 0.107143| 0.892857| 0.014706| 0.976667
Strip Division | 0.992647| 0.071429| 0.928571| 0.007353| 0.986667
S3 Integral Image | 0.967871| 0.098039| 0.901961| 0.032129| 0.956667
Strip Sum 0.988679| 0.142857| 0.857143| 0.011321| 0.973333
Strip Subtraction| 0.992424| 0.055556| 0.944444| 0.007576| 0.986667
Strip Division | 0.992509| 0.060606| 0.939394| 0.007491| 0.986667
S4 Integral Image | 0.982979| 0.153846| 0.846154| 0.017021| 0.953333
Strip Sum 0.992126| 0.043478| 0.956522| 0.007874| 0.986667
Strip Subtraction| 0.992509| 0.090909| 0.909091| 0.007491| 0.983333
Strip Division | 0.992593| 0.066667| 0.933333| 0.007407| 0.986667
S5 Integral Image | 0.983607| 0.142857| 0.857143| 0.016393 0.96
Strip Sum 0.98855 | 0.105263| 0.894737| 0.01145 | 0.976667
Strip Subtraction| 0.992565| 0.129032| 0.870968| 0.007435 0.98
Strip Division | 0.992537| 0.0625 0.9375 | 0.007463| 0.986667
S6 Integral Image | 0.98008 | 0.142857| 0.857143| 0.01992 0.96
Strip Sum 0.992395| 0.108108| 0.891892| 0.007605 0.98
Strip Subtraction| 0.984962| 0.147059| 0.852941| 0.015038 0.97
Strip Division | 0.992647| 0.071429| 0.928571| 0.007353| 0.986667

Table 3: Different sizes of scene images and patterns from MIT-CSddtabase are used in datasets S1 through S6 in the experiment

Data Set | Image Size | Pattern/ Template Size
S1 160x 120 16x 16
S2 320x 240 32x 32
S3 640x 480 64 x 64
S4 1280x 960 128x 128
S5 1280x 960 64 x 64
S6 1280x 960 32x 32

on the local database using four different sizes of patterns In Figure 7, we can see that strip sum using
(4x4,8x8, 12x 12 and 16x 16) shown in Figure. It cumulative addition takes a higher value range for all the
has been noticed that OHT calculation using stripdata sets, whereas strip subtraction using cumulative
subtraction (using cumulative subtraction) and stripsubtraction (CS) and strip division using cumulative
division (using cumulative division) need very less division (CD) represent the image intensity value along
amount of time for execution with respect to strip sum with HPV of the image in very small range of value. Thus
(using cumulative addition) and the intensity of each pixelmemory requirement using cumulative subtraction and
(after applying cumulative subtraction or cumulative cumulative division for strip subtraction and strip diaisi
division for strip subtraction and strip division respectively is very low in compare to cumulative
respectively), HPV guided intensity value of each pixel addition for strip sum. Therefore, the rectangle sum of a
are very less in compare to generated intensity value oparticular rectangle region calculated by the cumulative
each pixel (after applying cumulative addition for strip sum for strip sum is much higher than the rectangle sum
sum), that means that values represented by strivalue calculated by two techniques (CS and CD).
subtraction and strip division would take very less amount g re 8(a) shows that the speedup for the entire
of memory space. The results are shown with respect {yrocess of pattern matching using the existing techniques
pattern size of four different data sets. Similarly, we cangych as integral image and strip sum, and proposed
show that strip subtraction and strip division reduces theechniques such as strip subtraction and strip division. We
time and_memory_ requirement in comparison with strip can understand from Figurd(a) that pattern matching
sum for different size images or windows. process using strip subtraction and strip division are
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Table 4: TPR, FPR, TNR, FNR and pattern matching accuracy are detethon six datasets ranging from S1 to S6 are containing
normal images prepared from MIT-CSAIL database, at optimashold, are shown.
Dataset Method TPR FPR TNR FNR Accuracy
S1 Integral Image | 0.979592| 0.181818| 0.818182| 0.020408 0.95
Strip Sum 0.989011| 0.185185]| 0.814815| 0.010989| 0.973333
Strip Subtraction| 0.992701| 0.115385| 0.884615| 0.007299| 0.983333
Strip Division 0.99278 | 0.086957| 0.913043| 0.00722 | 0.986667

S2 Integral Image | 0.979079| 0.213115| 0.786885| 0.020921 0.94
Strip Sum 0.988806| 0.15625 | 0.84375 | 0.011194| 0.973333
Strip Subtraction| 0.992593 0.1 0.9 0.007407| 0.983333
Strip Division | 0.992647| 0.107143| 0.892857| 0.007353| 0.983333

S3 Integral Image | 0.979253| 0.220339| 0.779661| 0.020747 0.94

Strip Sum 0.988417| 0.121951| 0.878049| 0.011583| 0.973333
Strip Subtraction| 0.992424| 0.083333| 0.916667| 0.007576| 0.983333
Strip Division | 0.992509| 0.090909| 0.909091| 0.007491| 0.983333
S4 Integral Image | 0.978814| 0.203125| 0.796875| 0.021186 0.94
Strip Sum 0.988235] 0.111111| 0.888889| 0.011765| 0.973333
Strip Subtraction| 0.992509| 0.090909| 0.909091| 0.007491| 0.983333
Strip Division | 0.992593 0.1 0.9 0.007407| 0.983333
S5 Integral Image | 0.979424| 0.175439| 0.824561| 0.020576 0.95
Strip Sum 0.98855 | 0.131579| 0.868421| 0.01145 | 0.973333
Strip Subtraction| 0.992565| 0.16129 | 0.83871 | 0.007435| 0.976667
Strip Division | 0.992537| 0.09375 | 0.90625 | 0.007463| 0.983333
S6 Integral Image | 0.98008 | 0.204082| 0.795918| 0.01992 0.95
Strip Sum 0.988636| 0.138889| 0.861111| 0.011364| 0.973333
Strip Subtraction| 0.988679| 0.142857| 0.857143| 0.011321| 0.973333
Strip Division | 0.992481| 0.088235| 0.911765| 0.007519| 0.983333

Table 5: TPR, FPR, TNR, FNR and pattern matching accuracy are detethun six datasets ranging frogh to S6 are containing
noisy images prepared from MIT-CSAIL database, at optitmaghold, are shown.
Dataset Method TPR FPR TNR FNR Accuracy
S1 Integral Image | 0.977778| 0.186667 | 0.813333| 0.022222| 0.936667
Strip Sum 0.988235| 0.133333| 0.866667| 0.011765 0.97
Strip Subtraction| 0.992337| 0.153846| 0.846154| 0.007663| 0.973333
Strip Division | 0.992308| 0.075 0.925 | 0.007692| 0.983333
S2 Integral Image | 0.979592| 0.236364| 0.763636| 0.020408 0.94
Strip Sum 0.988636| 0.166667 | 0.833333| 0.011364 0.97
Strip Subtraction| 0.992509| 0.090909| 0.909091| 0.007491| 0.983333
Strip Division | 0.992593 0.1 0.9 0.007407| 0.983333
S3 Integral Image | 0.979592| 0.236364| 0.763636| 0.020408 0.94
Strip Sum 0.988593| 0.135135| 0.864865| 0.011407| 0.973333
Strip Subtraction| 0.988593| 0.108108| 0.891892| 0.011407| 0.976667
Strip Division 0.99262 | 0.068966| 0.931034| 0.00738 | 0.986667
S4 Integral Image | 0.978723 0.2 0.8 0.021277 0.94
Strip Sum 0.988593| 0.108108| 0.891892| 0.011407| 0.976667
Strip Subtraction| 0.99262 | 0.068966| 0.931034| 0.00738 | 0.986667
Strip Division | 0.992509| 0.090909| 0.909091| 0.007491| 0.983333
S5 Integral Image | 0.979592| 0.181818| 0.818182| 0.020408 0.95
Strip Sum 0.992509| 0.090909| 0.909091| 0.007491| 0.983333
Strip Subtraction| 0.992647| 0.178571| 0.821429| 0.007353| 0.976667
Strip Division | 0.992565| 0.096774| 0.903226| 0.007435| 0.983333
S6 Integral Image | 0.980159| 0.208333| 0.791667| 0.019841 0.95
Strip Sum 0.988764| 0.151515| 0.848485| 0.011236| 0.973333
Strip Subtraction| 0.988636| 0.138889| 0.861111| 0.011364| 0.973333
Strip Division | 0.992593 0.1 0.9 0.007407| 0.983333
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Time Speed-ups on Data Set 51 to 56 of Original Images
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Fig. 9: Time Speed-ups measurements on six datasets S1 througloB8ginél images are shown.

giving a competitively better speedup compare to stripdivision along with existing pattern matching algorithms
sum and integral image techniques. In Fig8fle), we can  such as integral image and strip sum on six datasets
see at the threshold level (level 6) for accuracyprepared from MIT-CSAIL database€3 and Table 3
measurement for all datasets, strip subtraction and strighow the different size of scene images and patterns. The
division outperform the Integral Image. For datasets 4 andexperimental results determined on MIT-CSAIL database
6, strip sum has better accuracy than strip subtraction andsing strip subtraction and strip division methods are also
for dataset 4, strip sum has the same accuracy as that @ompared with integral imagel] and strip sum 15]

strip division. But for the other cases, both strip methods. Six datasets are prepared with 120 Images taken
subtraction and strip division exhibit better performancefrom MIT-CSAIL database. These six datasets are
than strip sum. In order to show the efficacy of the uniformly sampled and four different sizes of scene
proposed techniques, viz. strip subtraction and stripimages, viz. 160« 120, 320x 240, 640x 480 and
division on local database, and compare them with two1280x 960 are considered and each 30 images have the
existing techniques integral image and strip sum, thesame resolution. Similarly, four different sizes of patter
values of essential parameters are determined such g46x 16, 32x 32, 64x 64 and 128« 128) are used in the
True Positive Rate (TPR), False Positive Rate (FPR), Truexperiment. For each image, 10 different randomly
Negative Rate (TNR), False Negative Rate (FNR) andselected patterns are considered. So each dataset will have
pattern matching accuracy. Tabl€ shows the 300 pattern image pairs. The proposed methods along
performance of strip subtraction and strip division with the existing methods are tested with three different
techniques along with integral image and strip sum inimage types: original images, noisy images, and blurred
terms of TPR, FPR, TNR, FNR and pattern matchingimages. DatasetS5 andS6 are used for scrutinizing the
accuracy. In can be seen from TaBl¢hat, in most of the  consequences of pattern size in pattern matching process
cases, strip subtraction and strip division outperformwith same scene image size varying pattern size.

integral image and strip sum methods except few ones For each test on a particular image tyS8D is used
while pattern matching accuracy is taken into to find degree of similarity when the threshold is set as
consideration. The results are determined for the optimal
threshold. Other non-optimal thresholds can be used to
determine the parameter values. However, that would not
be good results.

T = 1.1 x SDpin+ N, (22)

where N is the number of pixels present in pattern
image andSSDpin represents the minimum d&SD in
6.2 Experimental Results on MIT-CSAIL between pattern and best matching candidate window.
Database Following three sub-sections will summarize the
experimental results determined on original, noisy and
In the next experiment, we have tested the performance dblur images prepared from MIT-CSAIL database. As only
two proposed algorithms strip subtraction and stripthe original images are given in the database, however for
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Fig. 10: The trade-offs between accuracy and threshold determinesixodatasets ranging froi8l throughS6 containing normal
images prepared from MIT-CSAIL database on which strip mdbion, strip division, integral image and strip sum aitons are

tested, are shown.

Fig. 11: An original image with noisy images at four different levate shown.
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Fig. 12: Speed-ups in execution time on six datasets ranging §bmo S6 with four different noise levels.

the experiment, noisy and blur images are beingspeedup of algorithiX over algorithnmY is given by
generated and performance parameters are measured.
executiontimeor numbero f operationsrequiredbyY
B executiontimeornumberofoperationsrequiredbyz(2 3
From Figure9 we can see that both strip subtraction
and strip division are found to be much faster than
integral image and almost overlapping speed-ups
compare to strip sum method for a small size of the scene
As per the distribution of database into six datasetsimage. However, pattern matching for a large size of
described in Table, the experiment with the proposed scene image with a large size of the pattern (dataépor
techniques strip subtraction and strip division along withvarying pattern size (datase& and $6), both strip
the existing techniques strip sum and integral image issubtraction and strip division methods perform better
conducted on original images in order to understand andaving improved speed-ups compare to strip sum.
exhibit the performance in terms of speed against the While the proposed pattern matching algorithms, viz.
datasets, shown in Figur®. The time or operation strip subtraction and strip division are tested on six

6.2.1 Experimental results on original images
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Fig. 13: The trade-offs between accuracy and threshold determimstkaatasets ranging fro8i throughS6 containing noisy images
prepared from MIT-CSAIL database on which strip subtragctggirip division, integral image and strip sum algorithms tested, are
shown.

different datasets of normal images prepared from The trade-off between accuracy and threshold levels
MIT-CSAIL database, a comparison is also presenteddetermined on six datasets of normal images are shown in
with two existing algorithms on the same datasets toFigure10 where accuracy is determined for six different
exhibit the efficacy of the proposed algorithms. During thresholds on each dataset and curves are plotted for the
the experiment, it has been observed that both stripproposed as well as for the existing algorithms. However,
subtraction and strip division outperform integral image Table 4 shows the accuracy which is given for optimal
as well as strip sum algorithms on first five datasets inthreshold only when threshold varies between 1.0 and 1.1.
terms of pattern matching accuracy. However, for dataset

6, both strip subtraction and strip division along with

strip sum are found competitive to each other. Table .22 Experimental results on noisy images

shows TPR, FPR, TNR, FNR and accuracy which are

determined on six datasets using the proposed an
existing algorithms. In case of the integral image
accuracy slows down when the algorithm is evaluated
six datasets of normal images.

Q'o assess the performance of the algorithms on noisy
' images, four low-to-high levels (i.eN;, N2, N3 andNg)

O™t iid zero-mean Gaussian noise are added to every image
of the six datasets in featured in TaldeThese 4-level of
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Fig. 14: Four levels of blurred images correspond to an original iena@ depicted.
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Fig. 15: Speed-ups in execution time on datastshroughS6 having four different blur levels.

Gaussian noisa¥;, Np, N3 andN4 range from low to high  small in size is compared to scene image, the proposed
noise with deviations 100, 200, 400 and 800 respectivelytwo algorithms are at their very best for images with
With respect to one original image, how it changes with increasing noise levels. So, the speed-ups are not only
applying of four different noises are depicted in Figure depending on different noise levels, but also on the
11 different size of patterns and scene images.

The time speed-ups of the proposed algorithms over Noisy images are generated by adding four different
existing algorithms in different size of patterns and scenenoise levels to normal images contained in MIT-CSAIL
images with four different noise levels are depicted in database and then the performance of the proposed
Figurel2. It has been seen that strip subtraction and stripalgorithms are exhibited by determining TPR, FPR, TNR,
division are found very competitive to strip sum for FNR and accuracy on six datasets. The accuracy versus
dataset$l, 2 andS3, and faster than the integral image threshold curves determined noisy images are shown in
for all datasets. It can also be observed that stripFigure 13 and the experimental results are depicted in
subtraction and strip division perform better for large Table 5. It is being observed that, when algorithms are
scene image (i.e#A, S5 and6). Moreover, when pattern tested on datasefl, strip subtraction has shown better
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Fig. 16: The trade-offs between accuracy and threshold determinetkalatasets ranging fro81 throughS6 containing blur images
prepared from MIT-CSAIL database on which strip subtragctgirip division, integral image and strip sum algorithms tested, are
shown.

TPR compared to strip sum, integral image and stripthan strip division. On datas&b, both strip subtraction
division methods, whereas strip division outperformsand strip division show better TPR than strip sum and
other three methods when accuracy is measured. Omtegral image, whereas strip division and strip sum have
datasetS2, both strip subtraction and strip division have determined higher accuracy compared to strip subtraction
shown better TPR and accuracy compared to strip sunand integral image which are having the same accuracy.
and integral image, however, both strip subtraction andWhen algorithms are tested on dataS&f strip sum has
strip division have the same accuracy. On dat&estrip  found lesser TPR than strip division and better TPR than
division has shown better TPR and accuracy than thestrip subtraction and integral image, whereas strip
other methods, whereas both strip sum and stripdivision returns best accuracy compare to other methods
subtraction have the same TPR and strip subtraction i&nd strip sum has the same accuracy as that of strip
found with better accuracy than strip sum and integralsubtraction.

image. Both strip subtraction and strip division have

determined better TPR and accuracy on dateSkt

compared to strip sum and integral image, however, strip

subtraction exhibits better accuracy as well as better TPR
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Table 6: TPR, FPR, TNR, FNR and pattern matching accuracy are detethon six datasets ranging frogh to S6 are containing
blur images prepared from MIT-CSAIL database, at optimedghold, are shown.

Dataset Method TPR FPR TNR FNR Accuracy
S1 Integral Image | 0.978261 0.2 0.8 0.021739| 0.936667
Strip Sum 0.988372| 0.142857| 0.857143| 0.011628 0.97
Strip Subtraction| 0.992308 0.15 0.85 0.007692| 0.973333
Strip Division | 0.992366| 0.078947| 0.921053| 0.007634| 0.983333
S2 Integral Image | 0.979675| 0.240741| 0.759259| 0.020325 0.94

Strip Sum 0.98893 | 0.172414| 0.827586| 0.01107 | 0.973333
Strip Subtraction| 0.99262 | 0.103448| 0.896552| 0.00738 | 0.983333
Strip Division | 0.992593| 0.066667| 0.933333| 0.007407| 0.986667
S3 Integral Image | 0.979675| 0.240741| 0.759259| 0.020325 0.94
Strip Sum 0.99262 | 0.103448| 0.896552| 0.00738 | 0.983333
Strip Subtraction| 0.98893 | 0.172414| 0.827586| 0.01107 | 0.973333
Strip Division | 0.992647| 0.071429| 0.928571| 0.007353| 0.986667
S4 Integral Image | 0.979167| 0.216667| 0.783333| 0.020833 0.94
Strip Sum 0.988593| 0.108108| 0.891892| 0.011407| 0.976667
Strip Subtraction| 0.992481| 0.058824| 0.941176| 0.007519| 0.986667
Strip Division 0.99262 | 0.103448| 0.896552| 0.00738 | 0.983333
S5 Integral Image | 0.980315| 0.195652| 0.804348| 0.019685| 0.953333
Strip Sum 0.992565| 0.096774| 0.903226| 0.007435| 0.983333
Strip Subtraction| 0.99262 | 0.137931| 0.862069| 0.00738 0.98

Strip Division | 0.992593 0.1 0.9 0.007407| 0.983333
S6 Integral Image | 0.980392| 0.222222| 0.777778| 0.019608 0.95
Strip Sum 0.992593 0.1 0.9 0.007407| 0.983333

Strip Subtraction| 0.988764| 0.151515| 0.848485| 0.011236| 0.973333
Strip Division | 0.992647| 0.071429| 0.928571| 0.007353| 0.986667

6.2.3 Experimental results on blurred images images with different blur levels contained in six datasets
The experimental results and accuracy versus threshold
Similar to normal and noisy images, the proposed, as welFurves are shown in Tabtand in Figurel6respectively.
as existing algorithms, are also evaluated on blurredThe pattern matching accuracies are determined against
images which are used four different levels (iR, By, heuristically computed threshold having a range between
B andBy) of Gaussian low-pass filters to blur each scenel.0 and 1.1 with interval length 0.02. However, the
image of the datasets featured in TaBleThe four blur ~ accuracies for all six datasets containing blur images are
levels correspond to Gaussian low-pass filters withgiven in Table6, are determined at an optimal threshold.
standard deviations 0.9, 1.6, 2.3 and 3.0 respectivelyln this experiment, different performance parameters such
With respect to one original image, how it changes oras TPR, FPR, TNR, FNR and accuracy, are determined on

distorts with the effects of four different blur levels are Six datasets containing blur images prepared from
depicted in Figurd 4. MIT-CSAIL database. When the evaluation is performed
The time speed-ups curves of the proposed algorithm&n datasetS1, both strip subtraction and strip division
over existing algorithms with different size of patterns have shown better TPR and accuracy compared to strip
and scene images are shown in Figlifelt is being seen SUm and integral image. When the experiment is
that both strip subtraction and strip division are found conducted on datasé&®, strip subtraction exhibits better
very competitive when they are compared to strip sumTPR than strip sum, integral image and strip division,
and also found faster than the integral image in all caseshowever, on the other hand, strip division shows higher
When the algorithms are tested on data$2{sS2, S3and ~ accuracy than other three methods. On dat&8%6d6,
S5, both strip subtraction and strip division show better Strip sum exhibits lesser TPR and accuracy when it is
achievable speed-ups for scene image with four differenfompared to strip division, though it shows better TPR
blur effects. As we can see that for the combination ofand accuracy with respect to strip subtraction and integral
large scene image and decreasing pattern size (dafsets image. On datase$4, strip division determines better
& ), strip subtraction and strip sum are found very TPR when it is compared to strip subtraction, strip sum
much competitive to each other, however, strip divisionand integral image, however, strip subtraction has
outperforms strip sum when speed-ups is measured. deterrr_uned better accuracy than_ othe( three pattern
The performance of the proposed algorithms Stripmatchlng methpds. When t'he experiment is performed on
subtraction and strip division along with the existing datasetS5, strip subtraction has shown better TPR

algorithms strip sum and integral image are also tested ofompared to other methods, however, strip division and
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