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Abstract: In this paper, the efforts have been made to analyze the skewness & kurtosis of sampling distribution of R2 and R2
a evolving

the large sample asymptotic theory. The distributional properties such as mean and variance of the coefficient of determinations and its

adjusted version have been re-visited to affirm the efficiency of proposed work. In section 2, we describe the model, population and

sample parameters for the goodness of fit along with other related terms. The sampling distributions of statistics along with distributional

properties have been discussed in section 3. Lastly, the derivations of results utilized for deriving main results are provided in the

appendix.
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1 Introduction

The regression is most widely and commonly used technique for deriving relation between study variable with set of
independent variables. The sample coefficient of determination (R2) and its adjusted version is well-known measure for
explaining goodness of fit of model. The fundamental of explaining the goodness of fit of a model depends on the
amount of variability being explained by the the set of independent variables. Therefore, they exhibit the adequacy of
model along with the capability of predicting the value of dependent or study variables in regression relationship.

The R2 and its adjusted version have vital role in selection of independent variables during the process of model building.
For an illustration, let us suppose a researcher have several competing models and wish to make a choice for best suitable
model (with least lack of fit or maximum proportion of variability explained by variables). Then, R2 and R2

a render their
assistance in the development of model from a set of competing / similar models based on amount of variability
explained. Some of the researchers have pointed out interesting applications of R2 and R2

a and facts pertaining to the
hypothesis testing of regression coefficients, see; [12,11,20,19,18,13,10].

There are some limitations and well-known cautions related with the practical use of R2 and R2
a for drawing information

from a set of data. In spite of these limitations researchers keep applying R2 and R2
a for citing the quality of the models,

see; [6], [17], [14], [15]. Also, Cramer [3] studied the sampling distribution of the R2 and R2
a, which are widely used for

measuring the goodness of fit of linear regression model. The exact expression derived in [3] turned out to be sufficiently
complex and difficult for researchers to deduce any clear information. Therefore, findings pertain to numerical evaluation
have a curtailed scope. A comparatively simple and alternative solution of large sample asymptotic approximations has
been narrated in literature see; [9]. On parallel lines [7] utilized asymptotic approximations to draw inferences. Also see;
[1,2,8,9,4,5].

In this paper, the efforts have been made to analyze the skewness & kurtosis of sampling distribution of R2 and R2
a along

with a re-visit to mean, variance. In the next section, we describe the model, population and sample statistics for goodness
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of fit along with related terms. The sampling distributions of statistics are considered and the four salient features are
studied. Lastly, the derivations of results utilized for deriving main results have been provided are given.

2 Model and measures of goodness of fit

Let us postulate the linear regression model as
y = αe+Xβ + u (1)

where y is a vector of n×1 observations on the variable to be explained, α is a scalar representing the intercept term, e is
a n × 1 vector with all elements of unity, X is a n × p full column rank matrix of n-observations on p-explanatory
variables, β is a p× 1 vector of the coefficients associated with them and u is a n× 1 vector of disturbances.

Further, it is assumed that the elements of disturbance vector (u) are distributed independently and identically following
a normal distribution with zero mean and unknown positive variance σ2. Based on literature, let us allow to denote the
matrix A as follows

A =

(

In −
1

n
ee′

)

(2)

The sample coefficient of determinations is defined as

R2 =
y′AX(X ′AX)−1X ′Ay

yA′y
=

SSR

SSR+ SSE
(3)

While the adjusted version of sample coefficient of determination, which is popularly known as R2
a, obtained by applying

the correction for degree of freedom as specified here-under

R2
a = R2 −

(

p

n− p− 1

)

(1−R2)≤ R2 (4)

Both R2 and R2
a are generally applied as measure for the goodness of the fit in linear regression model.

Further, [16] have provided the population version of the coefficient of determination, θ , as specified below

θ =
β ′X ′AXβ

nσ2 +β ′X ′AXβ
=

β ′X ′AXβ
n

σ2 + β ′X ′AXβ
n

=
β ′Sβ

σ2 +β ′Sβ
; (5)

where

S =
1

n
X ′AX (6)

3 Distributional properties

[3] analyzed the some of the distributional properties of R2 and R2
a. However, the exact expressions for the first two

moments are found to be such that it is difficult to draw any clear inference due to complexity of mathematical expression.
Therefore, [3] has evaluated the results numerically and brought out some interesting findings. With a view to investigate
the large sample asymptotic properties of R2 and R2

a; Let us first introduce the following set of notations:

z =
u′AXβ

n
1
2 σ2

(7)

w =

(

u′u

n
1
2 σ2

− n1/2

)

(8)

θ =

(

1+
nσ2

β ′X ′AXβ

)−1

(9)

M =

(

AX(X ′AX)−1X ′A+
θ

n
ee′

)

(10)
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It is also assumed that the independent variables are asymptotically co-operative such that the limiting form of the matrix

(X ′AX
n

), as n grows large enough, is finite and non-singular. By utilizing the results of [9], we can express R2 and its
adjusted version as follows

R2 = θ +(1−θ )

[

f

n
1
2

+
g

n
+

h

n
3
2

]

+O(n−2) (11)

R2
a = θ +(1−θ )

[

f

n
1
2

+
g− p

n
+

h+ p f

n
3
2

]

+O(n−2) (12)

where

f = 2(1−θ )z−θw (13)

g =

(

u′Mu

σ2

)

− 4(1−θ )2z2 − 2(1−θ )(1− 2θ )zw+θ (1−θ )w2 (14)

h = (1−θ )

[

(

e′u

n1/2σ

)2

+(1−θ )(2zw+w)2

]

[2(1−θ )z−θw]−

(

1−θ

σ2

)

(2z+w)u′Mu (15)

It is necessary to observe that the quantities defined above i.e. f , g and h are of order O(1).

3.1 Mean

The sample mean is fundamentally employed to reveal basic properties of an estimator. [3] has also studied this property
of sample coefficient of determination. Here, an attempt has been made to first verify the authenticity of our method and
assumptions laid down to study properties of sampling distributions of R2 and its adjusted version. Utilizing (11) and (12)
defined in earlier part of this section, the mean of R2 and R2

a can be observe as given by

E(R2) = θ +(1−θ )

[

E( f )

n
1
2

+
E(g)

n
+

E(h)

n
3
2

]

(16)

E(R2
a) = θ +(1−θ )

[

E( f )

n
1
2

+
E(g)− p

n
+

E(h)

n
3
2

]

(17)

Utilizing the results of appendix, the expected values of f , g and h are substituted in (16) and (17) to obtain the expression

for the mean of sample coefficient of determination and its adjusted version up-to the order O(n−3/2) as given by

E(R2) = θ +
(1−θ )[p−θ (1− 2θ )]

n
(18)

E(R2
a) = θ −

θ (1−θ )(1− 2θ )

n
(19)

Looking at aforesaid equations, it can be observed that both R2 and R2
a have same asymptotic mean θ . However, the

inference drawn differs when higher order terms are retained. For instance, if we consider mean up-to the order O(n−3/2),
this is observed that R2

a has smaller magnitude of mean in comparison to R2 when

θ >
(1−θ )

n

[

θ (1− 2θ )−
p

2

]

(20)

is satisfied for all values of θ & p and align with the results available in literature.
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3.2 Variance

The variance of sample coefficient of determination and its adjusted version is re-visited in this section due to underlying
facts cited in previous sub-section. The expressions of variance for R2 along with R2

a are derived in this sub-section.
Further, by using the results obtained in appendix and (11), the following expression up-to the order O(n−2) are derived
as under

V (R2) = E[R2 −E(R2)]2

=(1−θ )2E

[

f

n1/2
+

g− p+θ (1− 2θ )

n
+

h

n3/2
)

]2

=(1−θ )2E
[ f 2

n
+

2 f (g− p)+ 2 f θ (1− 2θ )

n3/2
+

(g− p+θ (1− 2θ ))2+ 2 f h

n2

]

=(1−θ )2
[2θ (2−θ )

n2

]

+
(1−θ )2

n2

[

2E( f h)+E(g2)+ p2 − 2pE(g)+θ 2(1− 2θ )2+(2θ − 4θ 2)(E(g)− p)+ 2E( f g)
]

=X1 +Y1Z1 +Op(n
−2)

(21)
where

X1 =
2θ (2−θ )(1−θ )2

n2
(22)

Y1 =
(1−θ )2

n2
(23)

Z1 =2E( f h)+E(g2)+ p2 − 2pE(g)+θ 2(1− 2θ )2+ 2θ (1− 2θ )(E(g)− p)+ 2E( f g) (24)

Again, using the results pertaining to expectations of various combination of f , g and h from the section 5 (appendix) and
(12), the expression for the variance of R2

a up-to the order O(n−2) given by

V (R2
a) = E[R2

a −E(R2
a)]

2

=(1−θ )2E

[

f

n1/2
+

g− p+θ (1− 2θ)

n
+

h+ p f

n3/2

]2

=(1−θ )2E
[ f 2

n
+

2 f (g− p)+ 2 f θ (1− 2θ )

n3/2
+

(g− p+θ (1− 2θ ))2+ 2 f h+ 2p f 2

n2

]

=(1−θ )2
[2θ (2−θ )

n2

]

+
(1−θ )2

n2

[

2E( f h)+E(g2)+ p2 − 2pE(g)+θ 2(1− 2θ )2+ 2θ (1− 2θ )(E(g)− p)+ 2E( f g)
]

+
(1−θ )2

n2
2pE( f 2)

=X1 +Y1Z1 +[4pθ (2−θ )]Y1+Op(n
−2)

(25)
By utilizing (21) and (25) for comparing both versions, it is easy to draw the inference that R2 has always smaller variance
than its adjusted version (R2

a) as shown here-under

V (R2
a)−V(R2) =E[R2

a −E(R2
a)]

2 −E[R2 −E(R2)]2

=4pθ (2−θ )

(

1−θ

n

)2 (26)

the results demonstrated in (26) above, coincides with the results reported in Cramer (1987).

3.3 Skewness

Generally in Statistics, the measure of asymmetry of any distribution about its mean is termed as skewness. The
Pearson’s measure of skewness is being utilized to study the amount of asymmetry in sample coefficient of determination
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and its adjusted version, as given by

Sk(R2) =
E[R2 −E(R2)]3

{E[R2 −E(R2)]2}3/2
(27)

Sk(R2
a) =

E[R2
a −E(R2

a)]
3

{E[R2
a −E(R2

a)]
2}3/2

(28)

In order to derive expression for skewness, the expression for third central moment of R2 and R2
a is requisite. Therefore,

the third central moment of R2 up-to order O(n−5/2) is given by

E[R2 −E(R2)]3 = (1−θ )3E

[

f

n1/2
+

g− p+θ (1− 2θ )

n
+

h

n3/2

]3

=(1−θ )3E
[ f 3

n3/2
+

3 f 2(g− p)+ 3 f 2(θ )(1− 2θ )

n2
+

3 f 2h+ 3 f (g− p)2+ 3 f θ 2(1− 2θ )2+ 6 f θ (1− 2θ )(g− p)

n5/2

]

=
(1−θ )3

n3/2
E( f 3)+

(1−θ )3

n2
[3E( f 2g)− 3pE( f 2)+ 3θ (1− 2θ )E( f 2)]+

(1−θ )3

n5/2
[3E( f 2h)+ 3E( f g2)− 6pE( f g)

+ 6θ (1− 2θ )E( f g)]

=X2 +Y2 +Z2

(29)
where

X2 =
(1−θ )3E( f 3)

n3/2
(30)

Y2 =
(1−θ )3

n2
[3E( f 2g)− 3pE( f 2)+ 3θ (1− 2θ )E( f 2)] (31)

Z2 =
(1−θ )3

n5/2
[3E( f 2h)+ 3E( f g2)− 6pE( f g)+ 6θ (1− 2θ )E( f g)] (32)

The results of appendix are utilized in aforesaid expression for substituting the expected values of various combinations
of f , g and h, as and when required.

In a similar manner, the third central moment of R2
a can be obtained up-to the order O(n−5/2) as under

E[R2
a −E(R2

a)]
3 = (1−θ )3E

[

f

n1/2
+

g− p+θ (1− 2θ)

n
+

h+ p f

n3/2

]3

=(1−θ )3E
[ f 3

n3/2
+

3 f 2(g− p)+ 3 f 2θ (1− 2θ )

n2
+

3 f 2h+ 3p f 3+ 3 f (g− p)2+ 3 f θ 2(1− 2θ )2

n5/2
+

6 f (g− p)θ (1− 2θ )

n5/2

]

=
(1−θ )3

n3/2
E( f 3)+

(1−θ )3

n2

[

3E( f 2g)− 3pE( f 2)+ 3θ (1− 2θ )E( f 2)
]

+
(1−θ )3

n5/2

[

3E( f 2h)+ 3E( f g2)− 6pE( f g)

+ 6θ (1− 2θ )E( f g)
]

+
(1−θ )3

n5/2
3pE( f 3)

=X2 +Y2 +Z2 +
(1−θ )3

n5/2
3pE( f 3)

(33)

The third central moment of all symmetric distributions is always zero. The first inference drawn out by looking at (29)
and (33) is that both versions of sample coefficient of determination are non-zero. In other-words, departure of symmetry
exists in both versions.

The comparison of (29) and (33) clearly reveals that the third central moment of R2 is greater than R2
a up to order

O(n−5/2). Also, from (24) and (25) it is clear that second central moment of R2
a is greater than that of R2. Therefore, this

implies that the Sk(R2) > Sk(R2
a). Further, values of skewness of R2 and adjusted R2 are calculated using the expressions
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Table 1: Skewness of R2 and R2
a for different values of n, p and θ .

Sk.
θ = 0.2 θ = 0.4 θ = 0.6 θ = 0.8

Sk(R2) Sk(R2
a) Sk(R2) Sk(R2

a) Sk(R2) Sk(R2
a) Sk(R2) Sk(R2

a)

p = 2

n=10 -0.59 -0.39 -4.24 -2.65 -11.77 -7.47 -33.30 -21.56

n=20 -0.71 -0.56 -3.29 -2.54 -9.09 -7.05 -26.50 -20.64

n=50 -0.51 -0.46 -2.15 -1.92 -6.03 -5.40 -18.05 -16.16

p = 5

n=10 -1.23 -0.59 -4.90 -2.01 -11.86 -4.91 -29.16 -12.82

n=20 -1.18 -0.73 -3.74 -2.17 -9.25 -5.36 -24.63 -14.57

n=50 -0.79 -0.62 -2.38 -1.85 -6.16 -4.77 -17.53 -13.60

p = 7

n=10 -1.49 -0.65 -5.51 -1.87 -12.33 -4.19 -27.51 -10.18

n=20 -1.42 -0.78 -4.12 -2.05 -9.53 -4.74 -23.79 -12.21

n=50 -0.96 -0.70 -2.57 -1.83 -6.29 -4.47 -17.27 -12.32

p = 9

n=10 -1.69 -0.69 -6.22 -1.81 -13.03 -3.78 -26.47 -8.59

n=20 -1.62 -0.83 -4.55 -1.99 -9.92 -4.32 -23.19 -10.58

n=50 -1.12 -0.76 -2.77 -1.82 -6.46 -4.23 -17.08 -11.29

Remarks: Sign of third order central moment is indicator of type of skewness.

derived in this section and appendix results. The numerically calculated values for different values of θ , nand p are
shown in Table 4.1.

The numerical difference of Sk(R2)−Sk(R2
a) for different values of n, p and θ using MATLAB tool is tabulated in Table

4.2. The values for different combinations of n, p and θ reveals that R2 is more negatively skewed than adjusted version
of R2. Further, with increase in the value of θ for same combination of n and p degree of difference in skewness witness
an increase trend. It can also be observed from table 4.2 that for given value of θ and n there is clearly an increasing trend
as value of p increases. The value of difference between skewness of R2 and that of R2

a is positive (ignoring negative
sign) for different values of n, p and θ , which supports our theoretical findings that R2 is more skewed (negatively).

3.4 Kurtosis

The Pearson measure of Kurtosis is widely being employed to measure the degree of flatness or peakness of any probability
distribution. The Pearson’s measures of Kurtosis of R2 and R2

a up-to the order O(n−1) can be expressed as

K(R2) =
E[R2 −E(R2)]4

{E[R2 −E(R2)]2}2
− 3 (34)
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Table 2: Difference of Skewness of R2 and Adjusted R2 using different values of n, p and θ .

Diff. Skewness θ = 0.2 θ = 0.4 θ = 0.6 θ = 0.8

n = 10, p = 2 0.20 1.59 4.30 11.74

n = 20, p = 2 0.16 0.75 2.04 5.86

n = 50, p = 2 0.05 0.22 0.63 1.88

n = 10, p = 5 0.63 2.89 6.94 16.34

n = 20, p = 5 0.45 1.58 3.89 10.07

n = 50, p = 5 0.17 0.53 1.39 3.92

n = 10, p = 7 0.84 3.65 8.14 17.33

n = 20, p = 7 0.63 2.07 4.79 11.57

n = 50, p = 7 0.26 0.74 1.83 4.95

n = 10, p = 9 1.01 4.40 9.26 17.89

n = 20, p = 9 0.79 2.56 5.60 12.61

n = 50, p = 9 0.35 0.95 2.23 5.79

Remarks: Ignoring the negative signs of third order central moments as sign is indicator of type of skewness.

K(R2
a) =

E[R2
a −E(R2

a)]
4

{E[R2
a −E(R2

a)]
2}2

− 3 (35)

In order to find kurtosis of R2, consider the fourth central moment of R2 up-to the order O(n−3) as given by

E[R2 −E(R2)]4 = (1−θ )4E

[

f

n1/2
+

g− p+θ (1− 2θ )

n
+

h

n3/2

]4

=(1−θ )4E
[ f 4

n2
+

4 f 3(g− p)+ 4 f 3θ (1− 2θ )

n5/2
+

4 f 3h+ 6 f 2(g− p)2+ 6θ 2(1− 2θ )2 f 2

n3
+

12θ (1− 2θ ) f 2(g− p)

n3

]

=
(1−θ )4

n2
E( f 4)+

(1−θ )4

n5/2

[

4E( f 3(g− p))+ 4E( f 3)θ (1− 2θ )
]

+
(1−θ )4

n3

[

4E( f 3h)+ 6E( f 2(g− p)2)+ 6θ 2(1− 2θ )2

E( f 2)+ 12θ (1− 2θ )E( f 2(g− p))
]

=X3 +Y3 +Z3

(36)
where

X3 =
(1−θ )4

n2
E( f 4) (37)

Y3 =
(1−θ )4

n3
[4E( f 3h)+ 6E( f 2(g− p)2)+ 6θ 2(1−θ )2E( f 2)+ 12θ (1− 2θ )E( f 2(g− p))] (38)

Z3 =
(1−θ )4

n5/2
[4E( f 3(g− p))+ 4θ (1− 2θ )E( f 3)] (39)
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Table 3: Kurtosis of R2 and R2
a for different values of n, p and θ .

Kr.
θ = 0.2 θ = 0.4 θ = 0.6 θ = 0.8

K(R2) K(R2
a) K(R2) K(R2

a) K(R2) K(R2
a) K(R2) K(R2

a)

p = 2

n=10 14.22 7.39 18.31 9.76 31.16 17.17 75.92 42.73

n=20 7.41 5.22 9.47 6.82 17.19 12.44 44.40 32.06

n=50 3.13 2.71 4.06 3.56 7.58 6.65 19.97 17.37

p = 5

n=10 11.04 3.19 26.48 7.34 53.38 15.78 122.02 39.89

n=20 7.96 3.73 15.20 7.13 31.57 15.13 79.69 39.35

n=50 4.17 2.92 6.81 4.86 14.33 10.25 38.43 27.49

p = 7

n=10 9.35 1.87 29.76 5.98 64.07 14.02 140.43 35.86

n=20 7.85 2.92 18.23 6.76 39.71 15.21 97.86 39.66

n=50 4.65 2.87 8.48 5.33 18.53 11.72 49.50 31.54

p = 9

n=10 7.99 1.02 31.93 4.90 72.34 12.40 152.59 32.11

n=20 7.59 2.27 20.75 6.27 46.87 14.78 112.69 38.67

n=50 5.01 2.74 10.04 5.61 22.52 12.71 59.68 34.21

Similarly, to obtain the expression for kurtosis of R2
a, the fourth central moment of R2

a to order O(n−3) is derived as
follows:

E(R2
a −E(R2

a))
4 = (1−θ )4E

[

f

n1/2
+

g− p+θ (1− 2θ )

n
+

h+ p f

n3/2

]4

=(1−θ )4E
[ f 4

n2
+

4 f 3(g− p)+ 4 f 3θ (1− 2θ )

n5/2
+

4 f 3h+ 4p f 4+ 6 f 2(g− p)2 + 6 f 2θ 2(1− 2θ )2

n3
+

12 f 2(g− p)θ (1− 2θ )

n3

]

=
(1−θ )4

n2
E( f 4)+

(1−θ )4

n5/2

[

4E( f 3(g− p))+ 4( f 3θ (1− 2θ ))
]

+
(1−θ )4

n3

[

4E( f 3h)+ 6E( f 2(g− p)2)+ 6θ 2(1− 2θ )2

E( f 2)+ 12θ (1− 2θ )E( f 2(g− p))
]

+
(1−θ )4

n3
4pE( f 4)

=X3 +Y3 +Z3 +
(1−θ )4

n3
4pE( f 4)

(40)
The comparison using (36) and (40) reveal that the fourth central order moment of R2 is greater than that of R2

a. However,
exact value is calculated using equations (34) and (35) by inserting values of (36), (40), (24), (25) and results cited in
Appendix.

The numerically calculated values of kurtosis for both version of sample measure of goodness of fit are tabulated for some
values of n, p and θ as Table 4.3. Also, the difference of K(R2) and K(R2

a) is tabulated under Table 4.4 using different
values of n, p and θ . The kurtosis of R2 is seems to be higher than its adjusted version. Further, with increase in the value
of θ for given value of n and p the difference values is showing an increasing trend. However, for given value of θ and p
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Table 4: Difference of Kurtosis of R2 and R2
a using different values of θ ,n and p.

Diff. Kurtosis θ = 0.2 θ = 0.4 θ = 0.6 θ = 0.8

n = 10, p = 2 6.83 8.55 13.98 33.19

n = 20, p = 2 2.18 2.65 4.75 12.34

n = 50, p = 2 0.41 0.49 0.94 2.60

n = 10, p = 5 7.86 19.14 37.60 82.13

n = 20, p = 5 4.23 8.07 16.45 40.34

n = 50, p = 5 1.24 1.94 4.07 10.94

n = 10, p = 7 7.48 23.78 50.04 104.56

n = 20, p = 7 4.93 11.47 24.51 58.19

n = 50, p = 7 1.78 3.15 6.81 17.96

n = 10, p = 9 6.97 27.02 59.94 120.48

n = 20, p = 9 5.32 14.48 32.08 74.02

n = 50, p = 9 2.27 4.44 9.81 25.47

Remarks: The difference between Kurtosis of R2 and R2
a is positive for different values of n, p and θ .

with increase in value of n the difference has observed a decreasing trend.
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Appendix: Derivation of results

In order to find the expectations of various combinations of f , g and h based on the equations (13), (14) and (15), Let us
allow to state following theorem.

Theorem 4: The expression for the expectations of the f , g, h and various combinations of n, p,θ up-to O(n−1/2) by

virtue of normality of disturbances are given as

E( f ) = 0

E( f 2) = 2θ (2−θ )

E( f 3) =−
8θ 3

n1/2
(3− 2θ )

E( f 4) = 12θ 2(2−θ )2 +
48θ 3

n
(4− 3θ )

E(g) = p−θ (1− 2θ )

E(g2) = p2 + 2p(1−θ + 2θ 2)−θ (6− 17θ + 20θ 2− 12θ 3)

E( f g) =−
2θ

n
1
2

(p+ 4− 11θ + 8θ 2)

E( f 2g) = 2θ [(2−θ )p+ 4− 14θ+ 17θ 2 − 6θ 3]

E( f 3g) =
4θ 2

n1/2
(−12p+ 228θ − 72+ 7pθ − 241θ 2+ 80θ 3)

E( f g2) =
4θ 2

n1/2
(−p2 + 20pθ − 10p− 14pθ 2− 43θ 2+ 34θ 3 − 20θ 4+ 42θ )

E( f 2g2) = 2θ (−17θ 5+ 62θ 4− 46θ 3 + 25θ 2− 36θ + 16)+ 2pθ (−pθ + 34θ 2− 12θ 3− 29θ + 2p+ 12)

E(h) = 0

E( f h) =−2θ (1−θ )(p+ 6θ 2− 5θ )

E( f 2h) =
4θ (1−θ )

n1/2
(9pθ + 4p− 9θ 2+ 4θ 3 + 6θ + 8)

E( f 3h) = θ 2(670θ 2 − 940θ 3− 288θ + 128+ 430θ 4)+ 12θ 2σ2(−θ 2 − 2θ − pθ + 2p+ 10)

(41)

using (13), (14) and (15).

Proof.: In order to obtain the results of theorem; let us first state, when ui are independently and identically distributed

with N(0,σ2), following results:
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E
[

(u′Inu)
]

= σ2
[

n
]

E
[

(u′Inu)(u′Inu)
]

= σ4
[

n2 + 2n
]

E
[

(u′Inu)(u′Inu)(u′Inu)
]

= σ6
[

n3 + 6n2 + 8n
]

E
[

(u′Inu)(u′Inu)(u′Inu)(u′Inu)
]

= σ8
[

n4 + 12n3+ 44n2+ 48n
]

(42)

where I is a symmetric matrices (identity matrix) of order n× n.

3.5 Expectations of various orders of z

The expected value of z, z2, z3, z4, z5 and z6 are obtained, by using (7) and results of (42), as follows

E(z) =
1

n1/2σ2
E(u′AXβ ) =

1

n1/2σ2
E(u′A)Xβ =

1

n1/2σ2
E(u′)l Where; l = AXβ = 0 (43)

E(z2) =
1

nσ4
E[(u′AXβ )′(u′AXβ )] =

1

nσ4
E[(β ′X ′A′uu′AXβ )] =

1

nσ4
σ2σ2n

(

θ

1−θ

)

=

(

θ

1−θ

)

(44)

E(z3) =
1

n3/2σ6
E(u′l)3 = 0

∵ E[u′l]3 =E[u1l1 + u2l2 + ...+ umlm]
3

=E
[

∑
i

(liui)
3 +∑

i6= j

l2
i l ju

2
i u j + ∑

i6= j 6=k

lil jlkuiu juk

]

=E
[

∑
i

l3
i E(ui)

3 +∑
i6= j

l2
i l jE(u

2
i )E(u j)+ ∑

i6= j 6=k

lil jlkE(ui)E(u j)E(uk)
]

=0 Where; l = AXβ

(45)

E(z4) =
1

n2σ8
E[(u′AXβ )′(u′AXβ )]2 =

1

n2σ4
(β ′X ′AXβ )2 = 3

(

θ

1−θ

)2

(46)

E(z5) =
1

n3/2σ6
E(u′l)5 =

1

n3/2σ6
E(u′ll′uu′ll′uu′l) = 0; ref. eq. (45). (47)

E(z6) =E
[ 1

nσ4
(u′AXβ )′(u′AXβ )

]3

=
1

n3σ12
E
[

(u′ll′u)(u′ll′u)(u′ll′u)
]

=
1

n3σ12

[

n3σ6

(

θ

1−θ

)3

+ 6n3σ6

(

θ

1−θ

)3

+ 8n3σ6

(

θ

1−θ

)3
]

=15

(

θ

1−θ

)3

(48)

3.6 Expectations of various orders of w

The expected value of w, w2, w3, w4 and w5 by using (8) and utilizing results of (42), we get

E(w) =E

[ u′u

n1/2σ2
− n1/2

]

=
1

n1/2σ2
E(u′u)−E(n1/2) = n1/2 − n1/2 = 0 (49)

E(w2) = E

[ u′u

n1/2σ2
− n1/2

]2

=
1

nσ4
E(u′uu′u)+E(n)−

2

σ2
E(u′u) = n+ 2+ n− 2n= 2 (50)
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E(w3) = E
[ u′u

n1/2σ2
− n1/2

]3

= E
[u′uu′uu′u

n3/2σ6
− n3/2−

3u′uu′u

n1/2σ4
+

3n1/2u′u

σ2

]

=
E(u′uu′uu′u)

n3/2σ6
− n3/2 −

3E(u′uu′u)

n1/2σ4
+

3n1/2E(u′u)

σ2
= 6n1/2 +

8

n1/2
− 3n3/2− 6n1/2+ 3n3/2 =

8

n1/2

(51)

E(w4) = E
[ u′u

n1/2σ2
− n1/2

]4

= E
[ A4

n2σ8
+ n2 +

2A2

σ4
+

4A2

σ4
−

4A3

nσ6
−

4nA

σ2

]

where, A = u′u

= n2 + 12n+ 44+
48

n
− 4n2− 32− 24n+ 2n2+ 12n+ n2 = 12

(

1+
4

n

) (52)

E(w5) =E
[ u′u

n1/2σ2
− n1/2

]5

=
E(u′u)5

n5/2σ10
− n5/2−

5E(u′u)4

σ8n3/2
+

10E(u′u)3

σ6n1/2
−

10E(u′u)2n1/2

σ4
+

5n3/2E(u′u)

σ2

=n5/2 + 20n3/2+ 140n1/2+
400

n1/2
+

384

n3/2
− 5n5/2− 60n3/2− 220n1/2+ 10n5/2−

240

n1/2
+ 80n1/2+ 60n3/2

− 10n5/2− 20n3/2+ 5n5/2− n5/2 =
32

n1/2

(

5+
12

n

)

(53)

3.7 Expectations of various combination of z & w

By using, the expectations of combinations of z and w based on results at (42)

E(zw) =E
[( u′u

n1/2σ2
− n1/2

)(u′AXβ

n1/2σ2

)]

= E
[u′uu′AXβ

nσ4
−

u′AXβ

σ2

]

=
E(u′uu′AXβ )

nσ4
−

E(u′AXβ )

σ2
= 0 (54)

E(z2w) =E

[u′ll′uu′u

n3/2σ6
− n1/2 u′ll′u

nσ4

]

=
E(u′ll′uu′u)

n3/2σ6
− n1/2 E(u′ll′u)

nσ4

=
1

σ2n3/2

[

n(n+ 2)σ2

(

θ

1−θ

)

]

− n1/2

(

θ

1−θ

)

=
( θ

1−θ

)(2+ n

n1/2
− n1/2

)

=
2

n1/2

( θ

1−θ

)

(55)

E(z2w2) =
1

n2σ8
E(u′ll′uu′u)+

1

σ4
E(u′ll′u)−

2

nσ6
E(u′ll′uu′u)

=
1

n

[( θ

1−θ

)

n2 + 6
( θ

1−θ

)

n+ 8
( θ

1−θ

)]

+ n
( θ

1−θ

)

− 2(2+ n)
( θ

1−θ

)

=
( θ

1−θ

)(n2 + 6n+ 8+ n2− 4n− 2n2

n

)

= 2
( θ

1−θ

)(

1+
4

n

)

(56)

E(z2w3) =E
[(u′ll′u

nσ4

)(u′uu′uu′u

n3/2σ6
− n3/2− 3

u′uu′u

σ4n1/2
+ 3n1/2 u′u

σ2

)]

=E
[u′ll′uu′uu′uu′u

n5/2σ10
− n1/2 u′ll′u

σ4
− 3

u′ll′uu′uu′u

σ8n3/2
+ 3n1/2 u′ll′uu′u

nσ6

]

=
( θ

1−θ

)(

n3/2 + 12n1/2+
44

n1/2
+

48

n3/2
− n3/2− 18n1/2−

24

n3/2
− 3n3/2+ 6n1/2

)

=
( θ

1−θ

)( 20

n1/2
+

48

n3/2

)

=
4

n1/2

(

θ

1−θ

)(

5+
12

n

)

(57)

E(z4w) =E

[u′ll′uu′ll′uu′u

n5/2σ10
− n1/2 u′ll′uu′ll′u

n2σ8

]

=
1

n1/2

( θ

1−θ

)

(n+ 4+ 2n+ 8−3n)=
12

n1/2

(

θ

1−θ

)2

(58)

c© 2021 NSP

Natural Sciences Publishing Cor.



J. Stat. Appl. Pro. Lett. 8, No. 1, 1-14 (2021) / www.naturalspublishing.com/Journals.asp 13

3.8 Expectations of various combinations of M,e & u

Similarly the expectations of combinations of M,e & u are as under

E

(

e′u

n1/2σ

)2

w =
1

n3/2σ4
E(u′uu′ee′u− u′ee′u) =

1

n3/2
(n+ 2n− n)=

2

n1/2
(59)

E

(

e′u

n1/2σ

)2

w2 = E

[

(

e′u

n1/2σ

)2(
u′uu′u

nσ4
+ n−

u′u

σ2

)

]

= E

[

(

u′ee′uu′uu′u

n2σ6
+

u′ee′u

σ2
−

u′uu′ee′u

nσ4

)

]

= 2

(

1+
4

n

)

(60)

E

(

e′u

n1/2σ

)2

Z2 = E

[

(

e′u

n1/2σ

)2 (
u′ll′u

nσ4

)

]

=
1

n2σ6
E[u′ll′u)(u′ee′u)] =

1

n2σ2
nσ2

(

θ

1−θ

)

(1+ 2) =
3

n

(

θ

1−θ

)

(61)

E

(

e′u

n1/2σ

)2

Z2w =E
[

(

e′u

n1/2σ

)2
( u′u

n1/2σ2
− n1/2

)(u′ll′u

nσ4

)]

= E
[

(

1

n5/2σ8

)2

u′ee′uu′ll′uu′u+
n1/2

nσ4
u′ll′u

]

=
2

n1/2

(

θ

1−θ

)

(

1+
5

n

)

(62)

E

(

e′u

n1/2σ

)2

w3 =E
[u′ee′u

nσ2

(u′uu′u

nσ4
+ n− 2

u′u

σ2

)( u′u

n1/2σ2
− n1/2

)]

=E
[ (u′ee′uu′uu′uu′u)

n5/2σ8
−

(u′ee′uu′uu′u)

n3/2σ6
+

(u′ee′uu′u)

n1/2σ4
−

n1/2(u′ee′u)

σ2
− 2

(u′ee′uu′uu′u)

n3/2σ6
+ 2

(u′ee′uu′u)

n1/2σ4

]

=n1/2 +
12

n1/2
+

44

n3/2
+

48

n5/2
− 3n1/2−

18

n1/2
−

24

n3/2
+

6

n1/2
+ 3n1/2− n1/2

=
1

n3/2

(

20+
48

n

)

(63)

E(u′Mu)2 = E(u′Muu′Mu) = σ4[(trM)(trM)+ 2tr(MM)] = σ4[(p+θ )(p+θ )+ 2p+θ )]

= σ4[(p+θ )2 + 2(p+θ )] = σ4(p+θ )(p+θ + 2)
(64)

E(u′Muw) =
1

n1/2σ2
E(u′Muu′u− nσ2u′Mu) =

1

n1/2σ2
E(u′Muu′u)− n1/2E(u′Mu)

=
1

n1/2
σ2[(p+θ )+ 2(p+θ )]− n1/2σ2(p+θ ) =

2σ2

n1/2
(p+θ )

(65)

E(u′Muw2) =2σ2E

[u′Muu′uu′u

nσ6
+ n

u′Mu

σ2
− 2

u′uu′Mu

σ4

]

=σ2
[

n(p+θ )+ 6(p+θ )+
8(p+θ )

n
+ n(p+θ )− 4(p+θ )−2n(p+θ )

]

= 2σ2(p+θ )

(

1+
4

n

) (66)

E(u′Mu) = σ2trM = σ2(p+θ ) (67)

E(u′Muw3) =E
[

u′Mu
(u′uu′uu′u

n3/2σ8
− n3/2 − 3

u′uu′u

n1/2σ4
+ 3n1/2 u′u

σ2

)]

=σ2E
[u′Muu′uu′uu′u

n3/2σ8
− n3/2 u′Mu

σ2
− 3

u′uu′uu′Mu

n1/2σ6
+ 3n1/2 u′uu′Mu

σ4

]

=σ2
[ (n3 + 12n2+ 44n+ 48)(p+θ )

n3/2
− n3/2(p+θ )−

3

n1/2
(p+θ )(n2+ 6n+ 8)+ 3n1/2(n+ 2)(p+θ )

]

=
4σ2

n1/2
(p+θ )

(

5+
12

n

)

(68)
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E(u′Muw4) =
1

n2σ8
E(u′Muu′uu′uu′uu′u)−

4

σ6
E(u′Muu′uu′uu′u)+

6

σ4
E(u′Muu′uu′u)−

4n

σ2
E(u′Muu′u)+ n2E(u′Mu)

=σ2
[

140(p+θ )+
400

n
(p+θ )− 176(p+θ )−

192

n
(p+θ )+

384

n2
(p+θ )+ 48(p+θ )

]

=4σ2(p+θ )

(

3+
52

n
+

96

n2

)

(69)

E(u′Muz4) =
1

n2σ8
E(u′ll′uu′ll′uu′Mu) =

1

n2σ2

[(

nσ2 θ

1−θ

)2

(p+θ )+ 2(p+θ )n2
(

σ2 θ

1−θ

)2

+ 12n2σ4
( θ

1−θ

)2]

=

(

θ

1−θ

)2

σ2[(p+θ )+ 2(p+θ )+ 4+8]= 3σ2

(

θ

1−θ

)2

(p+θ + 4)

(70)

E((u′Mu)2z2) =
1

nσ4
E(u′Muu′Muu′ll′u) =

[

(p+θ )2nσ2

(

θ

1−θ

)

+ 6(p+θ )nσ2

(

θ

1−θ

)

+ 8nσ2

(

θ

1−θ

)

]

=σ4

(

θ

1−θ

)

(p+θ + 2)(p+θ + 4)

(71)

E((u′Mu)2w) =
1

σ2n1/2
[E(u′Muu′Muu′u)− nσ2E(u′Muu′Mu)]

=σ4
[ 1

n1/2
{(p+θ )2n+ 4(p+θ )2+ 2n(p+θ )+ 8(p+θ )}−n1/2{(p+θ )2 + 2(p+θ )}

]

=
4σ4

n1/2
(p+θ )(p+θ + 2)

(72)

E(u′Muz2) =
1

nσ4
E(u′Muu′ll′u) = σ2

[

(p+θ )

(

θ

1−θ

)

+ 2

(

θ

1−θ

)

]

= σ2

(

θ

1−θ

)

(p+θ + 2) (73)

E[(u′Mu)z2w] =E
[

u′Mu
u′ll′u

nσ4

(

u′u

n1/2σ6
− n1/2

)

]

=E
[ (u′Muu′ll′uu′u)

n3/2σ6
−

(u′Muu′ll′u)

n1/2σ4

]

=nσ2

(

θ

1−θ

)

[n(p+θ )

n3/2
+

2

n1/2
+

4(p+θ )

n3/2
+

8

n3/2

]

−
[ 1

n1/2
σ2(p+θ + 2)

( θ

1−θ

)]

=nσ2

(

θ

1−θ

)

4

n3/2
(2+ p+θ ) =

4σ2

n1/2

(

θ

1−θ

)

(p+θ + 2)

(74)

Utilizing these results (43)− (74) repeatedly, Thus, we obtain the results of equations at (41) of the Theorem 4.
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