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Abstract: In this paper, suggested a solution algorithm to a fuzzy three-level fractional programming problem (F-TLFP). This problem
involving fuzzy parameters on the right side of the constraints. First, a non-fuzzy problem (o-TLFP) with a crisp set of constraints is
established depending on the concept of the a-level set of fuzzy numbers. Second, problem (o-TLFP) could be converted into a
real-valued three-level fractional programming problem (RV-TLFP) which could be transformed into a real-valued bi-level fractional
programming problem (RV-BLFP) by the duality theorem of linear fractional programming. In the same way, the problem (RV-BLFP)
is transformed into a real-valued single-level fractional programming problem (RV-SLFP) again by the duality theorem, which could
be solved for obtaining an a-optimal solution of problem (F-TLFP). Also, some stability notions are characterized and defined for the
problem of concern by extending the Karush-Kuhn-Tucker optimality conditions equivalent to the problem (RV-SLFP). An algorithm
is a presentation of infinite steps to solve and investigate the stability of the solution of the problem (F-TLFP). An illustrative numerical
example is provided to demonstrate the proposed solution algorithm.
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1 Introduction

Three-level optimization is a type of multi-level
optimization which is a technique developed to solve the
decentralized problem with multiple decision-makers in
the hierarchical organization [1, 2, 3]. Three-level
programming problem is concerned with minimizing or
maximizing some quantity represented by an objective
function.

Fractional programming (FP), which has been used
as an important planning tool function for the last four
decades, is applied to different disciplines such as
engineering, business, and economics. Fractional
programming is generally used for modeling real-life
problems with fractional objectives such as profit/cost,
inventory/sales, actual  cost/standard  cost, and
output/employee [4, 5, 6 and, 7].

The fuzzy set and numbers have been introduced the
concept in 1965 by Zadeh [8]. Fuzzy set theory has been to
deal with imprecise numerical quantities nearly. It is well
applied and developed in a wide of real problems.

Stability of solutions becomes more and more
attractive in the area of mathematical programming.
Publications on this topic usually investigate the impact
of parameter changes (in the right-hand side or/and in the
objective functions or/and in the left-hand side or/and in
the domination structure) on the solution in various
models of vector optimization problems. Stability study
allows the decision-maker to take on decisions under
various charges keeping the solution of the problem under
consideration the same in a specified solution domain,
which has great importance in management decision
making as well as outside of it.

M. Osman et al. [9], diseased the characterization of
some basic stability notations is parametric bi-level
multi-objective linear fractional programming problems
in a rough environment. In their paper, some notions have
been extended to investigate the stability set of the first
kind to the three-level fractional programming problem
involving fuzzy parameters in the right-hand side of the
constraints (TLFP-FP).

This paper presented; the stability set of the first kind
for the three-level fractional programming (TLFP-FP)
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problem. Some stability notations such as the solvability
set and the stability set have been defined for such a
problem, where fuzzy parameters in the constraints of the
problem (TLFP-FP) are involved. The offered solution
algorithm has been described as infinite steps to solve the
problem (TLFP-FP). Also, the stability set of the first
kind (SSK1) corresponding to the obtained-optimal
solution has been determined.

According to our experience, it is believed that the
stability in three-level fractional programming problems
with fuzzy has not been handle and debate in the
literature before, the structure of this paper as follows:

Section 2 contains the mathematical formulation of
the fuzzy three-level fractional programming problem
involving fuzzy parameters on the right-hand side of the
constraints. The definition of the fuzzy number with its
membership function is also given. The a-level set of this
fuzzy number is then defined. In Section 3, an
interval-valued three-level fractional programming
problem is stated. Some basic concepts of stability for the
problem of concern are defined in Section 4. The
utilization of the Karush-Kuhn-Tucker necessary
optimality conditions corresponding to the real-valued
three-level fractional programming problem is developed
in Section 5. Also, the outlines of the solution algorithm
infinite steps are described in Section 6. An illustrative
numerical example to clarify the theory and the solution
algorithm is provided in Section 7. Some conclusions of
the results in this paper are included in Section 8.

2 The Solution Concept and Problem
Formularization

In this section, we consider the following three-level
fractional programming problem involving m-vector of
fuzzy parameters (3) in the constraints, (TLFP-FP):
(TLFP-FP):

[1¥ —level]
T
c1 X+ pi
M. F I AL
axy, Fy (x) ET
wherex;, x3 solves
(27 — level|
T
CHX+ P2
Max,, P> (x) = —2——=,
X 2( ) dgx‘i‘ﬁz
where x3 solves
[3" — level|
cfx+ P3
Max,, F3(x) = 3—=
axy, F3(x) AT+ By
Subject to

n
xeX(¥)={xeR aijxjgﬁi,i:1,2,...,m,x20}.
=

)]

J

Here &;,i = 1,2,...,m represent fuzzy parameters on the
right side of the constraints of the problem (TLFP-FP) (1).
These fuzzy parameters are assumed to the characterized
as fuzzy numbers as introduced by Dubois and Prade in
[10, 11,12, 20].

Definition 1. A fuzzy number is represented with three
points as T (¥1,%,03), This representation is
interpreted as a membership function and holds the
following conditions, [13].

(i) Y to ¥ is an increasing function.

(ii) B, to ¥ is a decreasing function.

(i) % < ¥y < V5.

0 ford <ty
OO fordy <9<,
i =t
”19(19)* 193719
¥
S Jor ¥y <% < s,
0 ford > .

Figure.1 illustrates the graph of a possible shape of a
membership function of a fuzzy number 9.

Q0

Fig. 1: Membership functions of triangular fuzzy number

We now assume that &;,i = 1,2,...,m in problem (TLFP-
FP) (1) are fuzzy numbers whose membership function is
w9 (%). Then, we could introduce the following o-level
set or a-cut of the fuzzy parameters O;,i = 1,2,...,m.

Definition 2. (a-Level Set)The a-level set of the fuzzy
numbers 3;,i = 1,2,...,m is defined as an ordinary set

Ly () for which the degree of their membership function
exceeds the level «, (see [13]):

Lo (D) = {9|us,(%) > a, i=1,2,....m} (2

It is clear that the a-level sets have the following
properties:

a1 < ap if and only if Ly, (3) D Le, (3).
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For a certain degree a, then problem (TLFP-FP) (1) could

be understood as the following non-fuzzy «-three-level
fractional programming problem (a-TLFP):

(a-TLFP):
(17 —level]
T
cix+p1
Max, Fi(x) = #4’;7
1
where x;, x3 solves
[27 —level]
I'x+
Maxy, F>(x) = ﬁv
2
where x3 solves
[3 —level|
T
cx X+ pP3
Max,, F3(x) = dSTxiqL’[)ﬁ’
3
Subject to

n
x€X(D)={xeR" Zaijxj <,i=1.2,...,mx>0}.
=1

J

3

D € Lo (V).

It should be emphasized here that in (a-TLFP) (3), the
parameters ¥,i = 1,2,...,m are treated as decision
variables rather than constants.

Based on the definition of a-level set of the fuzzy number,
we introduce the concept of a-optimal solution to the (o-
TLFP) (3).

Definition 3. (a-Optimal Solution) x* € X(¥) is said to
be an a-optimal solution to the problem (a-TLFP) (3), if
and only if there does not exist another
x € X(9),9 € Lg(D) such that F,(x) > F,(x*), for all
r =1,2,3 where the corresponding values of parameters
O = (9,9;,...,9,,) are called a-level optimal
parameters.

3 Interval-valued Three-level Fractional
Programming Problem

From the definition of the fuzzy number,
®,i=1,2,...,m, it is significant to note that the c-level
set of fuzzy number could be represented as the closed
interval [9F,9Y],i = 1,2,....,m which depends on
interval-valued of ¢. Therefore, problem (a-TLFP) (3) is
converted into an interval-valued three-level fractional
programming problem (IV-TLFP) as follows:

(IV-TLFP):
[1% —Tlevel|
T
c1x+p1
Maxy, Fi(x) = m7
1
where x;, x3 solves
[2™ — level]
T
cr X+ Po
MaxszZ(x) = dszi_*_sz
2
where x3 solves
[3 —level|
cI'x+ 3
e = Gy
3
Subject to

n
XEX(‘L?)Z{XESK”ZaUXj <%,i=1,2,...,mx>0}.
=1

J
. “)
o<y, <9V i=1,2,....m.
Depending on the concept of a convex linear combination

method described in [3,10,14], the above problem
(IV-TLFP) (4) could be written as follows:

(RV-TLFP):
(17 —level]
clx+ P1
Max,, Fy(x) = -——
axy, Fy (x) Tt By
where x;, x3 solves
[2 —level]
T
CH X+ P2
Max,,F>(x) = 2——=
axy, F>(x) At By
where x3 solves
[3 — level]
T
3 X+ p3
Max, F3(x) = ——=
axy, F3(x) ATt By
Subject to

xeX(®)={xeR" Y ayx; < (A" +(1—-21,)07
j=1

i=1,2,...,mx>0}.
%)
where; A € [0,1],i=1,2,...,m.
To solve problem (5), first, we solve the 3"d-level decision-
maker by using the LINGO software package [15]:

ch+p3
Max,. F5(x) = 37,
Subject to
xeX(V),
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to obtain an a-optimal solution X*7 = (x7,x5,x3) with the
corresponding optimum value function F;* = F3(x*).

Now, the 3"-level decision maker problem is transformed
by the dual linear fractional programming method
described in [16] and could be written in the following
manner:

Min,, y(u) = u,

subject to
Bsuo— Y (A + (1= 4) 0 Yu; > ps,
= @)

n

T T

diiuo + Zaijui >c3,
j=1

x;j>0,u; >20,i=1,2,...,m.

uo-Unrestricted.

Consequently, problem (RV-TLFP) (5) could be
transformed into (RV-BLFP) as the following problem.

(RV-BLFP):
(1% —level]
T
c1x+p1
Max, F; S SN
axy, Fy (x) Tt By
wherex,, x3 solves
2" —level]
T
X+ P2
Maxy, F>(x) = m7
Subject to
_ n N (8)
xeX(W)={xeR",9eR |Zaux1 <

j=1
(AOE+(1=2)0Y),i=1,2,...,mx >0}

n

Bsuo — Y (At + (1 = A) 0 Jui > ps,

j=1
n
d3TiI/l()+ Z ajju; > C;,
Jj=1
x;>20,u;>20,i=1,2,...,m.
uo — Unrestricted.

where; A; € [0,1], i=1,2,...,m.

At this step, the following 2™-level decision maker
problem is solved using the LINGO software package
[15].

T

CHX+ P2
M F — 22T P2
axy, F> (x) dsz—i—ﬁz’
Subject to

XEX(IS) :{xem”,ﬁeﬁi”ﬂ Zaijxjg
j=1

(LdF+(1=2)0Y),i=1,2,...,mx >0} ©

Bauo — Y (M) + (1= 2) 0 )ui > ps,

j=1
n
d3T,~M() + Z aiju; > C;,
j=1
x;j20,u;>20,i=1,2,....m.
ug — Unrestricted.

where; A; € [0,1], i=1,2,...,m.

to obtain the o-optimal solution X*5 = (x*,us,u;) with
the corresponding optimum value function F; = F>(x*).
Again, the 2"-level decision maker problem is
transformed into the following dual linear fractional
problem by [16] as:

Miny, y(v) = vo,
Subject to
n
ﬁzVo — Z (7L,'191~L + (1 — ki)ﬁiU)Vi + p3vi+ C;vi > P2,
j=1
n n
dhvo+ Y aijvi+ Bavi— Y (AdF+ (1= 4) 07 Jvit
j=1 j=1
n
d3Tl-V,'+ Z aij > Cgi,
j=1
x;>20,v;,>20,i=1,2,...,m.
vo — Unrestricted.

(10)
Therefore, problem (RV-BLFP) (8) could be transformed

into a problem (RV-SLFP) as the following:
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(RV-SLFP):
clx+ P1
Max, Fy(x) = ————
axy, Fi(x) Tt By
Subject to

n
xGX(ﬁ):{xE%",ﬁem”ﬂZaijxjg
=1
(LSF+ (1 =)0V, i=1,2,...,mx >0},
n
Bavo — Y (M) + (1= 2)07 ui + psu; + c3u; > pa,
=
n n
dyvo+ Y aijvi+ Bavi— Y, (k4 (1—2)97 i+
=1 =1

n
T = T
d3lv,+ Zaijvl' Z Czl',
P
x;>20,v;,>0,i=1,2,...,m,

vo — Unrestricted.

(11)
where; A; € [0,1], i=1,2,...,m.

to get finally an a-optimal solution X*F' = (x*,v§,v}) with
the corresponding optimum value function F}* = Fj (x*).

4 The Basic Concept of Stability for Problem
(TLFP-FP)

In this section, we give the definitions of the set of
feasible parameters, the solvability set, and the stability
set of the first kind (SSK1) for the problem (TLFP-FP)
(1) via problem (RV-SLFP) (11),(see[17, 18, 19]).
Definition 4. (The set of Feasible Parameters) The set of
feasible parameters of the problem (RV-SLFP) (11), which
is denoted by A, is defined by:

A={9eR"|Gy(x,%) # P and x€]0,1],(i=1,2,...,m)}

where Gg(x,9;), i = 1,2,...,m is the feasible region in
the decision space of problem (RV-SLFP)(11).
Definition 5. (The Solvability Set)The solvability set of

the problem (RV-SLFP) (1), which is denoted by B, is
defined by:

B ={% € R"| problem(RV — SLFP) (11) hasan o. — optimal

solution(x*,v5,vi)}.

Definition 6. (The Stability Set of the First Kind
(SSK1))Suppose that X*F = (x*,vj,v}) be an optimal
solution of problem (RV-SLFP) (11), then the stability set
of the first kind S;(X*/ &) corresponding to
X*F = (x*,v§,v¥) is defined by:

i

S| (X*F a) ={8 € R™| X*F isan a — optimal solution
of problem (RV — SLFP), (11)}.

5 Utilization of the Karush-Kuhn-Tucker
optimality conditions corresponding to
the(RV-SLFP) (11)

For the expansion that follows, later on, problem
(RV-SLFP) (11) could be rewritten as:

T

c1 X+ pi1
Max, Fy(x) = -—"=
axy, Fy (x) i By
Subject to

Y aijxj— (Adf +(1-2)97) <0
i=

n
— ﬁ2V0+ Z(ll‘l?ll‘ + (1 — 7L,')19,~U)u,' — P3u; — C3Tl~u,'+p2 <0,
=

n n
—dyvo— Y aijvi—Bwi+ Y (A + (1= 2)0))
Jj=1 J=1
T - T
vi —dzvi— Z aijvi+cy; <0,
j=1
L qU .
x;>20,v;>20,9,97 >20,i=1,2,...,m
vo — Unrestricted.
(12)

where; A; € [0,1], i=1,2,...,m.

3

The Lagrange function of problem (RV-SLFP) (12) is
established as follows, (see [17, 18, 19]):

L= Fl(x) — Ti(Zaijxj — (),iﬁiL—f— (1 —)y,')‘ﬁiU)—
Jj=i

m(—Bovo+ Y (At + (1= 4) 07 Yu; — psui — chui + p2)—
=1

n n
Yi(_dZTiVO — Z ajjvi— Bvi+ Z (liﬁ,’L—f—
j=1 J=1
n
(1—=2)0Y i —dlvi — Z a@ijvi+ )+
=1
oxj + @vo+ &+ nif + G =0.

where, 7, T, Y, 0;,¢,&,m; and {; are the Lagrange
multipliers. Then the Karush-Kuhn-Tucker necessary
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optimality conditions corresponding to (RV-SLFP)

problem (12) would take the next form:

aLi ’ i i y U
Era R (,»ZI“’”J (Rdf + (1= )] )>+
L _ 3 i D (B ot (1—a)oY
oxy 8x2Fl () p sz (lzlauxj (L7 + (1 — ), )) +

dL d d a
a_x3 E —Fl(.x) — a—x:ifj <Zaijxj —

L oL "o
a—vo = —a—voﬂ' <-ﬁ2v0+jzl()~j19i + (]
JL T < < L U T
x’)/, 7d2iV() — Z aijvi — ﬁ},Vi —+ Z (/Iiﬁi 4+ (1 — )L,')‘lsi )Vi — d3,~vi —
0 j=1 j=1
JdL oL d u
— =——1 | —dyvo— Y aivi— Bavi+ Y (A + (1 - 4)
8v,- 8vi j=1 j=1
JdL JdL u
9oL~ gol” (ﬁzvo + ) (s + (1= 20) 07 ui — paui — cFui +Pz> -
f i j=1
JL T - - L U
YA —dyvo — Z ajvi — Bavi + Z (A7 + (1= )07 )vi—
9v; = =1
JdL JdL u
ool = ool (‘ﬁzvo + ) (s + (1= 20) 07 ui — paui — i + Pz) -
; ; =1
JL T C C L U
W% 7d2iV07 Za,’jv,’fﬁ3v,’+ Z(klﬁt +(1 *)L,')‘l?i )V,’*
i = =1

Ti <Z ajx;— (),iﬁiL—l— (1 — lj)l?ﬁ)) =0.
i=1

n <—ﬁzvo+ Y o+ (1 -8
=1

n
< dyvo — Za,]v, Byvi+ Y () + (1= A) 07 vi — diwi —
=1

oix; = 0. Qvo = Evi=0. niﬁiL —0.
m
Y aijxj — (A0f + (1 - 2)97) <0.
i=1
n
—Bovo+ Y (Midf+ (1= 2)0Y) ui — paui — chui +p2 < 0.
j=1

n n
—dyvo— Y aivi—Bsvi+ Yy, (At + (1= )0 ) vi —
47 jil

xj>0,v; > 0,19,L,ﬁlU
vo — Unrestricted.

(13)
where; 4; € [0,1], i=1,2,...,m.

ox

—O0iX;.
(9)62 =

(Midf + (1 - lin)) +

- 0;X;.
aX3 Y

— )0 Yui — pau; — chui + Pz) -

ﬁiU )Vi

)M,’ — p3u; — c;ui +p2> =0

T
d3vi —

>0,7,7,%,0,0,5.,1m,6>0,i=1,2,...

OX;.

o\ e
Za,’jvi+6‘2i +a—v0(PV().

j=1
d oL

Y aijvi+ CQ) + W‘givi-
1

J=1

T
—dzvi—

T ol T JL L
dyvi— Y ayvi+ey | + gL
i

J=1

T . = T JL U
d3ivi - Z ajvi + C; + Wciﬁi .
i

J=1

n
Z aijvi+ CQ) =0.

=1
GoY =0

n
Z ﬁ,’jviJngi <0.
j=1

.
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where all the states of the Kuhn-Tucker conditions (13)
are calculated at the a-optimal solution X*/' = (x*,v5 v¥)
of the problem (RV-SLFP).

Moreover, 1,7, %,0:;,¢,&,1: and §; are the Lagrange
multipliers. Also, solving the system of equations (13),
the fuzzy stability set of the first kind S1(X*, ) for the
fuzzy multi-level fractional programming problem with
fuzziness in constraints (TLFP-FP) (1) would be
characterized.

6 Solution Algorithm

Following the above discussion, an algorithm would be
developed for obtaining the stability set of the first kind
S1(X*F' o) for the parametric problem (TLFP-FP) is
described in a series of steps. The suggested algorithm
could be summarized in the following manner:

Stage I: Finding the a-optimal solution of problem
(TLFP-FP).

Step (1): Start with an initial level set a = o* € [0,1],
acceptable for all decision-makers.

Step (2): Convert the problem (TLFP-FP) (1) into the form
of problem (¢-TLFP) (3).

Step (3): Rewrite problem (a-TLFP) (3) in the form of
problem (IV-TLFP) (4).

Step (4): Convert the problem (IV-TLFP) (4) into the
problem (RV-TLFP) (5) by applying the concept of
convex linear combination on the constraint functions.
Step (5): Solve the third-level decision-maker problem
(6).

Step (6): Transform the third-level decision-maker by the

duality theory of linear fractional programming problem
to the dual problem (7).

Step (7): Convert the problem (RV-TLFP) (5) into the
problem (RV-BLFP) (8).

Step (8): Solve the second-level decision-maker problem
.

Step (9): Transform the second-level decision-maker
problem by the duality theory of linear fractional
programming problem to dual problem (10).

Step (10): Convert the problem (RV-BLFP) (8) into the
problem (RV-SLFP) (11).

Step (11): Solve the problem (RV-SLFP) (11).
Stage II: Determination of the stability set of the first
kind S; (X*F', ), go to Step 12.

Step (12): Apply the Karush- Kuhn-Tucker optimality
conditions to find, the stability set of the first kind,
equations (12) for the problem (RV-SLFP) (11).

Step (13): Reduce and then solve the system of equations
(13) to characterize the stability set of the first kind
S1(X*F' o) and Stop.

7 An illustrative Numerical Example

In what follows we provide a numerical example to
illustrate the solution algorithm described in the previous
section, consider the following problem (F-TLFP):

[1%-1evel]

Max,Fi(x,y,z) = %
where y, z solves

[2d level]

x4y 472412
MaxyF>(x,y,z) = ==

where z solves
[3"-level]
Ty+2z42
MCDCZF:‘,(X,y,Z) = X;Jr)ytzﬁs >
Subject to _
dx+y+z< 9,
x+3y+z< by,
2x+y+2z< B3,
x,y,22>0.

where 1§j, j = 1,2,3 are fuzzy parameters and are
characterized by the following triangular fuzzy numbers:

9 = (D1, %12, 913) = (5,10,15).
152 = (192171922)1923) = (2767]0)

1-93 = (193171932;1933) = (37679)

Stage I: Finding an a-optimal solution to the parametric
problem (a-TLFP).

Let ov = 0.3, then we get:

5450 <Y <15-5a, 2+40 <% <10—4a,
343a<1% <9-3¢.

The equivalent non-fuzzy problem (a-TLFP) takes the
form:

[1%-1evel]

10x+5y—z+15
MaxxFl(xayaZ) = %’
where y, z solves
[2"9-level]
—4y+7z+12
Max,Fy(x.y.3) = ST 2
where z solves
[3"-level]
Ty+2z+42
Max:F3(x,y,2) = 5505
Subject to
dx+y+z<Y,
x+3y+z< Dy,
2x+y+2z< s,
6.5 <Y <135,
3.2< 19, <8.8,
3.9 <193 <81,
x,y,220.
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Problem (a-TLFP) could be written as an interval-valued
three-level fractional programming problem (IV-TLFP) in
the following form:

[1%-1evel]

_ 10x45y—z+15
MaxF(x,y,z) = p rara
where y, z solves
[27-]evel]

_ x—4y+T7z+12
MaxyF>(x,y,7) = =575
where z solve
[3"-level]

_ x+Ty+2z42
Max F3 (x’y’ Z) T bxty—z+5°

Subject to

dx+y+2<16.5,13.5],

x+3y+2<[3.2,8.8],

2x+y+2z<[3.9,8.1],

x,y,z2 2> 0.
Using the concept of convex linear combination on the
constraints, then problem (IV-TLFP) is transformed into
the problem (RV-TLFP) as follows:
[1%-level]
Max, F ()C,y, Z) _ 10x45y—z+15

2x+y—z+12 2
where y, z solves
(27 level]
_x—4y+7z412
MaxyFZ(xayaZ) = x—2y+z+6 °

where z solves
[3™"-level]

_ x+Ty42z42
Max F3 (xvyv Z) T bxty—z+5°

Subject to
4dx+y+z<10.7,
x+3y+2z<7.12,
2x+y+2z<5.16,
x,y,z2 2> 0.
First; we solve the 3"-level decision maker problem using
LINGO [15]:
MaxZF3(x7y7Z) =
Subject to
4x+y+z<10.7,
x+3y+2z<7.12,
2x+y+2z<5.16,
x,y,z2 2 0.

x+7y+2z+42
6x+y—z+5

whose o-optimal solution is found:
X = (x*,y*,7*) = (0,1.8160,1.6720) with the optimum
objective value F;T = 3.510109.
Transforming the 3/"-level decision maker problem using
again the duality of linear fractional programming [16].
This problem could be written as:
Miny(u) = uo,
Subject to

Sug—10.7u1 —7.12ur — 5.16u3 > 2,

6ug +4uy +uy +uz > 1,

uo+uy+3uy +uz >7,

—ug+2u; +ur +2uz > 2,

X022 O,Mi > Oal: 15253'

uo-Unrestricted.
Now, the problem (RV-TLFP) could be transformed into
(RV-BLFP) as the following problem.

[1%-level]

_ 10x45y—z+15
Max.Fy(x,y,z) = 2xty—z+12
where y, z solves
[27 level]

_ x—4y+T7z+12
MaxyFy(x,y,2) = 575

Subject to

dx+y+z<10.7,

x+3y+2<7.12,

2x+y+2z<5.16,

Sug —10.7uy —7.12up — 5.16u3 > 2,

6ug+4uy +uy+uz > 1,

uo+uy+3uy +uz >7,

—ug+2uy +up 4+ 2uz > 2,

X022 O,Mi > Oal: 15253'

uo-Unrestricted.
Secondly; we solve the 2"?-level decision maker problem
using LINGO [15] of linear fractional programming
problem to the dual problem as the following:

Maxsz(x,y,Z) = %’

Subject to
4x+y+2<10.7,
x+3y+2z<7.12,
2x+y+2z<5.16,
Sug—10.7u; —7.12uy — 5.16u3 > 2,
6ug+4uy +uy+uz > 1,
uo+uy+3uy +uz >7,
—ug +2u; +ur +2uz > 2,
X, ¥,2 > O;“i > O;l: 15253'
uo-Unrestricted.

whose ¢-optimal solution is found:

XS = (X", y*, 25w, u, s uf)
= (0,1.816000, 1.67200,5.784919, 1.234568,0,2.657892)

with the optimum objective value F;’ 5 =4.069307, Again,

we transform the 2"?-level decision maker problem of the
dual problem which could be written as:
Min,y(v) = v,
Subject to
6vg— 10.7vy —7.12vy — 5.16v3 4+ 2v4 + vs + Tvg+
2vy > 12,
vo+4vi+va+v3 >1,
—2vo+vi+3va+vy > —4,
vo+2vi+vo+2v3 > 7,
—5v4+10.7v5 4+ 7.12v¢ + 5.16v7 > 0,
—6vy —4vs—vg—vy; >0,
—vg4—v5—3vg—v7 >0,
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V4 —2vs —ve —2v7 >0,
vo-Unrestricted.

Therefore, problem (RV-BLFP) could be transformed into
(RV-SLFP) in the following form:

_ 10x45y—z+15
Max.Fi(x,y.2) = 5=

Subject to
dx+y+z<10.7,
x+3y+z<7.12,
2x+y+2z<5.16,
6vyg — 10.7vi —7.12v5 — 5.16v3 + 2v4 + v5 + v+
3V7 Z 12,
vo+4vi+va+vy > 1,
—2vo+vi+3vy+v3 > —4,
vo+2vi+va+2v3 > 7,
—5v4+10.7v5+7.12v¢+ 5.16v7 > 0,
—6vy —4vs —vg—vy7 >0,
—V4—Vvs—3vg—v7 >0,
V4 —2vs —ve —2v7 >0,
vo-Unrestricted.

whose ¢-optimal solution is found:

X = (%, y* 25 VG, VL Ve V5, v VE Ve, V)
= (1.962716,1.234568,0,4.607515,0.3924843,
1.607516,0,0,0,0,0).

with the optimum objective value F}" = 2.377622.
Stage II: Determination of the stability set of the first kind

koK ko ko ok kb ok ko ko
Sl(x , Y < 7V()7Vl7V27V37V47V57V67V77a)

It is clear that the stability of the optimal solution of the
problem (RV-SLFP) leads to the stability of the optimal
solution of the given fuzzy problem (RV-TLFP). For this,
let us begin with:

10x+5y—2z+15
Max,Fy (x,y,z) = 2x+y),z+12 s

Subject to
dx+y+z< 0.413]L +0.69Y,
x+3y+2<0.39+0.79Y,
2x+y+2z<0.70F +0.30Y,

The Lagrange function corresponding to the problem (RV-
SLFP) is formulated as follows:

L (10x+5y—z+15
2x+y—z+12

T(x43y+z— 038 —0.70Y)—

3 (2x+y+2z—0.70F - 0.30)—

m(—6vo + (0.40F +0.60Y )y  +

(0.394 +0.70Y )va + (0.705 + 0307 )v3 —

2vq —vs —Tvg—2v7 — 12)—

Yi(—=vo—4vi —vo—v3+ 1) —p(2vo— v

Y(—=vo—2vi—vo—2n3+7)— Y

(5v4 — (0.48F +0.687 )vs — (0305 4 0.70¢ )vg—

(0.70F 4+ 0.30Y )v7) — 15(6v4 + 4vs + v+ v7)—

Yo(va +vs +3ve+v7) — ¥ (—va + 2vs + ve +2v7)—

S1(=v1) = &a(—v2) — &3(—v3) — &a(—va)—

Es(—vs) = E6(—ve) — &1 (—v7) +01(x) + 02(y) +

3(2) —m(=9¢ ) Gi(-v ) (- ’92)

G (=87) = m(=05) = G3(=87) — @(—vo) =0.

) — T (dx+y+z—048F—0.607)—

—3vy—v3+4)—

Q

Where 7;, T, %, 0;, @, &, 1; and, §;, (i € I) are the Lagrange
multipliers. Then the Karush-Kuhn-Tucker necessary
optimality conditions (see [17, 18, 19])corresponding to
the problem (RV-SLFP) would have the following form:

OL  10(2x+y—z+12) —2(10x+ 5y —z+15)
ox; (2x+y—z+12)
—41— 1 —213+ 01 =0,
L 5(2x+y—z+12)— (10x+5y —z+15)
oxy (2x+y—z+12)
-7 -3 —T73+0, =0,
dL  —(2x+y—z+12)—(10x+5y—z+15)
oxy (2x+y—z+12)
—T1—T—273+ 03 =0,

6vo — (0.49f +0.60)v; — (0.39F 4 0.79Y )n, oL =6+ —2p+1+ T =0,

—(0.705 +0.30Y)v3 + 2v4 + vs + Tve +2v7 > 12, Ivo

vo+4vi+vy+v3 > 1, JIL L U _

Vot v+ vt v > —4, o —w(0407+ 0.6 ) +4n+n+2p+E5 =0

vo+2vi +vo+2v3 > 7, oL . U

—5v4 + (0.40F +0.69Y )vs + (0.39% +0.79Y )vg e —n(0.3% +0.7% )+ +3n+p+E5&=0

+(0.70E +0.30Y)v; > 0, oL

—6vy — 4vs — v — vy >0, o= (0705 + 030 )+ n+p+2p+E& =0

—vq4—v5—3vg—v7 >0, aVS

Vg4 —2v5 —vg—2v7 >0, _L:27r75 — 61 — =0

X2 > 0> 0i=1,2,....7. D N (R (A

o, ol 095,97 08,07 >0, oL

vo-Unrestricted. s T+ 1 (0497 +0.60) —4ys — 1 — 2+ & =
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T+ 1(0.40] +0.60{) — 415 — % — 2% + & =0,
oL L U\ e vy —
5= 1+ (0305 10.70Y) — 35— 3y —pp + &g =0,  1HFW(0305+0.70y) =95 —% — 11+ & =0,
6
oL 27+ 1(0.705 +0.30Y) — 15 — 16 — 21 + & =0,
3 = 21+ (0.79F 4 030Y) — s — - 21 + & =0,
8"7 0.47; —0.15696+n; =0,
L
8—191L =047 —04mv + 0.4’)/4\/5 +n1 = O, 0.67; — 0.23544 7+ C] =0,
dL =
W — 0.6 —0.67v; +0.6%vs+ &1 =0, 0.37,+0.48225t+ 1, =0,
oL 0.7, — 1.12525x+ £, = 0,
(9—15}2L =031%—-037v>,+0.37ve+ 12 =0, 0.7 + 13 = 0,
dL
357 = 0.77, — 0.77v2 +0.7y4v6 + { = 0, 0313+ 43 =0,
oL 71(9.0853 — 0.4191L— 0.613]U) =0,
= — 0.713 — 0.37v3 4+ 0.3v7 + 13 =0,
IV; 7,(5.6662 — 0.30% — 0.79Y) =0,
JdL
W =0.373 — 0.47mv3 +0.3v; + & =0, 73(5.1585 — 0_7193117 0'3193{/) =0,

7 (4x+y+z—0.49F—-0.68Y) =0,
tauy(x+3y+2z—0.395—0.70Y) =0,
73(2x+y+2z—0.704—-0.3) = 0,0

T(—6vo+ (0.40F + 0.6 )v; + (0.305 +0.79V )+
(07193{‘+03193U)V3 —2v4—vs —Tvg—2v7+ 12) =0,
Yi(—=vo—4vi —vo—v3+1)=0,

7/2(—21)0-1-\/1 —3v—v3 —4) =0,
A(—vo—2vi —vp —2v3+7) =0,

Ya(5vs — (0.49F + 0.69)vs — (0.3 + 0.70Y)ve —
(07054 0.38Y)v7) =0,

¥5(6v4+4vs +ve+v7) =0,

Y6(va+vs +3ve+v7) =0,

¥ (—vq +2vs +ve+2v7) =0,

Eivi = 0,62 = 0,833 = 0,844 = 0,85v5 = 0,86vs =
0,57\17 = O,G]x = 0, Oy = 0,G3Z =0,

moy = 0,597 = 0.md; = 0.59] = 0.m395 =
0, C3193U = 0, Qv = 0,

vo-Unrestricted.

=

The above system of equations is reduced to the following
equations:

0.3056 — 47,7, — 273+ 0] =0,
0.1528—171—3n—13+0, =0,

0.0802 — 7 — 7, — 273+ 03 = 0,

6+ —2p+pB+e=0,
—m(0.49F4+0.607) +4y +p+2p+& =0,
—m(03%+0.79)+n+3p+n+&H =0,
—7(0.705+ 030 )+ n+n+2p+& =0,
2T =57 —6%— Y%+ +8 =0,

m(—15.645 + 0.3924(0.490F +
1.6075(0.394 +0.70Y)) =0,

0.607) +

11(—6.7846) =0,
P(—17.6451) =0,
75(0.0002) = 0,

0.3924&, =0,

1.6075&, = 0,

1.96270; =0,

1.23450, =0,

mof =0,

Gl =0,

Mdy =0,

&Y =0,

394 =0,

&y =0,

4.6075¢ = 0,

9.0853 = 0.40F +0.60
5.6662 = 0.30% +0.70V
5.1599 = 0.79% + 0.3,

27.645 — 0.3924(0.49F + 0.69Y) — 1.6075(0.30% +
0.79Y) > 12,
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Therefore, the stability set of the first kind of problem (RV-
TLFP) of the numerical example is given by:

$1(1.962716,1.234568,0,4.607515,0.3924843,1.607516,
0,0,0,0,0,03)={ac0,1]lti=n=m=n=%="
=p=8=m=0=m=L=m1=G=¢=0,
~5U—6—Y%—¥+8& =0,

o1 = —0.3056, 0, = —0.1528, 03 = 0.0802,

9.08531 — 4y — % — 2%+ &5 =0,

56662 — %5 — 3% — ¥+ & =0,

515851 — % —3% 2% +& =0,

0.3924(0.49f +0.60 )+

1.6075(0.395 4 0.707 ) <

15.645,0.40F + 0.6 > 9.0853,0.395+

0.79Y >5.6662,0.795 +0.39Y >5.1599}

8 Concluding Remarks

In this paper, the stability set of the first kind for
multi-level fractional programming (TLFP-FP) problem
has been characterized and determined. Some stability
notations such as the solvability set and the stability set
have been defined for such a problem, where fuzzy
parameters on the right side of the constraints of the
problem (TLFP-FP) are involved. A suggested algorithm
has been described as infinite steps to solve the problem
(TLFP-FP). Also, the stability set of the first kind (SSK1)
corresponding to the obtained a-optimal solution has been
determined.

Future open points for research in the area of the
parametric problem (F-TLFP) needed to be studied in the
future. Some of these points are given in the following:

I. Some stability notations for fuzzy Three-objective
multi-level quadratic integer programming problem must
be discussed.

II. Some stability notations for fuzzy Three-objective
fractional integer programming problem should be
investigated.

III. Some stability notations for fuzzy Three-level
quadratic integer programming problem could be tackled.
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