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Abstract: In this paper, suggested a solution algorithm to a fuzzy three-level fractional programming problem (F-TLFP). This problem

involving fuzzy parameters on the right side of the constraints. First, a non-fuzzy problem (α-TLFP) with a crisp set of constraints is

established depending on the concept of the α-level set of fuzzy numbers. Second, problem (α-TLFP) could be converted into a

real-valued three-level fractional programming problem (RV-TLFP) which could be transformed into a real-valued bi-level fractional

programming problem (RV-BLFP) by the duality theorem of linear fractional programming. In the same way, the problem (RV-BLFP)

is transformed into a real-valued single-level fractional programming problem (RV-SLFP) again by the duality theorem, which could

be solved for obtaining an α-optimal solution of problem (F-TLFP). Also, some stability notions are characterized and defined for the

problem of concern by extending the Karush-Kuhn-Tucker optimality conditions equivalent to the problem (RV-SLFP). An algorithm

is a presentation of infinite steps to solve and investigate the stability of the solution of the problem (F-TLFP). An illustrative numerical

example is provided to demonstrate the proposed solution algorithm.

Keywords: Fuzzy numbers, Three-level Programming, Fractional Programming, Stability.

1 Introduction

Three-level optimization is a type of multi-level
optimization which is a technique developed to solve the
decentralized problem with multiple decision-makers in
the hierarchical organization [1, 2, 3]. Three-level
programming problem is concerned with minimizing or
maximizing some quantity represented by an objective
function.

Fractional programming (FP), which has been used
as an important planning tool function for the last four
decades, is applied to different disciplines such as
engineering, business, and economics. Fractional
programming is generally used for modeling real-life
problems with fractional objectives such as profit/cost,
inventory/sales, actual cost/standard cost, and
output/employee [4, 5, 6 and, 7].

The fuzzy set and numbers have been introduced the
concept in 1965 by Zadeh [8]. Fuzzy set theory has been to
deal with imprecise numerical quantities nearly. It is well
applied and developed in a wide of real problems.

Stability of solutions becomes more and more
attractive in the area of mathematical programming.
Publications on this topic usually investigate the impact
of parameter changes (in the right-hand side or/and in the
objective functions or/and in the left-hand side or/and in
the domination structure) on the solution in various
models of vector optimization problems. Stability study
allows the decision-maker to take on decisions under
various charges keeping the solution of the problem under
consideration the same in a specified solution domain,
which has great importance in management decision
making as well as outside of it.

M. Osman et al. [9], diseased the characterization of
some basic stability notations is parametric bi-level
multi-objective linear fractional programming problems
in a rough environment. In their paper, some notions have
been extended to investigate the stability set of the first
kind to the three-level fractional programming problem
involving fuzzy parameters in the right-hand side of the
constraints (TLFP-FP).

This paper presented; the stability set of the first kind
for the three-level fractional programming (TLFP-FP)
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problem. Some stability notations such as the solvability
set and the stability set have been defined for such a
problem, where fuzzy parameters in the constraints of the
problem (TLFP-FP) are involved. The offered solution
algorithm has been described as infinite steps to solve the
problem (TLFP-FP). Also, the stability set of the first
kind (SSK1) corresponding to the obtained-optimal
solution has been determined.

According to our experience, it is believed that the
stability in three-level fractional programming problems
with fuzzy has not been handle and debate in the
literature before, the structure of this paper as follows:

Section 2 contains the mathematical formulation of
the fuzzy three-level fractional programming problem
involving fuzzy parameters on the right-hand side of the
constraints. The definition of the fuzzy number with its
membership function is also given. The a-level set of this
fuzzy number is then defined. In Section 3, an
interval-valued three-level fractional programming
problem is stated. Some basic concepts of stability for the
problem of concern are defined in Section 4. The
utilization of the Karush-Kuhn-Tucker necessary
optimality conditions corresponding to the real-valued
three-level fractional programming problem is developed
in Section 5. Also, the outlines of the solution algorithm
infinite steps are described in Section 6. An illustrative
numerical example to clarify the theory and the solution
algorithm is provided in Section 7. Some conclusions of
the results in this paper are included in Section 8.

2 The Solution Concept and Problem

Formularization

In this section, we consider the following three-level
fractional programming problem involving m-vector of
fuzzy parameters (ϑ̃) in the constraints, (TLFP-FP):
(TLFP-FP):

[1st − level]

Maxx1
F1(x) =

cT
1 x+ρ1

dT
1 x+β1

,

wherex2,x3 solves

[2nd − level]

Maxx2
F2(x) =

cT
2 x+ρ2

dT
2 x+β2

,

wherex3 solves

[3rd − level]

Maxx3
F3(x) =

cT
3 x+ρ3

dT
3 x+β3

,

Subject to

x ∈ X(ϑ̃) = {x ∈ ℜn|
n

∑
j=1

ai jx j ≤ ϑ̃i, i = 1,2, . . . ,m,x ≥ 0}.


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Here ϑ̃i, i = 1,2, . . . ,m represent fuzzy parameters on the
right side of the constraints of the problem (TLFP-FP) (1).
These fuzzy parameters are assumed to the characterized
as fuzzy numbers as introduced by Dubois and Prade in
[10, 11, 12, 20].

Definition 1. A fuzzy number is represented with three
points as ϑ̃ = (ϑ1,ϑ2,ϑ3), This representation is
interpreted as a membership function and holds the
following conditions, [13].
(i) ϑ1 to ϑ2 is an increasing function.
(ii) ϑ2 to ϑ3 is a decreasing function.
(iii) ϑ1 ≤ ϑ2 ≤ ϑ3.

µϑ̃ (ϑ) =


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
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
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0 f or ϑ < ϑ1

ϑ −ϑ1

ϑ2 −ϑ1

f or ϑ1 ≤ ϑ ≤ ϑ2,

ϑ3 −ϑ

ϑ3 −ϑ2

f or ϑ2 ≤ ϑ ≤ ϑ3,

0 f or ϑ > ϑ3.

Figure.1 illustrates the graph of a possible shape of a
membership function of a fuzzy number ϑ̃ .

Fig. 1: Membership functions of triangular fuzzy number ϑ̃

We now assume that ϑ̃i, i = 1,2, . . . ,m in problem (TLFP-
FP) (1) are fuzzy numbers whose membership function is
µϑ̃i(ϑi). Then, we could introduce the following α-level
set or α-cut of the fuzzy parameters ϑ̃i, i = 1,2, . . . ,m.

Definition 2. (α-Level Set)The α-level set of the fuzzy
numbers ϑ̃i, i = 1,2, . . . ,m is defined as an ordinary set
Lα(ϑ̃) for which the degree of their membership function
exceeds the level α , (see [13]):

Lα(ϑ̃) = {ϑ |µϑ̃i
(ϑi)≥ α, i = 1,2, . . . ,m} (2)

It is clear that the a-level sets have the following
properties:

α1 ≤ α2 if and only if Lα1
(ϑ̃)⊃ Lα2

(ϑ̃).
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For a certain degree α , then problem (TLFP-FP) (1) could

be understood as the following non-fuzzy α-three-level
fractional programming problem (α-TLFP):

(α-TLFP):

[1st − level]

Maxx1
F1(x) =

cT
1 x+ρ1

dT
1 x+β1

,

wherex2,x3 solves

[2nd − level]

Maxx2
F2(x) =

cT
2 x+ρ2

dT
2 x+β2

,

wherex3 solves

[3rd − level]

Maxx3
F3(x) =

cT
3 x+ρ3

dT
3 x+β3

,

Subject to

x ∈ X(ϑ̃) = {x ∈ ℜn|
n

∑
j=1

ai jx j ≤ ϑi, i = 1,2, . . . ,m,x ≥ 0}.


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(3)
ϑ ∈ Lα(ϑ̃).

It should be emphasized here that in (α-TLFP) (3), the
parameters ϑ̃i, i = 1,2, . . . ,m are treated as decision
variables rather than constants.

Based on the definition of α-level set of the fuzzy number,
we introduce the concept of α-optimal solution to the (α-
TLFP) (3).

Definition 3. (α-Optimal Solution) x∗ ∈ X(ϑ) is said to
be an α-optimal solution to the problem (α-TLFP) (3), if
and only if there does not exist another
x ∈ X(ϑ),ϑ ∈ Lα(ϑ̃) such that Fr(x) ≥ Fr(x

∗), for all
r = 1,2,3 where the corresponding values of parameters
ϑ ∗ = (ϑ ∗

1 ,ϑ
∗
2 , . . . ,ϑ

∗
m) are called a-level optimal

parameters.

3 Interval-valued Three-level Fractional

Programming Problem

From the definition of the fuzzy number,
ϑ̃i, i = 1,2, . . . ,m, it is significant to note that the α-level
set of fuzzy number could be represented as the closed
interval [ϑ L

i ,ϑ
U
i ], i = 1,2, . . . ,m which depends on

interval-valued of α . Therefore, problem (α-TLFP) (3) is
converted into an interval-valued three-level fractional
programming problem (IV-TLFP) as follows:

(IV-TLFP):

[1st − level]

Maxx1
F1(x) =

cT
1 x+ρ1

dT
1 x+β1

,

wherex2,x3 solves

[2nd − level]

Maxx2
F2(x) =

cT
2 x+ρ2

dT
2 x+β2

,

wherex3 solves

[3rd − level]

Maxx3
F3(x) =

cT
3 x+ρ3

dT
3 x+β3

,

Subject to

x ∈ X(ϑ) = {x ∈ ℜn|
n

∑
j=1

ai jx j ≤ ϑi, i = 1,2, . . . ,m,x ≥ 0}.


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(4)
ϑ L

i ≤ ϑi ≤ ϑU
i , i = 1,2, . . . ,m.

Depending on the concept of a convex linear combination
method described in [3,10,14], the above problem
(IV-TLFP) (4) could be written as follows:

(RV-TLFP):

[1st − level]

Maxx1
F1(x) =

cT
1 x+ρ1

dT
1 x+β1

,

wherex2,x3 solves

[2nd − level]

Maxx2
F2(x) =

cT
2 x+ρ2

dT
2 x+β2

,

wherex3 solves

[3rd − level]

Maxx3
F3(x) =

cT
3 x+ρ3

dT
3 x+β3

,

Subject to

x ∈ X(ϑ) = {x ∈ ℜn|
n

∑
j=1

ai jx j ≤ (λ ϑ L
i +(1−λi)ϑ

U
i ,

i = 1,2, . . . ,m,x ≥ 0}.



































































































































(5)
where; λ ∈ [0,1], i = 1,2, . . . ,m.

To solve problem (5), first, we solve the 3rd-level decision-
maker by using the LINGO software package [15]:

Maxx3
F3(x) =

cT
3 x+ρ3

dT
3 x+β3

,

Subject to

x ∈ X(ϑ),


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


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

(6)
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to obtain an a-optimal solution X∗T = (x∗1,x
∗
2,x

∗
3) with the

corresponding optimum value function F∗
3 = F3(x

∗).

Now, the 3rd-level decision maker problem is transformed
by the dual linear fractional programming method
described in [16] and could be written in the following
manner:

Minx3
ψ(u) = u0,

subject to

β3u0 −
n

∑
j=1

(λiϑ
L
i +(1−λi)ϑ

U
i )ui ≥ ρ3,

dT
3iu0 +

n

∑
j=1

ai jui ≥ cT
3 ,

x j ≥ 0,ui ≥ 0, i = 1,2, . . . ,m.


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
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












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



(7)

u0-Unrestricted.

Consequently, problem (RV-TLFP) (5) could be
transformed into (RV-BLFP) as the following problem.

(RV-BLFP):

[1st − level]

Maxx1
F1(x) =

cT
1 x+ρ1

dT
1 x+β1

,

wherex2,x3 solves

[2nd − level]

Maxx2
F2(x) =

cT
2 x+ρ2

dT
2 x+β2

,

Subject to

x ∈ X(ϑ) = {x ∈ ℜn
,ϑ ∈ ℜm|

n

∑
j=1

ai jx j ≤

(λiϑ
L
i +(1−λi)ϑ

U
i ), i = 1,2, . . . ,m,x ≥ 0}

β3u0 −
n

∑
j=1

(λiϑ
L
i +(1−λi)ϑ

U
i )ui ≥ ρ3,

dT
3iu0 +

n

∑
j=1

ai jui ≥ cT
3i,

x j ≥ 0,ui ≥ 0, i = 1,2, . . . ,m.

u0 −Unrestricted.


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(8)

where; λi ∈ [0,1], i = 1,2, . . . ,m.

At this step, the following 2nd-level decision maker
problem is solved using the LINGO software package
[15].

Maxx2
F2(x) =

cT
2 x+ρ2

dT
2 x+β2

,

Subject to

x ∈ X(ϑ) = {x ∈ ℜn
,ϑ ∈ ℜm|

n

∑
j=1

ai jx j ≤

(λiϑ
L
i +(1−λi)ϑ

U
i ), i = 1,2, . . . ,m,x ≥ 0}

β3u0 −
n

∑
j=1

(λiϑ
L
i +(1−λi)ϑ

U
i )ui ≥ ρ3,

dT
3iu0 +

n

∑
j=1

āi jui ≥ cT
3i,

x j ≥ 0,ui ≥ 0, i = 1,2, . . . ,m.

u0 −Unrestricted.


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(9)

where; λi ∈ [0,1], i = 1,2, . . . ,m.

to obtain the α-optimal solution X∗S = (x∗,u∗0,u
∗
i ) with

the corresponding optimum value function F∗
2 = F2(x

∗).

Again, the 2nd-level decision maker problem is
transformed into the following dual linear fractional
problem by [16] as:

Minx2
ψ(v) = v0,

Subject to

β2v0 −
n

∑
j=1

(λiϑ
L
i +(1−λi)ϑ

U
i )vi +ρ3vi + cT

3ivi ≥ ρ2,

dT
2iv0 +

n

∑
j=1

ai jvi +β3vi −
n

∑
j=1

(λiϑ
L
i +(1−λi)ϑ

U
i )vi+

dT
3ivi +

n

∑
j=1

āi j ≥ cT
2i,

x j ≥ 0,vi ≥ 0, i = 1,2, . . . ,m.

v0 −Unrestricted.
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(10)
Therefore, problem (RV-BLFP) (8) could be transformed

into a problem (RV-SLFP) as the following:
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(RV-SLFP):

Maxx1
F1(x) =

cT
1 x+ρ1

dT
1 x+β1

,

Subject to

x ∈ X(ϑ) = {x ∈ ℜn
,ϑ ∈ ℜm|

n

∑
j=1

ai jx j ≤

(λiϑ
L
i +(1−λi))ϑ

U
i , i = 1,2, . . . ,m,x ≥ 0},

β2v0 −
n

∑
j=1

(λiϑ
L
i +(1−λi)ϑ

U
i )ui +ρ3ui + cT

3iui ≥ ρ2,

dT
2iv0 +

n

∑
j=1

ai jvi +β3vi −
n

∑
j=1

(λiϑ
L
i +(1−λi)ϑ

U
i )vi+

dT
3ivi +

n

∑
j=1

āi jvi ≥ cT
2i,

x j ≥ 0,vi ≥ 0, i = 1,2, . . . ,m,

v0 −Unrestricted.


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where; λi ∈ [0,1], i = 1,2, . . . ,m.

to get finally an a-optimal solution X∗F = (x∗,v∗0,v
∗
i ) with

the corresponding optimum value function F∗
1 = F1(x

∗).

4 The Basic Concept of Stability for Problem

(TLFP-FP)

In this section, we give the definitions of the set of
feasible parameters, the solvability set, and the stability
set of the first kind (SSK1) for the problem (TLFP-FP)
(1) via problem (RV-SLFP) (11),(see[17, 18, 19]).

Definition 4. (The set of Feasible Parameters) The set of
feasible parameters of the problem (RV-SLFP) (11), which
is denoted by A, is defined by:

A= {ϑ ∈ℜm|Gα(x,ϑi) 6= φ and α ∈ [0,1],(i= 1,2, . . . ,m)}

where Gα(x,ϑi), i = 1,2, . . . ,m is the feasible region in

the decision space of problem (RV-SLFP)(11).

Definition 5. (The Solvability Set)The solvability set of
the problem (RV-SLFP) (1), which is denoted by B, is
defined by:

B ={ϑ ∈ ℜm| problem(RV − SLFP)(11)hasanα − optimal

solution(x∗,v∗0,v
∗
i )}.

Definition 6. (The Stability Set of the First Kind
(SSK1))Suppose that X∗F = (x∗,v∗0,v

∗
i ) be an optimal

solution of problem (RV-SLFP) (11), then the stability set
of the first kind S1(X

∗F ,α) corresponding to
X∗F = (x∗,v∗0,v

∗
i ) is defined by:

S1(X
∗F
,α) ={ϑi ∈ ℜm|X∗F isanα − optimal solution

o f problem(RV − SLFP), (11)}.

5 Utilization of the Karush-Kuhn-Tucker

optimality conditions corresponding to

the(RV-SLFP) (11)

For the expansion that follows, later on, problem
(RV-SLFP) (11) could be rewritten as:

Maxx1
F1(x) =

cT
1 x+ρ1

dT
1 x+β1

,

Subject to

m

∑
i=1

ai jx j − (λiϑ
L
i +(1−λi)ϑ

U
i )≤ 0

−β2v0 +
n

∑
j=1

(λiϑ
L
i +(1−λi)ϑ

U
i )ui −ρ3ui − cT

3iui +ρ2 ≤ 0,

− dT
2iv0 −

n

∑
j=1

ai jvi −β3vi +
n

∑
j=1

(λiϑ
L
i +(1−λi)ϑ

U
i )

vi − dT
3ivi −

n

∑
j=1

āi jvi + cT
2i ≤ 0,

x j ≥ 0,vi ≥ 0, ϑ L
i ,ϑ

U
i ≥ 0, i = 1,2, . . . ,m

v0 −Unrestricted.















































































































(12)
where; λi ∈ [0,1], i = 1,2, . . . ,m.

The Lagrange function of problem (RV-SLFP) (12) is
established as follows, (see [17, 18, 19]):

L = F1(x)− τi(
m

∑
j=i

ai jx j − (λiϑ
L
i +(1−λi)ϑ

U
i )−

π(−β2v0 +
n

∑
j=1

(λiϑ
L
i +(1−λi)ϑ

U
i )ui −ρ3ui − cT

3iui +ρ2)−

γi(−dT
2iv0 −

n

∑
j=1

ai jvi −β3vi +
n

∑
j=1

(λiϑ
L
i +

(1−λi)ϑ
U
i )vi − dT

3ivi −
n

∑
j=1

āi jvi + cT
2i)+

σix j +ϕv0 + ξivi +ηiϑ
L
i + ζiϑ

U
i = 0.

where,τi,π ,γi,σi,ϕ ,ξi,ηi and ζi are the Lagrange
multipliers. Then the Karush-Kuhn-Tucker necessary
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optimality conditions corresponding to (RV-SLFP)
problem (12) would take the next form:

∂L

∂x1

=
∂

∂x1

F1(x)−
∂

∂x1

τi

(

m

∑
i=1

ai jx j − (λiϑ
L
i +(1−λi)ϑ

U
i )

)

+
∂

∂x1

σix j.

∂L

∂x2

=
∂

∂x2

F1(x)−
∂

∂x2

τi

(

m

∑
i=1

ai jx j − (λiϑ
L
i +(1−λi)ϑ

U
i )

)

+
∂

∂x2

σix j.

∂L

∂x3

=
∂

∂x3

F1(x)−
∂

∂x3

τi

(

m

∑
i=1

ai jx j − (λiϑ
L
i +(1−λi)ϑ

U
i )

)

+
∂

∂x3

σix j.

∂L

∂v0

=−
∂L

∂v0

π

(

−β2v0 +
n

∑
j=1

(λiϑ
L
i +(1−λi)ϑ

U
i )ui −ρ3ui − cT

3iui +ρ2

)

−

∂L

∂v0

γi

(

−dT
2iv0 −

n

∑
j=1

ai jvi −β3vi +
n

∑
j=1

(λiϑ
L
i +(1−λi)ϑ

U
i )vi − dT

3ivi −
n

∑
j=1

āi jvi + cT
2i

)

+
∂L

∂v0

ϕv0.

∂L

∂vi

=−
∂L

∂vi

γi

(

−dT
2iv0 −

n

∑
j=1

ai jvi −β3vi +
n

∑
j=1

(λiϑ
L
i +(1−λi)ϑ

U
i )vi − dT

3ivi −
n

∑
j=1

āi jvi + cT
2i

)

+
∂L

∂vi

ξivi.

∂L

∂ϑ L
i

=−
∂L

∂ϑ L
i

π

(

−β2v0 +
n

∑
j=1

(λiϑ
L
i +(1−λi)ϑ

U
i )ui −ρ3ui − cT

3iui +ρ2

)

−

∂L

∂ϑ L
i

γi

(

−dT
2iv0 −

n

∑
j=1

ai jvi −β3vi +
n

∑
j=1

(λiϑ
L
i +(1−λi)ϑ

U
i )vi − dT

3ivi −
n

∑
j=1

āi jvi + cT
2i

)

+
∂L

∂ϑ L
i

ηiϑ
L
i .

∂L

∂ϑU
i

=−
∂L

∂ϑU
i

πi

(

−β2v0 +
n

∑
j=1

(λiϑ
L
i +(1−λi)ϑ

U
i )ui −ρ3ui − cT

3iui +ρ2

)

−

∂L

∂ϑU
i

γi

(

−dT
2iv0 −

n

∑
j=1

ai jvi −β3vi +
n

∑
j=1

(λiϑ
L
i +(1−λi)ϑ

U
i )vi − dT

3ivi −
n

∑
j=1

āi jvi + cT
2i

)

+
∂L

∂ϑU
i

ζiϑ
U
i .

τi

(

m

∑
i=1

ai jx j − (λiϑ
L
i +(1−λi)ϑ

U
i )

)

= 0.

π

(

−β2v0 +
n

∑
j=1

(λiϑ
L
i +(1−λi)ϑ

U
i )ui −ρ3ui − cT

3iui +ρ2

)

= 0.

γi

(

−dT
2iv0 −

n

∑
j=1

ai jvi −β3vi +
n

∑
j=1

(λiϑ
L
i +(1−λi)ϑ

U
i )vi − dT

3ivi −
n

∑
j=1

āi jvi + cT
2i

)

= 0.

σix j = 0. ϕv0 = 0. ξivi = 0. ηiϑ
L
i = 0. ζiϑ

U
i = 0.

m

∑
i=1

ai jx j −
(

λiϑ
L
i +(1−λi)ϑ

U
i

)

≤ 0.

−β2v0 +
n

∑
j=1

(

λiϑ
L
i +(1−λi)ϑ

U
i

)

ui −ρ3ui − cT
3iui +ρ2 ≤ 0.

− dT
2iv0 −

n

∑
j=1

ai jvi −β3vi +
n

∑
j=1

(

λiϑ
L
i +(1−λi)ϑ

U
i

)

vi − dT
3ivi −

n

∑
j=1

āi jvi + cT
2i ≤ 0.

x j ≥ 0,vi ≥ 0,ϑ L
i ,ϑ

U
i ≥ 0,τi,π ,γi,σi,ϕ ,ξi,ηi,ζi ≥ 0, i = 1,2, . . . ,m.

v0 −Unrestricted.



















































































































































































































































































































































































(13)
where; λi ∈ [0,1], i = 1,2, . . . ,m.

.
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where all the states of the Kuhn-Tucker conditions (13)
are calculated at the α-optimal solution X∗F = (x∗,v∗0,v

∗
i )

of the problem (RV-SLFP).

Moreover, τi,π ,γi,σi,ϕ ,ξi,ηi and ζi are the Lagrange
multipliers. Also, solving the system of equations (13),
the fuzzy stability set of the first kind S1(X

∗F ,α) for the
fuzzy multi-level fractional programming problem with
fuzziness in constraints (TLFP-FP) (1) would be
characterized.

6 Solution Algorithm

Following the above discussion, an algorithm would be
developed for obtaining the stability set of the first kind
S1(X

∗F ,α) for the parametric problem (TLFP-FP) is
described in a series of steps. The suggested algorithm
could be summarized in the following manner:

Stage I: Finding the a-optimal solution of problem

(TLFP-FP).

Step (1): Start with an initial level set α = α∗ ∈ [0,1],
acceptable for all decision-makers.

Step (2): Convert the problem (TLFP-FP) (1) into the form
of problem (α-TLFP) (3).

Step (3): Rewrite problem (α-TLFP) (3) in the form of
problem (IV-TLFP) (4).

Step (4): Convert the problem (IV-TLFP) (4) into the
problem (RV-TLFP) (5) by applying the concept of
convex linear combination on the constraint functions.

Step (5): Solve the third-level decision-maker problem
(6).

Step (6): Transform the third-level decision-maker by the
duality theory of linear fractional programming problem
to the dual problem (7).

Step (7): Convert the problem (RV-TLFP) (5) into the
problem (RV-BLFP) (8).

Step (8): Solve the second-level decision-maker problem
(9).

Step (9): Transform the second-level decision-maker
problem by the duality theory of linear fractional
programming problem to dual problem (10).

Step (10): Convert the problem (RV-BLFP) (8) into the
problem (RV-SLFP) (11).

Step (11): Solve the problem (RV-SLFP) (11).

Stage II: Determination of the stability set of the first
kind S1(X

∗F ,α), go to Step 12.

Step (12): Apply the Karush- Kuhn-Tucker optimality
conditions to find, the stability set of the first kind,
equations (12) for the problem (RV-SLFP) (11).

Step (13): Reduce and then solve the system of equations
(13) to characterize the stability set of the first kind
S1(X

∗F ,α) and Stop.

7 An illustrative Numerical Example

In what follows we provide a numerical example to
illustrate the solution algorithm described in the previous
section, consider the following problem (F-TLFP):

[1st-level]

MaxxF1(x,y,z) =
10x+5y−z+15

2x+y−z+12
,

where y,z solves

[2nd-level]

MaxyF2(x,y,z) =
x−4y+7z+12

x−2y+z+6
,

where z solves

[3th-level]

MaxzF3(x,y,z) =
x+7y+2z+2
6x+y−z+5

,

Subject to

4x+ y+ z ≤ ϑ̃1,

x+ 3y+ z ≤ ϑ̃2,

2x+ y+ 2z≤ ϑ̃3,

x,y,z ≥ 0.

where ϑ̃ j , j = 1,2,3 are fuzzy parameters and are
characterized by the following triangular fuzzy numbers:

ϑ̃1 = (ϑ11,ϑ12,ϑ13) = (5,10,15).

ϑ̃2 = (ϑ21,ϑ22,ϑ23) = (2,6,10).

ϑ̃3 = (ϑ31,ϑ32,ϑ33) = (3,6,9).

Stage I: Finding an a-optimal solution to the parametric
problem (α-TLFP).

Let α = 0.3, then we get:

5+ 5α ≤ ϑ1 ≤ 15− 5α, 2+ 4α ≤ ϑ2 ≤ 10− 4α,

3+ 3α ≤ ϑ2 ≤ 9− 3α.

The equivalent non-fuzzy problem (α-TLFP) takes the
form:

[1st-level]

MaxxF1(x,y,z) =
10x+5y−z+15

2x+y−z+12
,

where y,z solves

[2nd-level]

MaxyF2(x,y,z) =
x−4y+7z+12

x−2y+z+6
,

where z solves

[3th-level]

MaxzF3(x,y,z) =
x+7y+2z+2
6x+y−z+5

,

Subject to
4x+ y+ z ≤ ϑ1,
x+ 3y+ z ≤ ϑ2,
2x+ y+ 2z≤ ϑ3,

6.5 ≤ ϑ1 ≤ 13.5,
3.2 ≤ ϑ2 ≤ 8.8,
3.9 ≤ ϑ3 ≤ 8.1,
x,y,z ≥ 0.
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Problem (α-TLFP) could be written as an interval-valued
three-level fractional programming problem (IV-TLFP) in
the following form:

[1st-level]

MaxxF1(x,y,z) =
10x+5y−z+15
2x+y−z+12

,

where y,z solves

[2nd-level]

MaxyF2(x,y,z) =
x−4y+7z+12

x−2y+z+6
,

where z solve

[3th-level]

MaxzF3(x,y,z) =
x+7y+2z+2
6x+y−z+5

,

Subject to
4x+ y+ z ≤ [6.5,13.5],
x+ 3y+ z ≤ [3.2,8.8],
2x+ y+ 2z≤ [3.9,8.1],
x,y,z ≥ 0.

Using the concept of convex linear combination on the
constraints, then problem (IV-TLFP) is transformed into
the problem (RV-TLFP) as follows:

[1st-level]

MaxxF1(x,y,z) =
10x+5y−z+15
2x+y−z+12

,

where y,z solves

[2nd-level]

MaxyF2(x,y,z) =
x−4y+7z+12

x−2y+z+6
,

where z solves

[3th-level]

MaxzF3(x,y,z) =
x+7y+2z+2
6x+y−z+5

,

Subject to
4x+ y+ z ≤ 10.7,
x+ 3y+ z ≤ 7.12,
2x+ y+ 2z≤ 5.16,
x,y,z ≥ 0.

First; we solve the 3th-level decision maker problem using
LINGO [15]:

MaxzF3(x,y,z) =
x+7y+2z+2
6x+y−z+5

,

Subject to
4x+ y+ z ≤ 10.7,
x+ 3y+ z ≤ 7.12,
2x+ y+ 2z≤ 5.16,
x,y,z ≥ 0.

whose α-optimal solution is found:

X∗T = (x∗,y∗,z∗) = (0,1.8160,1.6720) with the optimum
objective value F∗T

3 = 3.510109.

Transforming the 3th-level decision maker problem using
again the duality of linear fractional programming [16].
This problem could be written as:

Minzψ(u) = u0,

Subject to
5u0 − 10.7u1− 7.12u2− 5.16u3 ≥ 2,
6u0 + 4u1+ u2 + u3 ≥ 1,

u0 + u1 + 3u2 + u3 ≥ 7,
−u0 + 2u1+ u2 + 2u3 ≥ 2,
x,y,z ≥ 0,ui ≥ 0, i = 1,2,3.
u0-Unrestricted.

Now, the problem (RV-TLFP) could be transformed into
(RV-BLFP) as the following problem.

[1st-level]

MaxxF1(x,y,z) =
10x+5y−z+15

2x+y−z+12
,

where y,z solves

[2nd-level]

MaxyF2(x,y,z) =
x−4y+7z+12

x−2y+z+6
,

Subject to
4x+ y+ z ≤ 10.7,
x+ 3y+ z ≤ 7.12,
2x+ y+ 2z≤ 5.16,
5u0 − 10.7u1− 7.12u2− 5.16u3 ≥ 2,
6u0 + 4u1+ u2 + u3 ≥ 1,
u0 + u1 + 3u2 + u3 ≥ 7,
−u0 + 2u1+ u2 + 2u3 ≥ 2,
x,y,z ≥ 0,ui ≥ 0, i = 1,2,3.
u0-Unrestricted.

Secondly; we solve the 2nd-level decision maker problem
using LINGO [15] of linear fractional programming
problem to the dual problem as the following:

MaxyF2(x,y,z) =
x−4y+7z+12

x−2y+z+6
,

Subject to
4x+ y+ z ≤ 10.7,
x+ 3y+ z ≤ 7.12,
2x+ y+ 2z≤ 5.16,
5u0 − 10.7u1− 7.12u2− 5.16u3 ≥ 2,
6u0 + 4u1+ u2 + u3 ≥ 1,
u0 + u1 + 3u2 + u3 ≥ 7,
−u0 + 2u1+ u2 + 2u3 ≥ 2,
x,y,z ≥ 0,ui ≥ 0, i = 1,2,3.
u0-Unrestricted.

whose α-optimal solution is found:

X∗S = (x∗,y∗,z∗,u∗0,u
∗
1,u

∗
2,u

∗
3)

= (0,1.816000,1.67200,5.784919,1.234568,0,2.657892)

with the optimum objective value F∗S
2 = 4.069307, Again,

we transform the 2nd-level decision maker problem of the
dual problem which could be written as:

Minvψ(v) = v0,

Subject to
6v0 − 10.7v1− 7.12v2− 5.16v3+ 2v4+ v5 + 7v6+
2v7 ≥ 12,
v0 + 4v1+ v2 + v3 ≥ 1,
−2v0 + v1 + 3v2 + v3 ≥−4,
v0 + 2v1+ v2 + 2v3 ≥ 7,
−5v4 + 10.7v5+ 7.12v6+ 5.16v7 ≥ 0,
−6v4 − 4v5− v6 − v7 ≥ 0,
−v4 − v5 − 3v6 − v7 ≥ 0,
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v4 − 2v5 − v6 − 2v7 ≥ 0,

v0-Unrestricted.

Therefore, problem (RV-BLFP) could be transformed into
(RV-SLFP) in the following form:

MaxxF1(x,y,z) =
10x+5y−z+15
2x+y−z+12

,

Subject to

4x+ y+ z ≤ 10.7,

x+ 3y+ z ≤ 7.12,

2x+ y+ 2z≤ 5.16,

6v0 − 10.7v1− 7.12v2− 5.16v3+ 2v4 + v5 + v6+
3v7 ≥ 12,

v0 + 4v1 + v2 + v3 ≥ 1,

−2v0 + v1 + 3v2 + v3 ≥−4,

v0 + 2v1 + v2 + 2v3 ≥ 7,

−5v4 + 10.7v5+ 7.12v6+ 5.16v7 ≥ 0,

−6v4 − 4v5 − v6 − v7 ≥ 0,

−v4 − v5 − 3v6− v7 ≥ 0,

v4 − 2v5 − v6 − 2v7 ≥ 0,

v0-Unrestricted.

whose α-optimal solution is found:

X∗F = (x∗,y∗,z∗,v∗0,v
∗
1,v

∗
2,v

∗
3,v

∗
4,v

∗
5,v

∗
6,v

∗
7)

= (1.962716,1.234568,0,4.607515,0.3924843,

1.607516,0,0,0,0,0).

with the optimum objective value F∗
1 = 2.377622.

Stage II: Determination of the stability set of the first kind

S1(x
∗
,y∗,z∗,v∗0,v

∗
1,v

∗
2,v

∗
3,v

∗
4,v

∗
5,v

∗
6,v

∗
7,α)

It is clear that the stability of the optimal solution of the
problem (RV-SLFP) leads to the stability of the optimal
solution of the given fuzzy problem (RV-TLFP). For this,
let us begin with:

MaxxF1(x,y,z) =
10x+5y−z+15
2x+y−z+12

,

Subject to

4x+ y+ z ≤ 0.4ϑ L
1 + 0.6ϑU

1 ,

x+ 3y+ z ≤ 0.3ϑ L
2 + 0.7ϑU

2 ,

2x+ y+ 2z≤ 0.7ϑ L
3 + 0.3ϑU

3 ,

6v0 − (0.4ϑ L
1 + 0.6ϑU

1 )v1 − (0.3ϑ L
2 + 0.7ϑU

2 )v2

−(0.7ϑ L
3 + 0.3ϑU

3 )v3 + 2v4 + v5 + 7v6 + 2v7 ≥ 12,

v0 + 4v1 + v2 + v3 ≥ 1,

−2v0 + v1 + 3v2 + v3 ≥−4,

v0 + 2v1 + v2 + 2v3 ≥ 7,

−5v4 +(0.4ϑ L
1 + 0.6ϑU

1 )v5 +(0.3ϑ L
2 + 0.7ϑU

2 )v6

+(0.7ϑ L
3 + 0.3ϑU

3 )v7 ≥ 0,

−6v4 − 4v5 − v6 − v7 ≥ 0,

−v4 − v5 − 3v6− v7 ≥ 0,

v4 − 2v5 − v6 − 2v7 ≥ 0,

x,y,z ≥ 0,vi ≥ 0, i = 1,2, . . . ,7.

ϑ L
1 ,ϑ

U
1 ,ϑ L

2 ,ϑ
U
2 ,ϑ L

3 ,ϑ
U
3 ≥ 0,

v0-Unrestricted.

The Lagrange function corresponding to the problem (RV-
SLFP) is formulated as follows:

L =

(

10x+ 5y− z+ 15

2x+ y− z+ 12

)

− τ1(4x+ y+ z− 0.4ϑ L
1 − 0.6ϑU

1 )−

τ2(x+ 3y+ z− 0.3ϑ L
2 − 0.7ϑU

2 )−

τ3(2x+ y+ 2z− 0.7ϑ L
3 − 0.3ϑU

3 )−

π(−6v0 +(0.4ϑ L
1 + 0.6ϑU

1 )v1+

(0.3ϑ L
2 + 0.7ϑU

2 )v2 +(0.7ϑ L
3 + 0.3ϑU

3 )v3−

2v4 − v5 − 7v6 − 2v7− 12)−

γ1(−v0 − 4v1 − v2 − v3 + 1)− γ2(2v0 − v1 − 3v2 − v3 + 4)−

γ3(−v0 − 2v1 − v2 − 2v3 + 7)− γ4

(5v4 − (0.4ϑ L
1 + 0.6ϑU

1 )v5 − (0.3ϑ L
2 + 0.7ϑU

2 )v6−

(0.7ϑ L
3 + 0.3ϑU

3 )v7)− γ5(6v4 + 4v5 + v6 + v7)−

γ6(v4 + v5 + 3v6+ v7)− γ7(−v4 + 2v5 + v6 + 2v7)−

ξ1(−v1)− ξ2(−v2)− ξ3(−v3)− ξ4(−v4)−

ξ5(−v5)− ξ6(−v6)− ξ7(−v7)+σ1(x)+σ2(y)+

σ3(z)−η1(−ϑ L
1 )− ζ1(−ϑU

1 )−η2(−ϑ L
2 )−

ζ2(−ϑU
2 )−η3(−ϑ L

3 )− ζ3(−ϑU
3 )−ϕ(−v0) = 0.

Where τi,π ,γi,σi,ϕ ,ξi,ηi and, ζi,(i ∈ I) are the Lagrange
multipliers. Then the Karush-Kuhn-Tucker necessary
optimality conditions (see [17, 18, 19])corresponding to
the problem (RV-SLFP) would have the following form:

∂L

∂x1

=
10(2x+ y− z+ 12)−2(10x+5y− z+15)

(2x+ y− z+ 12)2

− 4τ1 − τ2 − 2τ3 +σ1 = 0,

∂L

∂x2

=
5(2x+ y− z+ 12)− (10x+5y− z+15)

(2x+ y− z+ 12)2

− τ1 − 3τ2 − τ3 +σ2 = 0,

∂L

∂x2

=
−(2x+ y− z+ 12)− (10x+5y− z+15)

(2x+ y− z+ 12)2

− τ1 − τ2 − 2τ3 +σ3 = 0,

∂L

∂v0

= 6π + γ1 − 2γ2 + γ3 + τ28 = 0,

∂L

∂v1

=−π(0.4ϑ L
1 + 0.6ϑU

1 )+ 4γ1 + γ2 + 2γ3 + ξ1 = 0,

∂L

∂v2

=−π(0.3ϑ L
2 + 0.7ϑU

2 )+ γ1 + 3γ2 + γ3 + ξ2 = 0,

∂L

∂v3
=−π(0.7ϑ L

3 + 0.3ϑU
3 )+ γ1 + γ2 + 2γ3 + ξ3 = 0,

∂L

∂v4

= 2π − 5γ4 − 6γ5 − γ6 + γ7 + ξ4 = 0,

∂L

∂v5

= π + γ4(0.4ϑ L
1 + 0.6ϑU

1 )− 4γ5 − γ6 − 2γ7 + ξ5 = 0,
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∂L

∂v6
= 7π + γ4(0.3ϑ L

2 + 0.7ϑU
2 )− γ5 − 3γ6 − γ7 + ξ6 = 0,

∂L

∂v7

= 2π + γ4(0.7ϑ L
3 + 0.3ϑU

3 )− γ5 − γ6 − 2γ7 + ξ7 = 0,

∂L

∂ϑ L
1

= 0.4τ1 − 0.4πv1+ 0.4γ4v5 +η1 = 0,

∂L

∂ϑU
1

= 0.6τ1 − 0.6πv1+ 0.6γ4v5 + ζ1 = 0,

∂L

∂ϑ L
2

= 0.3τ2 − 0.3πv2+ 0.3γ4v6 +η2 = 0,

∂L

∂ϑU
2

= 0.7τ2 − 0.7πv2+ 0.7γ4v6 + ζ2 = 0,

∂L

∂ϑ L
3

= 0.7τ3 − 0.3πv3+ 0.3γ4v7 +η3 = 0,

∂L

∂ϑU
3

= 0.3τ3 − 0.4πv3+ 0.3γ4v7 + ζ3 = 0,

τ1(4x+ y+ z− 0.4ϑ L
1 − 0.6ϑU

1 ) = 0,

tau2(x+ 3y+ z− 0.3ϑ L
2 − 0.7ϑU

2 ) = 0,

τ3(2x+ y+ 2z− 0.7ϑ L
3 − 0.3) = 0,ϑU

3

π(−6v0 +(0.4ϑ L
1 + 0.6ϑU

1 )v1 +(0.3ϑ L
2 + 0.7ϑU

2 )v2+

(0.7ϑ L
3 + 0.3ϑU

3 )v3 − 2v4 − v5 − 7v6 − 2v7+ 12) = 0,

γ1(−v0 − 4v1 − v2 − v3 + 1) = 0,

γ2(−2v0 + v1 − 3v2 − v3 − 4) = 0,

γ3(−v0 − 2v1 − v2 − 2v3 + 7) = 0,

γ4(5v4 − (0.4ϑ L
1 + 0.6ϑU

1 )v5 − (0.3ϑ L
2 + 0.7ϑU

2 )v6 −
(0.7ϑ L

3 + 0.3ϑU
3 )v7) = 0,

γ5(6v4 + 4v5 + v6 + v7) = 0,

γ6(v4 + v5 + 3v6+ v7) = 0,

γ7(−v4 + 2v5 + v6 + 2v7) = 0,

ξ1v1 = 0,ξ2v2 = 0,ξ3v3 = 0,ξ4v4 = 0,ξ5v5 = 0,ξ6v6 =
0,ξ7v7 = 0,σ1x = 0,σ2y = 0,σ3z = 0,

η1ϑ L
1 = 0,ζ1ϑU

1 = 0,η2ϑ L
2 = 0,ζ2ϑU

2 = 0,η3ϑ L
3 =

0,ζ3ϑU
3 = 0,ϕv0 = 0,

v0-Unrestricted.

The above system of equations is reduced to the following
equations:

0.3056− 4τ1τ2 − 2τ3 +σ1 = 0,

0.1528− τ1− 3τ2 − τ3 +σ2 = 0,

0.0802− τ1− τ2 − 2τ3 +σ3 = 0,

6+ γ1 − 2γ2 + γ3 +ϕ = 0,

−π(0.4ϑ L
1 + 0.6ϑU

1 )+ 4γ1 + γ2 + 2γ3 + ξ1 = 0,

−π(0.3ϑ L
2 + 0.7ϑU

2 )+ γ1 + 3γ2 + γ3 + ξ2 = 0,

−π(0.7ϑ L
3 + 0.3ϑU

3 )+ γ1 + γ2 + 2γ3 + ξ3 = 0,

2π − 5γ4 − 6γ5 − γ6 + γ7 + ξ4 = 0,

π + γ4(0.4ϑ L
1 + 0.6ϑU

1 )− 4γ5 − γ6 − 2γ7 + ξ5 = 0,

7π + γ4(0.3ϑ L
2 + 0.7ϑU

2 )− γ5 − γ6 − γ7 + ξ6 = 0,

2π + γ4(0.7ϑ L
3 + 0.3ϑU

3 )− γ5 − γ6 − 2γ7 + ξ7 = 0,

0.4τ1 − 0.15696π+η1 = 0,

0.6τ1 − 0.23544π+ ζ1 = 0,

0.3τ2 + 0.48225π+η2 = 0,

0.7τ2 − 1.12525π+ ζ2 = 0,

0.7τ3 +η3 = 0,

0.3τ3 + ζ3 = 0,

τ1(9.0853− 0.4ϑ L
1 − 0.6ϑU

1 ) = 0,

τ2(5.6662− 0.3ϑ L
2 − 0.7ϑU

2 ) = 0,

τ3(5.1585− 0.7ϑ L
3 − 0.3ϑU

3 ) = 0,

π(−15.645 + 0.3924(0.4ϑϑ L
1 + 0.6ϑU

1 ) +
1.6075(0.3ϑ L

2 + 0.7ϑU
2 )) = 0,

γ1(−6.7846) = 0,

γ2(−17.6451) = 0,

γ3(0.0002) = 0,

0.3924ξ1 = 0,

1.6075ξ2 = 0,

1.9627σ1 = 0,

1.2345σ2 = 0,

η1ϑ L
1 = 0,

ζ1ϑU
1 = 0,

η2ϑ L
2 = 0,

ζ2ϑU
2 = 0,

η3ϑ L
3 = 0,

ζ3ϑU
3 = 0,

4.6075ϕ = 0,

9.0853 = 0.4ϑ L
1 + 0.6ϑU

1 ,

5.6662 = 0.3ϑ L
2 + 0.7ϑU

2 ,

5.1599 = 0.7ϑ L
3 + 0.3ϑU

3 ,

27.645 − 0.3924(0.4ϑ L
1 + 0.6ϑU

1 ) − 1.6075(0.3ϑ L
2 +

0.7ϑU
2 )≥ 12,
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Therefore, the stability set of the first kind of problem (RV-
TLFP) of the numerical example is given by:

S1(1.962716,1.234568,0,4.607515,0.3924843,1.607516,

0,0,0,0,0,0.3) = {α ∈ [0,1]|τ1 = τ2 = τ3 = π = γ1 = γ2

= γ3 = ξ2 = η1 = ζ1 = η2 = ζ2 = η3 = ζ3 = ϕ = 0,

− 5γ4 − 6γ5 − γ6 − γ7 + ξ4 = 0,

σ1 =−0.3056,σ2 =−0.1528,σ3 = 0.0802,

9.0853γ4− 4γ5 − γ6 − 2γ7 + ξ5 = 0,

5.6662γ4− γ5 − 3γ6 − γ7 + ξ6 = 0,

5.1585γ4− γ5 − 3γ6 − 2γ7 + ξ7 = 0,

0.3924(0.4ϑ L
1 + 0.6ϑU

1 )+

1.6075(0.3ϑ L
2 + 0.7ϑU

2 )≤

15.645,0.4ϑ L
1 + 0.6ϑU

1 ≥ 9.0853,0.3ϑ L
2 +

0.7ϑU
2 ≥ 5.6662,0.7ϑ L

3 + 0.3ϑU
3 ≥ 5.1599}

8 Concluding Remarks

In this paper, the stability set of the first kind for
multi-level fractional programming (TLFP-FP) problem
has been characterized and determined. Some stability
notations such as the solvability set and the stability set
have been defined for such a problem, where fuzzy
parameters on the right side of the constraints of the
problem (TLFP-FP) are involved. A suggested algorithm
has been described as infinite steps to solve the problem
(TLFP-FP). Also, the stability set of the first kind (SSK1)
corresponding to the obtained a-optimal solution has been
determined.

Future open points for research in the area of the
parametric problem (F-TLFP) needed to be studied in the
future. Some of these points are given in the following:

I. Some stability notations for fuzzy Three-objective
multi-level quadratic integer programming problem must
be discussed.

II. Some stability notations for fuzzy Three-objective
fractional integer programming problem should be
investigated.

III. Some stability notations for fuzzy Three-level
quadratic integer programming problem could be tackled.
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