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1 Introduction

Atanassove [2] introduced and studied the concept of
intuitionistic fuzzy sets as a generalization of fuzzy sets.
In 2004, Park [25] defined the notion of intuitionistic
fuzzy metric space with the help of continuoust-norms
and continuoust-conorms. Recently, in 2006, Alaca et al.
[1] using the idea of In-tuitionistic fuzzy sets, defined the
notion of intuitionistic fuzzy metric space with the help of
continuous t-norm and continuoust-conorms as a
generalization of fuzzy metric space due to Kramosil and
Michalek [3]. Subsequently, several authors [4]-[23]
derived fixed point theorems in intuitionistic fuzzy metric
space. In view of the considerations given by various
authors, the principal motivation of this paper is to relate
some results in the literature by discussing the existence
and uniqueness of fixed points for new classes of
mappings defined on a complete metric space. In
particular, we prove common fixed point theorem in
intuitionistic fuzzy metric space using compatible
mappings of type (A).

2 Preliminaries

The concepts of triangular norms (t-norms) and triangular
conorms (t-conorms) are known as the axiomatic skelton
that we use are characterization fuzzy intersections and
union respectively. These concepts were originally

introduced by Menger [24] in study of statistical metric
spaces.
Definition 2.1.[26] A binary operation
∗ : [0,1]× [0,1]→ [0,1] is continuoust-norm if * satisfies
the following conditions:for alla,b,c,d ∈ [0,1],

(i) * is commutative and associative;
(ii) * is continuous;
(iii) a∗ 1 = a;
(iv) a ∗ b ≤ c∗ d whenevera ≤ c andb ≤ d.

Definition 2.2.[26] A binary operation♦ : [0,1]× [0,1]→
[0,1] is continuoust-conorm if ♦ satisfies the following
conditions: for alla,b,c,d ∈ [0,1],

(i) ♦ is commutative and associative;
(ii) ♦ is continuous;
(iii) a♦ 0 = a;
(iv) a♦b ≥ c♦d whenevera ≤ c andb ≤ d.
Alaca et al. [1] using the idea of Intuitionistic fuzzy

sets, defined the notion of intuitionistic fuzzy metric
space with the help of continuoust-norm and continuous
t-conorms as a generalization of fuzzy metric space due
to Kramosil and Michalek [3] as:
Definition 2.3.[1] A 5-tuple (X ,M,N,∗,♦) is said to be
an intuitionistic fuzzy metric space ifX is an arbitrary set,
∗ is a continuoust-norm,♦ is a continuoust-conorm and
M,N are fuzzy sets onX2× [0,∞) satisfying the following
conditions:

(i) M(x,y, t)+N(x,y, t) ≤ 1 for all x,y ∈ X andt > 0;
(ii) M(x,y,0) = 0 for all x,y ∈ X ;
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(iii) M(x,y, t) = 1 for all x,y ∈ X andt > 0 if and only
if x = y;

(iv) M(x,y, t) = M(y,x, t) for all x,y ∈ X andt > 0;
(v) M(x,y, t)∗M(y,z,s)≤M(x,z, t+s) for all x,y,z ∈X

ands, t > 0;
(vi) for all x,y ∈ X , M(x,y, .) : [0,∞) → [0,1] is left

continuous;
(vii) limt→∞M(x,y, t) = 1 for all andt > 0;
(viii) N(x,y,0) = 1 for all x,y ∈ X ;
(ix) N(x,y, t) = 0 for all x,y ∈ X andt > 0 if and only

if x = y;
(x) N(x,y, t) = N(y,x, t) for all x,y ∈ X andt > 0;
(xi) N(x,y, t)♦N(y,z,s)≥N(x,z, t+s) for all x,y,z ∈X

ands, t > 0;
(xii) for all x,y ∈ X , N(x,y, .) : [0,∞) → [0,1] is right

continuous;
(xiii) limt→∞N(x,y, t) = 0 for all x,y ∈ X .
Then (M,N) is called an intuitionistic fuzzy metric

space onX . The functionsM(x,y, t) andN(x,y, t) denote
the degree of nearness and the degree of non-nearness
betweenx andy w.r.t. t respectively.
Remark 2.1. Every fuzzy metric space(X ,M,∗) is an
intuitionistic fuzzy metric space of the form
(X ,M,1−M,∗,♦) such thatt-norm * andt-conorm♦ are
associated asx♦y = 1− ((1− x)∗ (1− y)) for all x,y ∈ X .
Remark 2.2. In intuitionistic fuzzy metric space
(X ,M,N,∗,♦), M(x,y, .) is non-decreasing andN(x,y, .)
is non-increasing, for allx,y ∈ X .

Alaca et al.[1] introduced the following notions:
Definition 2.4. Let (X ,M,N,∗,♦) be an intuitionistic
fuzzy metric space. Then

(a) a sequence{xn} in X is said to be Cauchy sequence
if, for all t > 0 andp > 0,

limn→∞M(xn+p,xn, t) = 1 andlimn→∞N(xn+p,xn, t) =
0.

(b) a sequence{xn} in X is said to be convergent to a
pointx ∈ X if, for all t > 0,

limn→∞M(xn,x, t) = 1 andlimn→∞N(xn,x, t) = 0.
Definition 2.5.[1] An intuitionistic fuzzy metric space
(X ,M,N,∗,♦) is said to be complete if and only if every
Cauchy sequence inX is convergent.
Example 2.1.Let X = { 1

n : n = 1,2,3, ..}∪{0} and let *
be the continuoust-norm and ♦ be the continuous
t-conorm defined bya ∗ b = ab anda♦b = min{1,a+ b}
respectively, for alla,b ∈ [0,1]. For eachx,y ∈ X and
t > 0, define (M,N) by M(x,y, t) = t

t+|x−y| if t > 0,

M(x,y,0) = 0 and N(x,y, t) = |x−y|
t+|x−y| if t > 0,

N(x,y,0) = 1. Clearly, (X ,M,N,∗,♦) is complete
intuitionistic fuzzy metric space.
Definition 2.6. A pair of self mappings (A,B) on an
intuitionistic fuzzy metric space(X ,M,N,∗,♦) is said to
be compatible if limn→∞M(ABxn,BAxn, t) = 1 and
limn→∞N(ABxn,BAxn, t) = 0 for all t > 0, whenever{xn}
is a sequence inX such thatlimn→∞Axn = limn→∞Bxn = u
for someu ∈ X .
Definition 2.7. A pair of self mappings (A,B) on an
intuitionistic fuzzy metric space(X ,M,N,∗,♦) is said to

be compatible of type (A) if limn→∞M(ABxn,BBxn, t) = 1,
limn→∞N(ABxn,BBxn, t) = 0 andlimn→∞M(BAxn,AAxn, t)
= 1, limn→∞N(BAxn,AAxn, t) = 0 for all t > 0, whenever
{xn} is a sequence inX such that limn→∞Axn =
limn→∞Bxn = u for someu ∈ X .

Alaca [1] proved the following results:
Lemma 2.1. Let (X ,M,N,∗,♦) be intuitionistic fuzzy
metric space and for allx,y ∈ X , t > 0 and if for a number
k > 1 such that M(x,y,kt) ≥ M(x,y, t) and
N(x,y,kt) ≤ N(x,y, t) thenx = y.
Lemma 2.2. Let (X ,M,N,∗,♦) be intuitionistic fuzzy
metric space and for allx,y ∈ X , t > 0 and if for a number
k > 1 such that M(yn+2,yn+1, t) ≥ M(yn+1,yn,kt),
N(yn+2,yn+1, t) ≤ N(yn+1,yn,kt), Then{yn} is a Cauchy
sequence inX .
Lemma 2.3.Let A andB be compatible self mappings of
type (A) on a complete intuitionistic fuzzy metric space
(X ,M,N,∗,♦) with a ∗ b = min{a,b} and a♦b = max
{a,b} for all a,b ∈ [0,1]. If Au = Bu for someu ∈ X then
ABu = BAu = AAu = BBu.

3 Main Results

Now we prove our main result.
Theorem 3.1. Let (X ,M,N,∗,♦) be a complete
intuitionistic fuzzy metric space witha ∗ b = min{a,b}
anda♦b = max{a,b} for all a,b ∈ [0,1]. Let A,B,S,T,P
andQ be six self-mappings onX satisfying the following
conditions:

(3.1)P(X)⊆ ST (X), Q(X)⊆ AB(X);
(3.2)AB = BA,ST = T S,PB = BP,QT = T Q;
(3.3)P or AB is continuous;
(3.4) (P,AB) and (Q,ST ) are pairs of compatible

mappings of type (A);
(3.5) there existk ∈ (0,1) such that for everyx,y ∈ X

andt > 0,
M(Px,Qy,kt) ≥ M(ABx,STy, t)∗M(Px,ABx, t)
M(Qy,STy, t)∗M(Px,STy, t)
N(Px,Qy,kt)≤ N(ABx,STy, t)♦N(Px,ABx, t)
♦N(Qy,STy, t)♦N(Px,STy, t).
ThenA,B,S,T,P andQ have a unique common fixed point
in X .
Proof: Let x0 ∈ X , from (3.1), there existx1,x2 ∈ X such
that Px0 = STx1, Qx1 = ABx2. Inductively, we construct
sequences {xn} and {yn} in X such that
Px2n−2 = STx2n−1 = y2n−1 andQx2n−1 = ABx2n = y2n for
n = 1, 2, 3,. . .. Takex = x2n andy = x2n+1 in (3.5), we get
M(Px2n,Qx2n+1,kt)≥
M(ABx2n,STx2n+1, t)∗M(Px2n,ABx2n, t)
∗M(Qx2n+1,STx2n+1, t)∗M(Px2n,STx2n+1, t)
M(y2n+1,y2n+2,kt)≥
M(y2n,y2n+1, t)∗M(y2n+1,y2n, t)
∗M(y2n+2,y2n+1, t)∗M(y2n+1,y2n+2, t)
M(y2n+1,y2n+2,kt)≥ M(y2n,y2n+1, t)∗M(y2n+1,y2n+2, t)
M(y2n+1,y2n+2,kt)≥ M(y2n,y2n+1, t)
and
N(Px2n,Qx2n+1,kt)≤
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N(ABx2n,ST x2n+1, t)♦N(Px2n,ABx2n, t)
♦N(Qx2n+1,STx2n+1, t)♦N(Px2n,STx2n+1, t)
N(y2n+1,y2n+2,kt)≤
N(y2n,y2n+1, t)♦N(y2n+1,y2n, t)
♦N(y2n+2,y2n+1, t)♦N(y2n+1,y2n+2, t)
N(y2n+1,y2n+2,kt)≤ N(y2n,y2n+1, t)♦M(y2n+1,y2n+2, t)
N(y2n+1,y2n+2,kt)≤ N(y2n,y2n+1, t).
Similarly,
M(y2n+2,y2n+3,kt)≥ M(y2n+1,y2n+2, t)
and
N(y2n+2,y2n+3,kt)≤ N(y2n+1,y2n+2, t).
Thus, we have
M(yn+1,yn+2,kt)≥ M(yn,yn+1, t)
and
N(yn+1,yn+2,kt)≤ N(yn,yn+1, t)
for n = 1,2,3,....
Therefore, we have
M(yn,yn+1, t)≥ M(yn,yn+1,

t
q )≥ M(yn−1,yn,

t
q2 )

≥ ...≥ M(y1,y2,
t

qn )→ 1,
and
N(yn,yn+1, t)≤ N(yn,yn+1,

t
q )≤ N(yn−1,yn,

t
q2 )

≤ ...≤ N(y1,y2,
t

qn )→ 0
whenn → ∞.
For eachε > 0 andt > 0, we can choosen0 ∈ N such that
M(yn,yn+1, t) > 1− ε and N(yn,yn+1, t) < ε for each
n ≥ n0.

For m,n ∈ N, we supposem ≥ n. Then, we have
M(yn,ym, t)≥ M(yn,yn+1,

t
m−n )

M(yn+1,yn+2,
t

m−n )∗ ...∗M(ym−1,ym,
t

m−n )

> ((1− ε)∗ (1− ε)∗ ...(m− n)times...∗ (1− ε))
≥ (1− ε),
and
N(yn,ym, t)≤ N(yn,yn+1,

t
m−n )♦

N(yn+1,yn+2,
t

m−n )♦...♦N(ym−1,ym,
t

m−n )

< ((ε)♦(ε)♦...(m− n)times...♦(ε))
≤ (ε).
M(yn,ym, t)> (1− ε),N(yn,ym, t)< ε.
Hence{yn} is a Cauchy sequence inX . As X is complete,
{yn} converges to some pointz ∈ X . Also, its
subsequences converges to this pointz ∈ X , i.e.

{Qx2n+1} → z, {STx2n+1} → z, {Px2n} → z,
{ABx2n}→ z.

Suppose AB is continuous, therefore, we have
{ABABx2n} → ABz, {ABPx2n} → ABz. As (P,AB) is
compatible pair of type (A), we have{PABx2n}→ ABz.

Takex = ABx2n,y = x2n+1 in (3.5), we get
M(PABx2n,Qx2n+1,kt)≥

M(ABABx2n,STx2n+1, t)∗M(PABx2n,ABABx2n, t)
∗M(Qx2n+1,STx2n+1, t)∗M(PABx2n,STx2n+1, t),

asn → ∞
M(ABz,z,kt) ≥
M(ABz,z, t)∗M(ABz,ABz, t)∗M(z,z, t)∗M(ABz,z, t)
M(ABz,z,kt) ≥ M(ABz,z, t) and

N(PABx2n,Qx2n+1,kt)≤
N(ABABx2n,STx2n+1, t)♦N(PABx2n,ABABx2n, t)
♦N(Qx2n+1,STx2n+1, t)♦N(PABx2n,STx2n+1, t)

asn → ∞
N(ABz,z,kt)≤
N(ABz,z, t)♦N(ABz,ABz, t)♦
N(z,z, t)♦N(ABz,z, t)
N(ABz,z,kt) ≤ N(ABz,z, t). By Lemma 2.1,ABz = z.
Next, we show thatPz = z. Putx = z andy = x2n in (3.5),
we get
M(Pz,Qx2n,kt)≥ M(ABz,STx2n, t)
∗M(Pz,ABz, t)∗M(Qx2n,STx2n, t)∗M(Pz,STx2n, t)
asn → ∞,
M(Pz,z,kt) ≥ M(z,z, t)∗
M(Pz,z, t)∗M(z,z, t)∗M(Pz,z, t)
M(Pz,z,kt) ≥ M(Pz,z, t)
and
N(Pz,Qx2n,kt)≤
N(ABz,STx2n, t)♦N(Pz,ABz, t)
♦N(Qx2n,STx2n, t)♦N(Pz,STx2n, t)
asn → ∞,
N(Pz,z,kt) ≤ N(z,z, t)
♦N(Pz,z, t)♦N(z,z, t)♦N(Pz,z, t)
N(Pz,z,kt) ≤ N(Pz,z, t).
Therefore,ABz = z = Pz. Now, we show thatBz = z. Put
x = Bz andy = x2n−1 in (3.5), we get
M(PBz,Qx2n−1,kt)≥
M(ABBz,STx2n−1, t)∗M(PBz,ABBz, t)
∗M(Qx2n−1,STx2n−1, t)∗M(PBz,STx2n−1, t)
and
N(PBz,Qx2n−1,kt)≤
N(ABBz,STx2n−1, t)♦N(PBz,ABBz, t)
♦N(Qx2n−1,STx2n−1, t)♦N(PBz,STx2n−1, t).
As BP = PB and AB = BA, so that
P(Bz) = (PB)z = BPz = Bz and
(AB)(Bz) = (BA)(Bz) = B(AB)z = Bz. Taking,n → ∞, we
get
M(Bz,z,kt) ≥
M(Bz,z, t)∗M(Bz,Bz, t)∗M(z,z, t)∗M(Bz,z, t)
M(Bz,z,kt) ≥ M(Bz,z, t)
and
N(Bz,z,kt) ≤
N(Bz,z, t)♦N(Bz,Bz, t)♦
N(z,z, t)♦N(Bz,z, t)
N(Bz,z,kt) ≤ N(Bz,z, t).
Therefore, by using Lemma 2.1, we getBz = z and also
we have,ABz = z. Therefore,Az = Bz = Pz = z. As
P(X)⊆ ST (X), there existu ∈ X such thatz = Pz = STu.
Putting,x = x2n,y = u in (3.5), we get
M(Px2n,Qu,kt)≥
M(ABx2n,STu, t)∗M(Px2n,ABx2n, t)∗
M(Qu,STu, t)∗M(Px2n,STu, t)
taking,n → ∞,
M(z,Qu,kt)≥
M(z,z, t)∗M(z,z, t)∗M(Qu,z, t)∗M(z,z, t)
M(z,Qu,kt)≥ M(z,Qu, t)
andN(Px2n,Qu,kt)≤
N(ABx2n,STu, t)♦N(Px2n,ABx2n, t)♦
N(Qu,STu, t)♦N(Px2n,STu, t)
taking,n → ∞,
N(z,Qu,kt)≤
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N(z,z, t)♦N(z,z, t)♦N(Qu,z, t)
♦N(z,z, t)
N(z,Qu,kt)≤ N(z,Qu, t).
By using Lemma 2.1, we getQu = z. Hence,
STu = z = Qu. Since (Q,ST ) is compatible pair of type
(A), therefore, by Lemma, we haveQSTu = STQu.
Therefore,Qz = STz. Now, we show thatQz = z. Take
x = x2n,y = z in (3.5), we get
M(Px2n,Qz,kt)≥ M(ABx2n,STz, t)∗M(Px2n,ABx2n, t)
M(Qz,ST z, t)∗M(Px2n,STz, t)
taking,n → ∞,
M(z,Qz,kt) ≥
M(z,Qz, t)∗M(z,z, t)∗M(Qz,Qz, t)∗M(z,Qz, t)
M(z,Qz,kt) ≥ M(z,Qz, t)
and
N(Px2n,Qz,kt)≤ N(ABx2n,STz, t)♦N(Px2n,ABx2n, t)
♦N(Qz,STz, t)♦N(Px2n,STz, t)
taking,n → ∞,
N(z,Qz,kt) ≥ N(z,Qz, t)♦N(z,z, t)
♦N(Qz,Qz, t)♦M(z,Qz, t)
N(z,Qz,kt) ≥ N(z,Qz, t).
Therefore, by using Lemma 2.1,Qz = z. As
QT = TQ,ST = TS, we haveQT z = T Qz = T z and
STT z = T STz = T Qz = T z.

Next, we claim thatT z = z.

For this, takex = x2n,y = T z in (3.5), we get
M(Px2n,QT z,kt) ≥
M(ABx2n,STTz, t)∗M(Px2n,ABx2n, t)
∗M(QTz,ST Tz, t)∗M(Px2n,STT z, t) asn → ∞,
M(z,T z,kt)≥ M(z,T z, t)∗M(z,z, t)
M(T z,T z, t)∗M(z,Tz, t)
M(z,T z,kt)≥ M(z,T z, t)
and
N(Px2n,QT z,kt)≤ N(ABx2n,STT z, t)♦N(Px2n,ABx2n, t)
♦N(QT z,STT z, t)♦N(Px2n,STT z, t)
asn → ∞,
N(z,T z,kt)≤ N(z,T z, t)♦N(z,z, t)
♦N(T z,T z, t)♦N(z,T z, t)
N(z,T z,kt)≤ N(z,T z, t)
therefore, by Lemma 2.1, we getT z = z. As
STz = Qz = z = T z. This gives Sz = z. Hence,
Az = Bz = Pz = Qz = Sz = T z = z. Hence,z is a common
fixed point ofA,B,S,T,P andQ. The proof is similarP is
continuous.

For uniqueness: Letu is another fixed point of
A,B,S,T,P and Q. Therefore, takex = z and y = u in
(3.5), we get
M(Pz,Qu,kt)≥ M(ABz,STu, t)∗M(Pz,ABz, t)
∗ M(Qu,STu, t) ∗ M(Pz,STu, t)
M(z,u,kt)≥ M(z,u, t)∗M(z,z, t)
∗M(u,u, t)∗M(z,u, t)
M(z,u,kt)≥ M(z,u, t) and
N(Pz,Qu,kt)≤ N(ABz,STu, t)♦N(Pz,ABz, t)
♦N(Qu,STu, t)♦N(Pz,STu, t)
N(z,u,kt)≤ N(z,u, t)♦N(z,z, t)
♦N(u,u, t)♦N(z,u, t)
N(z,u,kt)≤ N(z,u, t).

By Lemma 2.1, we getz = u. Hence, z is a unique
common fixed point ofA,B,S,T,P andQ.

Take B = T = I ( Identity map), then Theorem 3.1
becomes:
Corollary 3.1. Let (X ,M,N,∗,♦) be a complete
intuitionistic fuzzy metric space witha ∗ b = min{a,b}
anda♦b = max{a,b} for all a,b ∈ [0,1]. Let A,S,P andQ
be four self-mappings onX satisfying following
conditions:

(3.6)P(X)⊆ S(X), Q(X)⊆ A(X);
(3.7)P or A is continuous;
(3.8) (P,A) and (Q,S) are pairs of compatible mappings

of type (A);
(3.9) there existk ∈ (0,1) such that for everyx,y ∈ X

andt > 0,
M(Px,Qy,kt) ≥ M(Ax,Sy, t)∗M(Px,Ax, t)
∗ M(Qy,Sy, t) ∗ M(Px,Sy, t)
N(Px,Qy,kt)≤ N(Ax,Sy, t)♦N(Px,Ax, t)
♦N(Qy,Sy, t)♦N(Px,Sy, t).

ThenA,S,P andQ have a unique common fixed point
in X .

4 Conclusion

The present paper extended and generalized various
known fixed point theorems in the literature in the setting
of fuzzy and intuitionistic fuzzy metric spaces.
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